Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Zinc Electrodeposition
2.2. Target Parameter Calculations
2.3. Target Irradiation
2.4. Radiochemical Separation and Product Characterization
2.5. Recovery of Enriched Zn
3. Materials and Methods
3.1. Reagents and Materials
3.2. Zinc-70 Electrodeposition
3.3. Target Parameter Calculations
3.4. Target Irradiation
3.5. Radiochemical Separation and Product Characterization
3.6. Target Recycling: Recovery of Enriched Zn
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junde, H.; Xiaolong, H.; Tuli, J. Nuclear Data Sheets for A = 67. Nucl. Data Sheets 2005, 106, 159–250. [Google Scholar] [CrossRef]
- Seltzer, S. Stopping-Powers and Range Tables for Electrons, Protons, and Helium Ions; NIST Standard Reference Database 124; NIST: Gaithersburg, MD, USA, 1993. [Google Scholar] [CrossRef]
- Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikołajczak, R. 67Cu Production Capabilities: A Mini Review. Molecules 2022, 27, 1501. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, S.J.; DeNardo, G.L.; Kukis, D.L.; Shen, S.; Kroger, L.A.; DeNardo, D.A.; Goldstein, D.S.; Mirick, G.R.; Salako, Q.; Mausner, L.F.; et al. 67Cu-21T-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J. Nucl. Med. 1999, 40, 302–310. [Google Scholar] [PubMed]
- Srivastava, S.C. A Bridge not too Far: Personalized Medicine with the use of Theragnostic Radiopharmaceuticals. J. Postgrad. Med. Educ. Res. 2013, 47, 31–46. [Google Scholar] [CrossRef]
- O’Donnell, R.T.; DeNardo, G.L.; Kukis, D.L.; Lamborn, K.R.; Shen, S.; Yuan, A.; Goldstein, D.S.; Carr, C.E.; Mirick, G.R.; DeNardo, S.J. A Clinical trial of radioimmunotherapy with 67Cu-21T-BAT-Lym-1 for non-Hodgkin’s lymphoma. J. Nucl. Med. 1999, 40, 2014–2020. [Google Scholar] [PubMed]
- 67CU-SARTATE™ Peptide Receptor Radionuclide Therapy Administered to Pediatric Patients with High-Risk, Relapsed, Refractory Neuroblastoma. Available online: https://clinicaltrials.gov/ct2/show/NCT04023331 (accessed on 10 January 2023).
- A Phase I/IIA Study of 64Cu-SARTATE and 67Cu-Sartate for Imaging and Treating Children and Young Adults with High-Risk Neuroblastoma. Available online: https://www.mskcc.org/cancer-care/clinical-trials/20-218 (accessed on 10 January 2023).
- Nucleus. Available online: https://www.nndc.bnl.gov/nudat3/ (accessed on 15 December 2022).
- Thieme, S.; Walther, M.; Pietzsch, H.J.; Henniger, J.; Preusche, S.; Mäding, P.; Steinbach, J. Module-assisted preparation of 64Cu with high specific activity. Appl. Radiat. Isot. 2012, 70, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Thieme, S.; Walther, M.; Preusche, S.; Rajander, J.; Pietzsch, H.J.; Lill, J.O.; Kaden, M.; Solin, O.; Steinbach, J. High specific activity 61Cu via 64Zn(p,α)61Cu reaction at low proton energies. Appl. Radiat. Isot. 2013, 72, 169–176. [Google Scholar] [CrossRef]
- O’Brien, H., Jr. The preparation of 67Cu from 67Zn in a nuclear reactor. Int. J. Appl. Radiat. Isot. 1969, 20, 121–124. [Google Scholar] [CrossRef]
- Spahn, I.; Coenen, H.H.; Qaim, S.M. Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim. Acta 2004, 92, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Rudstam, G.; Bruninx, E. Spallation of arsenic with 590 MeV protons. J. Inorg. Nucl. Chem. 1961, 23, 161–165. [Google Scholar] [CrossRef]
- Grant, P.M.; Miller, D.A.; Gilmore, J.S.; O’Brien, H.A. Medium-energy spallation cross sections. 1. RbBr irradiation with 800-MeV protons. Int. J. Appl. Radiat. Isot. 1982, 33, 415–417. [Google Scholar] [CrossRef]
- O’Brien, H. Utilization of an intense beam of 800 MeV protons to prepare radionuclides. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1989, 40–41, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Cohen, B.L.; Newman, E.; Handley, T.H. (p,pn)+(p,2n) and (p,2p) Cross Sections in Medium Weight Elements. Phys. Rev. 1955, 99, 723–727. [Google Scholar] [CrossRef]
- Morrison, D.; Caretto, A., Jr. Recoil study of the 68Zn(p,2p)67Cu reaction. Phys. Rev. B 1964, 133, 1165. [Google Scholar] [CrossRef]
- McGee, T.; Rao, C.; Saha, G.; Yaffe, L. Nuclear interactions of 45Sc and 68Zn with protons of medium energy. Nucl. Phys. A 1970, 150, 11–29. [Google Scholar] [CrossRef]
- Mirzadeh, S.; Mausner, L.; Srivastava, S. Production of no-carrier added 67Cu. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1986, 37, 29–36. [Google Scholar] [CrossRef]
- Levkovskii, V.N. Activation cross Sections for the Nuclides of Medium Mass Region (A = 40–100) with Medium Energy (E = 10–50 MeV) Protons and Alpha Particles (Experiment and Systematics); Inter-Vesti: Moscow, Russia, 1991; ISBN 5-265-02732-7. [Google Scholar]
- Stoll, T.; Kastleiner, S.; Shubin, Y.N.; Coenen, H.H.; Qaim, S.M. Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim. Acta 2002, 90, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Bonardi, M.L.; Groppi, F.; Mainardi, H.S.; Kokhanyuk, V.M.; Lapshina, E.V.; Mebel, M.V.; Zhuikov, B.L. Cross section studies on 64Cu with zinc target in the proton energy range from 141 down to 31 MeV. J. Radioanal. Nucl. Chem. 2005, 264, 101–105. [Google Scholar] [CrossRef]
- Szelecsényi, F.; Steyn, G.; Dolley, S.; Kovács, Z.; Vermeulen, C.; van der Walt, T. Investigation of the 68Zn(p,2p)67Cu nuclear reaction: New measurements up to 40 MeV and compilation up to 100 MeV. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2009, 267, 1877–1881. [Google Scholar] [CrossRef]
- Schwarzbach, R.; Zimmermann, K.; Novak-Hofer, I.; Schubiger, P.A. A comparison of 67Cu production by proton (67 TO 12 MEV) induced reactions on NATZN and on enriched 68Zn/70Zn. J. Label. Compd. Radiopharm. 2001, 44, S809–S811. [Google Scholar] [CrossRef]
- Pupillo, G.; Sounalet, T.; Michel, N.; Mou, L.; Esposito, J.; Haddad, F. New production cross sections for the theranostic radionuclide 67Cu. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 415, 41–47. [Google Scholar] [CrossRef]
- Kastleiner, S.; Coenen, H.H.; Qaim, S.M. Possibility of production of 67Cu at a small-sized cyclotron via the (p,α)-reaction on enriched 70Zn. Radiochim. Acta 1999, 84, 107–110. [Google Scholar] [CrossRef]
- von Sioufi, A.E.; Erdös, P.; Stoll, P. Prozesse am 92Mo und 66Zn. Helv. Phys. Acta 1958, 30, 264–265. [Google Scholar]
- Yagi, M.; Kondo, K. Preparation of carrier-free 67Cu by the 68Zn(γ,p) reaction. Int. J. Appl. Radiat. Isot. 1978, 29, 757–759. [Google Scholar] [CrossRef]
- POLAK, P.; GERADTS, J.; VLIST, R.V.D.; LINDNER, L. Photonuclear Production of 67Cu from ZnO Targets. Ract 1986, 40, 169–174. [Google Scholar] [CrossRef]
- Iotron Medical—What Is Copper-67? 2022. Available online: https://www.copper67.com/what-is-copper-67/ (accessed on 10 December 2022).
- Nigron, E.; Guertin, A.; Haddad, F.; Sounalet, T. Is 70Zn(d,x)67Cu the Best Way to Produce 67Cu for Medical Applications? Front. Med. 2021, 8, 674617. [Google Scholar] [CrossRef]
- Pupillo, G.; Mou, L.; Martini, P.; Pasquali, M.; Boschi, A.; Cicoria, G.; Duatti, A.; Haddad, F.; Esposito, J. Production of 67Cu by enriched 70Zn targets: First measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV. Radiochim. Acta 2020, 108, 593–602. [Google Scholar] [CrossRef]
- Medvedev, D.G.; Mausner, L.F.; Meinken, G.E.; Kurczak, S.O.; Schnakenberg, H.; Dodge, C.J.; Korach, E.M.; Srivastava, S.C. Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: Closing the 68Zn cycle. Appl. Radiat. Isot. 2012, 70, 423–429. [Google Scholar] [CrossRef]
- Smith, N.A.; Bowers, D.L.; Ehst, D.A. The production, separation, and use of 67Cu for radioimmunotherapy: A review. Appl. Radiat. Isot. 2012, 70, 2377–2383. [Google Scholar] [CrossRef]
- Jamriska, D.J.; Taylor, W.A.; Ott, M.A.; Heaton, R.C.; Phillips, D.R.; Fowler, M.M. Activation rates and chemical recovery of 67Cu produced with low energy proton irradiation of enriched 70Zn targets. J. Radioanal. Nucl. Chem. 1995, 195, 263–270. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chae, J.H.; Hur, M.G.; Yang, S.D.; Kong, Y.B.; Lee, J.; Ju, J.S.; Choi, P.S.; Park, J.H. Theragnostic 64Cu/67Cu Radioisotopes Production With RFT-30 Cyclotron. Front. Med. 2022, 9, 889640. [Google Scholar] [CrossRef] [PubMed]
- Zinc-Element Information, Properties and Uses: Periodic Table. 2023. Available online: https://www.rsc.org/periodic-table/element/30/zinc (accessed on 10 January 2023).
- Sadeghi, M.; Amiri, M.; Rowshanfarzad, P.; Gholamzadeh, Z.; Ensaf, M. Thick zinc electrodeposition on copper substrate for cyclotron production of 64Cu. Nukleonika 2008, 53, 155–160. [Google Scholar]
- Engle, J.; Lopez-Rodriguez, V.; Gaspar-Carcamo, R.; Valdovinos, H.; Valle-Gonzalez, M.; Trejo-Ballado, F.; Severin, G.; Barnhart, T.; Nickles, R.; Avila-Rodriguez, M. Very high specific activity 66/68Ga from zinc targets for PET. Appl. Radiat. Isot. 2012, 70, 1792–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilgers, K.; Stoll, T.; Skakun, Y.; Coenen, H.H.; Qaim, S.M. Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl. Radiat. Isot. 2003, 59, 343–351. [Google Scholar] [CrossRef]
- Aikawa, M.; Ebata, S.; Imai, S. Thick-target yields of radioactive targets deduced from inverse kinematics. Nucl. Instrum. Methods Phys. Res. B 2015, 353, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Makkonen-Craig, S.; Helariutta, K. Estimating optimal solid target thicknesses for PET radionuclide production via (p,n) reactions at low energies. In Proceedings of the Workshop on Targetry and Target Chemistry Meeting, Cambridge, UK, 28–31 August 2006. [Google Scholar]
- Thor, D.; Poludniowski, G.; Siikanen, J. Software for Yield and Target Power Optimization. In Proceedings of the Workshop on Targetry and Target Chemistry Meeting, Whistler, BC, Canada, 21–26 August 2022. [Google Scholar]
- IAEA. Nuclear Data Services. 2021. Available online: https://www-nds.iaea.org/ (accessed on 10 December 2022).
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter (2010). Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- COMSOL. Multiphysics Software for Optimizing Designs. 2021. Available online: https://www.comsol.com/ (accessed on 15 November 2022).
- Kreller, M.; Knieß, T.; Preusche, S. The Cyclotron TR-FLEX at the Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf. In Proceedings of the 22nd International Conference on Cyclotrons and their Applications, Cape Town, South Africa, 23–27 September 2019. [Google Scholar] [CrossRef]
- Svedjehed, J.; Kutyreff, C.J.; Engle, J.W.; Gagnon, K. Automated, cassette-based isolation and formulation of high-purity [61Cu]CuCl2 from solid Ni targets. EJNMMI Radiopharm. Chem. 2020, 5, 21. [Google Scholar] [CrossRef]
- Katabuchi, T.; Watanabe, S.; Ishioka, N.S.; Iida, Y.; Hanaoka, H.; Endo, K.; Matsuhashi, S. Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J. Radioanal. Nucl. Chem. 2008, 277, 467–470. [Google Scholar] [CrossRef]
- Zueva, S.B.; Ferella, F.; Innocenzi, V.; De Michelis, I.; Corradini, V.; Ippolito, N.M.; Vegliò, F. Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustainability 2021, 13, 407. [Google Scholar] [CrossRef]
Radionuclide | Cu | Cu | Ga | Ga | Zn |
---|---|---|---|---|---|
Activity % | <0.03 | <0.3 | <0.05 | <0.1 | <0.003 |
Zn | Zn | Zn | Zn | Zn |
---|---|---|---|---|
0.1% | 0.1% | 0.1% | 2.2% | 97.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brühlmann, S.A.; Walther, M.; Kreller, M.; Reissig, F.; Pietzsch, H.-J.; Kniess, T.; Kopka, K. Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction. Pharmaceuticals 2023, 16, 314. https://doi.org/10.3390/ph16020314
Brühlmann SA, Walther M, Kreller M, Reissig F, Pietzsch H-J, Kniess T, Kopka K. Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction. Pharmaceuticals. 2023; 16(2):314. https://doi.org/10.3390/ph16020314
Chicago/Turabian StyleBrühlmann, Santiago Andrés, Martin Walther, Martin Kreller, Falco Reissig, Hans-Jürgen Pietzsch, Torsten Kniess, and Klaus Kopka. 2023. "Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction" Pharmaceuticals 16, no. 2: 314. https://doi.org/10.3390/ph16020314
APA StyleBrühlmann, S. A., Walther, M., Kreller, M., Reissig, F., Pietzsch, H. -J., Kniess, T., & Kopka, K. (2023). Cyclotron-Based Production of 67Cu for Radionuclide Theranostics via the 70Zn(p,α)67Cu Reaction. Pharmaceuticals, 16(2), 314. https://doi.org/10.3390/ph16020314