The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature
Abstract
:1. Introduction
2. Methodology
2.1. Identifying the Research Question
2.2. Identifying Relevant Studies
2.3. Study Selection
2.4. Charting the Data
2.5. Collating, Summarising and Reporting the Results
3. Results
3.1. OA Study
3.2. RA Study
4. Discussion
4.1. Effects on OA
4.2. Effects on RA
4.3. Prospectives and Research Gaps
4.4. Limitations of the Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Arthritis Types. Available online: https://www.cdc.gov/arthritis/basics/types.html#:~:text=Arthritis%20means%20inflammation%20or%20swelling,include%20joint%20pain%20and%20stiffness (accessed on 15 January 2023).
- National Health Service. Overview Arthritis. Available online: https://www.nhs.uk/conditions/arthritis/ (accessed on 15 January 2023).
- Driban, J.B.; Harkey, M.S.; Barbe, M.F.; Ward, R.J.; MacKay, J.W.; Davis, J.E.; Lu, B.; Price, L.L.; Eaton, C.B.; Lo, G.H.; et al. Risk factors and the natural history of accelerated knee osteoarthritis: A narrative review. BMC Musculoskelet. Disord. 2020, 21, 332. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-Y.; Ekeuku, S.O.; Pang, K.-L. Sclerostin in the development of osteoarthritis: A mini review. Malays. J. Pathol. 2022, 44, 1–18. [Google Scholar] [PubMed]
- Institute for Health Metrics and Evaluation. Osteoarthritis—Level 3 Cause. Available online: https://www.healthdata.org/results/gbd_summaries/2019/osteoarthritis-level-3-cause (accessed on 3 January 2023).
- Leifer, V.P.; Katz, J.N.; Losina, E. The burden of OA-health services and economics. Osteoarthr. Cartil. 2022, 30, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Mak, S.H.; Berenbaum, F.; Sellam, J.; Zheng, Y.P.; Han, Y.; Wen, C. Association between osteoarthritis and increased risk of dementia: A systemic review and meta-analysis. Medicine 2019, 98, e14355. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.; Kostev, K. Osteoarthritis and the incidence of fracture in the United Kingdom: A retrospective cohort study of 258,696 patients. Osteoarthr. Cartil. 2021, 29, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.L.; Chow, Y.Y.; Leong, L.M.; Law, J.X.; Ghafar, N.A.; Soelaiman, I.N.; Chin, K.Y. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis. Life 2021, 11, 272. [Google Scholar] [CrossRef]
- Blanco, M.N.F.; Bastiaansen-Jenniskens, Y.M.; Narcisi, R.; van Osch, G.J. Effect of inflammation on hypertrophy to human articular chondrocytes. Osteoarthr. Cartil. 2020, 28, S113–S114. [Google Scholar] [CrossRef]
- Mobasheri, A.; Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 333–339. [Google Scholar] [CrossRef]
- Liu-Bryan, R.; Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Chow, Y.Y.; Chin, K.Y. The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediat. Inflamm. 2020, 2020, 8293921. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Health Metrics and Evaluation. Rheumatoid Arthritis—Level 3 Cause. Available online: https://www.healthdata.org/results/gbd_summaries/2019/rheumatoid-arthritis-level-3-cause (accessed on 3 January 2022).
- Karami, J.; Aslani, S.; Jamshidi, A.; Garshasbi, M.; Mahmoudi, M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019, 702, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Yazbek, M.A.; Barros-Mazon, S.; Rossi, C.L.; Londe, A.C.; Costallat, L.T.; Bertolo, M.B. Association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope and smoking status in Brazilian patients with rheumatoid arthritis. Clinics 2011, 66, 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Kurowska, W.; Kuca-Warnawin, E.H.; Radzikowska, A.; Maslinski, W. The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Cent. Eur. J. Immunol. 2017, 42, 390–398. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef]
- Uivaraseanu, B.; Vesa, C.M.; Tit, D.M.; Abid, A.; Maghiar, O.; Maghiar, T.A.; Hozan, C.; Nechifor, A.C.; Behl, T.; Patrascu, J.M.; et al. Therapeutic approaches in the management of knee osteoarthritis (Review). Exp. Ther. Med. 2022, 23, 328. [Google Scholar] [CrossRef]
- Liu, X.; Machado, G.C.; Eyles, J.P.; Ravi, V.; Hunter, D.J. Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Brumat, P.; Kunšič, O.; Novak, S.; Slokar, U.; Pšenica, J.; Topolovec, M.; Mihalič, R.; Trebše, R. The Surgical Treatment of Osteoarthritis. Life 2022, 12, 982. [Google Scholar] [CrossRef]
- Wilson, H.A.; Middleton, R.; Abram, S.G.F.; Smith, S.; Alvand, A.; Jackson, W.F.; Bottomley, N.; Hopewell, S.; Price, A.J. Patient relevant outcomes of unicompartmental versus total knee replacement: Systematic review and meta-analysis. BMJ 2019, 364, l352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Q.; Zhang, X.; Liu, L.; Zhao, F.; Cheng, W.; Zhang, Y. Cost-utility analysis of total knee arthroplasty for osteoarthritis in a regional medical center in China. Health Econ. Rev. 2019, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Goyal, A.; Sonthalia, S. Corticosteroid Adverse Effects. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ramiro, S.; Sepriano, A.; Chatzidionysiou, K.; Nam, J.L.; Smolen, J.S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; Bijlsma, J.W.; Burmester, G.R.; et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 1101–1136. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef]
- Ezhilarasan, D. Hepatotoxic potentials of methotrexate: Understanding the possible toxicological molecular mechanisms. Toxicology 2021, 458, 152840. [Google Scholar] [CrossRef]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med. Princ. Pract. 2018, 27, 501–507. [Google Scholar] [CrossRef]
- Rein, P.; Mueller, R.B. Treatment with Biologicals in Rheumatoid Arthritis: An Overview. Rheumatol. Ther. 2017, 4, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Tovey, M.G.; Lallemand, C. Immunogenicity and other problems associated with the use of biopharmaceuticals. Ther. Adv. Drug Saf. 2011, 2, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.Y.; Pang, K.L.; Soelaiman, I.N. Tocotrienol and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 928, 97–130. [Google Scholar]
- Ahsan, H.; Ahad, A.; Siddiqui, W.A. A review of characterization of tocotrienols from plant oils and foods. J. Chem. Biol. 2015, 8, 45–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizar, A.M.; Nazrun, A.S.; Norazlina, M.; Norliza, M.; Ima Nirwana, S. Low dose of tocotrienols protects osteoblasts against oxidative stress. Clin. Ter. 2011, 162, 533–538. [Google Scholar] [PubMed]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Exploring the potential of tocotrienol from Bixa orellana as a single agent targeting metabolic syndrome and bone loss. Bone 2018, 116, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. The Effects of Vitamin E from Elaeis guineensis (Oil Palm) in a Rat Model of Bone Loss Due to Metabolic Syndrome. Int. J. Environ. Res. Public Health 2018, 15, 1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.V.; Ima-Nirwana, S.; Chin, K.Y. Therapeutic potential of annatto tocotrienol with self-emulsifying drug delivery system in a rat model of postmenopausal bone loss. Biomed. Pharmacother. 2021, 137, 111368. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Mohamed, I.N.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020, 12, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.Y.; Ima-Nirwana, S. The biological effects of tocotrienol on bone: A review on evidence from rodent models. Drug Des. Dev. Ther. 2015, 9, 2049–2061. [Google Scholar] [CrossRef] [Green Version]
- Clarivate. Endnote. Available online: https://endnote.com/ (accessed on 1 January 2023).
- Haflah, N.H.; Jaarin, K.; Abdullah, S.; Omar, M. Palm vitamin E and glucosamine sulphate in the treatment of osteoarthritis of the knee. Saudi Med. J. 2009, 30, 1432–1438. [Google Scholar]
- Al-Saadi, H.M.; Chin, K.-Y.; Ahmad, F.; Mohd Ramli, E.S.; Arlamsyah, A.M.; Japar Sidik, F.Z.; Abdul Hamid, J.; Soelaiman, I.N. Effects of Palm Tocotrienol-Rich Fraction Alone or in Combination with Glucosamine Sulphate on Grip Strength, Cartilage Structure and Joint Remodelling Markers in a Rat Model of Osteoarthritis. Appl. Sci. 2021, 11, 8577. [Google Scholar] [CrossRef]
- Chin, K.Y.; Wong, S.K.; Japar Sidik, F.Z.; Abdul Hamid, J.; Abas, N.H.; Mohd Ramli, E.S.; Afian Mokhtar, S.; Rajalingham, S.; Ima Nirwana, S. The Effects of Annatto Tocotrienol Supplementation on Cartilage and Subchondral Bone in an Animal Model of Osteoarthritis Induced by Monosodium Iodoacetate. Int. J. Environ. Res. Public Health 2019, 16, 2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, K.-L.; Ghafar, N.A.; Soelaiman, I.N.; Chin, K.-Y. Protective Effects of Annatto Tocotrienol and Palm Tocotrienol-Rich Fraction on Chondrocytes Exposed to Monosodium Iodoacetate. Appl. Sci. 2021, 11, 9643. [Google Scholar] [CrossRef]
- Branly, T.; Contentin, R.; Desancé, M.; Jacquel, T.; Bertoni, L.; Jacquet, S.; Mallein-Gerin, F.; Denoix, J.M.; Audigié, F.; Demoor, M.; et al. Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index. Int. J. Mol. Sci. 2018, 19, 435. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, V.; Dvir-Ginzberg, M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect Tissue Res. 2017, 58, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Zainal, Z.; Rahim, A.A.; Radhakrishnan, A.K.; Chang, S.K.; Khaza’ai, H. Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo. Sci. Rep. 2019, 9, 16793. [Google Scholar] [CrossRef] [Green Version]
- Haleagrahara, N.; Swaminathan, M.; Chakravarthi, S.; Radhakrishnan, A. Therapeutic efficacy of vitamin E δ-tocotrienol in collagen-induced rat model of arthritis. Biomed Res. Int. 2014, 2014, 539540. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, A.; Tudawe, D.; Chakravarthi, S.; Chiew, G.S.; Haleagrahara, N. Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats. Exp. Ther. Med. 2014, 7, 1408–1414. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Kim, B.M.; Won, J.Y.; Min, H.K.; Lee, S.J.; Lee, S.H.; Kim, H.R. Tocotrienol regulates osteoclastogenesis in rheumatoid arthritis. Korean J. Intern. Med. 2021, 36, S273–S282. [Google Scholar] [CrossRef]
- Min, S.; Wang, C.; Lu, W.; Xu, Z.; Shi, D.; Chen, D.; Teng, H.; Jiang, Q. Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-α in knee osteoarthritis patients. Clin. Rheumatol. 2017, 36, 2351–2358. [Google Scholar] [CrossRef]
- Chang, X.; Shen, J.; Yang, H.; Xu, Y.; Gao, W.; Wang, J.; Zhang, H.; He, S. Upregulated expression of CCR3 in osteoarthritis and CCR3 mediated activation of fibroblast-like synoviocytes. Cytokine 2016, 77, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Miao, K.; Zhou, X.; Xu, N.; Li, C.; Zhu, R.; Sun, R.; Wang, Y. The involvement of follistatin-like protein 1 in osteoarthritis by elevating NF-κB-mediated inflammatory cytokines and enhancing fibroblast like synoviocyte proliferation. Arthritis Res. Ther. 2015, 17, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Sun, Y.; Wang, Y.; Liu, R.; Bao, Y.; Li, Q. MiR-502-5p inhibits IL-1β-induced chondrocyte injury by targeting TRAF2. Cell Immunol. 2016, 302, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.Y.; Khan, N.M.; Ahmad, I.; Haqqi, T.M. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthr. Cartil. 2018, 26, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Saperstein, S.; Chen, L.; Oakes, D.; Pryhuber, G.; Finkelstein, J. IL-1beta augments TNF-alpha-mediated inflammatory responses from lung epithelial cells. J. Interferon. Cytokine Res. 2009, 29, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Naby, H.M.; El-Tawab, S.S.; Rizk, M.M.; Aboeladl, N.A. Is interleukin-17 implicated in early knee osteoarthritis pathogenesis as in rheumatoid arthritis? Egypt. Rheumatol. Rehabil. 2022, 49, 29. [Google Scholar] [CrossRef]
- Robert, M.; Miossec, P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front. Med. 2018, 5, 364. [Google Scholar] [CrossRef] [Green Version]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Chomarat, P.; Banchereau, J.; Davoust, J.; Palucka, A.K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 2000, 1, 510–514. [Google Scholar] [CrossRef]
- Elford, P.R.; Cooper, P.H. Induction of neutrophil-mediated cartilage degradation by interleukin-8. Arthritis Rheum. 1991, 34, 325–332. [Google Scholar] [CrossRef]
- Utomo, L.; Bastiaansen-Jenniskens, Y.M.; Verhaar, J.A.; van Osch, G.J. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages. Osteoarthr. Cartil. 2016, 24, 2162–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yam, M.L.; Abdul Hafid, S.R.; Cheng, H.M.; Nesaretnam, K. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages. Lipids 2009, 44, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, T.; Xu, Y.; Luo, Y.; Zhong, X.; Shi, L.; Hu, T.; Guo, T.; Nie, Y.; Luo, F.; et al. δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages. Int. J. Mol. Sci. 2018, 19, 3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. The effects of palm tocotrienol on metabolic syndrome and bone loss in male rats induced by high-carbohydrate high-fat diet. J. Funct. Foods 2018, 44, 246–254. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef]
- Monasterio, G.; Castillo, F.; Rojas, L.; Cafferata, E.A.; Alvarez, C.; Carvajal, P.; Núñez, C.; Flores, G.; Díaz, W.; Vernal, R. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: A preliminary report. J. Oral Rehabil. 2018, 45, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Ekeuku, S.O.; Ahmad, F.; Chin, K.-Y. Changes of Grip Strength, Articular Cartilage and Subchondral Bone in Monoiodoacetate-Induced Osteoarthritis in Rats. Sains. Malays. 2022, 51, 3741–3754. [Google Scholar] [CrossRef]
- Chin, K.Y.; Ima-Nirwana, S. The Role of Tocotrienol in Preventing Male Osteoporosis-A Review of Current Evidence. Int. J. Mol. Sci. 2019, 20, 1355. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.L.; Klein, A.; Chin, K.Y.; Mo, H.; Tsai, P.; Yang, R.S.; Chyu, M.C.; Ima-Nirwana, S. Tocotrienols for bone health: A translational approach. Ann. N. Y. Acad. Sci. 2017, 1401, 150–165. [Google Scholar] [CrossRef]
- Chin, K.Y.; Ima-Nirwana, S. Vitamin E as an Antiosteoporotic Agent via Receptor Activator of Nuclear Factor Kappa-B Ligand Signaling Disruption: Current Evidence and Other Potential Research Areas. Evid. Based Complement. Alternat. Med. 2012, 2012, 747020. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed. Pharmacother. 2020, 129, 110452. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Hattori, T.; Fujisawa, T.; Takahashi, K.; Inoue, H.; Takigawa, M. Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J. Biochem. 1998, 123, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Goggs, R.; Carter, S.D.; Schulze-Tanzil, G.; Shakibaei, M.; Mobasheri, A. Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. Vet. J. 2003, 166, 140–158. [Google Scholar] [CrossRef] [PubMed]
- Daheshia, M.; Yao, J.Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 2008, 35, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Chanalaris, A.; Troeberg, L. ADAMTS and ADAM metalloproteinases in osteoarthritis—Looking beyond the ‘usual suspects’. Osteoarthr. Cartil. 2017, 25, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J. Cell. Biochem. 2011, 112, 3507–3514. [Google Scholar] [CrossRef]
- Shen, C.L.; Yang, S.; Tomison, M.D.; Romero, A.W.; Felton, C.K.; Mo, H. Tocotrienol supplementation suppressed bone resorption and oxidative stress in postmenopausal osteopenic women: A 12-week randomized double-blinded placebo-controlled trial. Osteoporos. Int. 2018, 29, 881–891. [Google Scholar] [CrossRef]
- Marlovits, S.; Hombauer, M.; Truppe, M.; Vècsei, V.; Schlegel, W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J. Bone Jt. Surg. Br. 2004, 86, 286–295. [Google Scholar] [CrossRef]
- Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Koenders, M.I.; van den Berg, W.B. Translational mini-review series on Th17 cells: Are T helper 17 cells really pathogenic in autoimmunity? Clin. Exp. Immunol. 2010, 159, 131–136. [Google Scholar] [CrossRef]
- Kotake, S.; Nanke, Y.; Yago, T.; Kawamoto, M.; Kobashigawa, T.; Yamanaka, H. Ratio of Circulating IFNγ (+) “Th17 Cells” in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project. Biomed Res. Int. 2016, 2016, 9694289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Qian, F.Y.; Zhang, M.F.; Xu, A.L.; Wang, X.; Jiang, B.P.; Zhou, L.L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J. Leukoc. Biol. 2019, 106, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Kotake, S.; Udagawa, N.; Takahashi, N.; Matsuzaki, K.; Itoh, K.; Ishiyama, S.; Saito, S.; Inoue, K.; Kamatani, N.; Gillespie, M.T.; et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Investig. 1999, 103, 1345–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabaud, M.; Lubberts, E.; Joosten, L.; van Den Berg, W.; Miossec, P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001, 3, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bezooijen, R.L.; Papapoulos, S.E.; Löwik, C.W. Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: Is there dependency on nuclear factor-kappaB and receptor activator of nuclear factor kappaB (RANK)/RANK ligand signaling? Bone 2001, 28, 378–386. [Google Scholar] [CrossRef]
- Chabaud, M.; Garnero, P.; Dayer, J.M.; Guerne, P.A.; Fossiez, F.; Miossec, P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000, 12, 1092–1099. [Google Scholar] [CrossRef]
- Brennan, F.M.; McInnes, I.B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Investig. 2008, 118, 3537–3545. [Google Scholar] [CrossRef] [Green Version]
- Dayer, J.M.; Beutler, B.; Cerami, A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 1985, 162, 2163–2168. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, D.R.; Nedwin, G.E.; Bringman, T.S.; Smith, D.D.; Mundy, G.R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 1986, 319, 516–518. [Google Scholar] [CrossRef]
- Marahleh, A.; Kitaura, H.; Ohori, F.; Kishikawa, A.; Ogawa, S.; Shen, W.R.; Qi, J.; Noguchi, T.; Nara, Y.; Mizoguchi, I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front. Immunol. 2019, 10, 2925. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Investig. 2000, 106, 1481–1488. [Google Scholar] [CrossRef]
- Kobayashi, K.; Takahashi, N.; Jimi, E.; Udagawa, N.; Takami, M.; Kotake, S.; Nakagawa, N.; Kinosaki, M.; Yamaguchi, K.; Shima, N.; et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 2000, 191, 275–286. [Google Scholar] [CrossRef]
- Fuller, K.; Wong, B.; Fox, S.; Choi, Y.; Chambers, T.J. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J. Exp. Med. 1998, 188, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Geusens, P. The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2012, 4, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, K.; Takayanagi, H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res. Ther. 2011, 13, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, A.F.; Bungau, S.G.; Tit, D.M.; Behl, T.; Uivaraseanu, B.; Marcu, M.F. Highlighting the Benefits of Rehabilitation Treatments in Hip Osteoarthritis. Medicina 2022, 58, 494. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.F.; Bungau, S.G.; Negru, P.A.; Marcu, M.F.; Andronie-Cioara, F.L. In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy. Biomed. Pharmacother. 2022, 154, 113614. [Google Scholar] [CrossRef]
- Tiwari, V.; Kuhad, A.; Chopra, K. Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain 2009, 145, 129–135. [Google Scholar] [CrossRef]
- Kuhad, A.; Chopra, K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009, 57, 456–462. [Google Scholar] [CrossRef]
- The Vitamin E in Neuroprotection Study (VENUS) Investigators; Hor, C.P.; Fung, W.Y.; Ang, H.A.; Lim, S.C.; Kam, L.Y.; Sim, S.W.; Lim, L.H.; Choon, W.Y.; Wong, J.W.; et al. Efficacy of Oral Mixed Tocotrienols in Diabetic Peripheral Neuropathy: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.E.; Jensen, G.S. Pain reduction and improved vascular health associated with daily consumption of an anti-inflammatory dietary supplement blend. J. Pain Res. 2019, 12, 1497–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef] [PubMed]
- Wienecke, T.; Gøtzsche, P.C. Paracetamol versus nonsteroidal anti-inflammatory drugs for rheumatoid arthritis. Cochrane Database Syst. Rev. 2004, 2004, CD003789. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.Y.; Che, H.L.; Tan, D.M.; Teng, K.T. Bioavailability of tocotrienols: Evidence in human studies. Nutr. Metab. 2014, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, K.Y.; Ima-Nirwana, S. The Role of Vitamin E in Preventing and Treating Osteoarthritis—A Review of the Current Evidence. Front. Pharmacol. 2018, 9, 946. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Alhambra, D.; Judge, A.; Javaid, M.K.; Cooper, C.; Diez-Perez, A.; Arden, N.K. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: Influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 2014, 73, 1659–1664. [Google Scholar] [CrossRef] [Green Version]
- Roman-Blas, J.A.; Castañeda, S.; Largo, R.; Herrero-Beaumont, G. Osteoarthritis associated with estrogen deficiency. Arthritis Res. Ther. 2009, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Mapp, P.I.; Sagar, D.R.; Ashraf, S.; Burston, J.J.; Suri, S.; Chapman, V.; Walsh, D.A. Differences in structural and pain phenotypes in the sodium monoiodoacetate and meniscal transection models of osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1336–1345. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov. Search Results. Available online: https://clinicaltrials.gov/ct2/results?cond=rheumatoid+arthritis&term=tocotrienol&cntry=&state=&city=&dist= (accessed on 15 January 2023).
- ClinicalTrials.gov. Omega-3 and Vitamin E Supplementation in Patients With Rheumatoid Arthritis. Available online: https://clinicaltrials.gov/ct2/show/NCT00399282?term=tocotrienol&cond=rheumatoid+arthritis&draw=2&rank=1 (accessed on 15 January 2023).
- Shaabani, Y.; Rastmanesh, R.; Taleban, F.; Jamshidi, A.; Akhlaghi, M.; Alavi, H. Comparison of the Effect of Omega-3 Fatty Acid Supplementation with and without Vitamin E in Patients with Rheumatoid Arthritis. Iran. J. Nutr. Sci. Food Technol. 2007, 2, 57–69. [Google Scholar]
Researchers | Study Design | Findings |
---|---|---|
Pang et al. (2021) [49] | Disease model: SW1353 chondrocytes challenged with MIA Treatment: annatto tocotrienol (10–20 μg/mL) or palm tocotrienol (25–50 μg/mL) for 24 h before or concurrent with MIA | Cell viability: |
Pre-treatment | ||
Decreased upon receiving annatto tocotrienol (≥20 μg/mL) & palm tocotrienol (≥12.5 μg/mL) → no subsequent test | ||
Concurrent treatment | ||
Increased upon receiving annatto tocotrienol (10 and 20 μg/mL)/palm tocotrienol (3.125, 25 and 50 μg/mL) | ||
8-Isoprostane F2-α Level: | ||
Decreased upon receiving palm tocotrienol (50 μg/mL) or annatto tocotrienol (10 and 20 μg/mL) in the presence of MIA | ||
Collagen I type α1: Decreased in MIA group, not affected by treatment | ||
Collagen II type α1: Increased upon receiving annatto tocotrienol (10 & 20 μg/mL) in the presence of MIA vs MIA alone or annatto tocotrienol alone | ||
Collagen II type α1/Collagen I type α1: Increased upon receiving MIA + treatment vs treatment alone. | ||
Increased upon receiving annatto tocotrienol alone (10 and 20 μg/mL) vs. MIA alone | ||
Aggrecan and sex-determining region Y box protein 9: | ||
Increased upon receiving MIA + annatto tocotrienol (10 and 20 μg/mL) vs. MIA alone | ||
ADAMTS4: Decreased in MIA group, not affected by treatment | ||
Chin et al. (2019) [48] | Animals: Male Sprague-Dawley rats (3 months old) Disease model: Intra-articular MIA injection at the right knee Treatment: annatto tocotrienol at the dose of 50, 100, 150 mg/kg/day, oral for 4 weeks Normal and OA control were given refined olive oil (vehicle in the study) | Body weight: |
Increased in all groups from week 1–week 4 | ||
Histological scoring: | ||
Decreased in all aspects for 100 mg/kg/day annatto tocotrienol vs OA control | ||
Decreased in the number of inflammatory cells and synovial hyperplasia for 100 mg/kg/day vs 50 mg/kg/day annatto tocotrienol groups | ||
Reduced synovial hyperplasia and erosions in 150 mg/kg/day annatto tocotrienol group vs OA control | ||
No significant improvement in 50 mg/kg/day annatto tocotrienol group | ||
Serum COMP: | ||
Decreased in 50, 100 & 150 mg/kg/day annatto tocotrienol group vs OA control | ||
Decreased in 100 & 150 mg/kg/day T vs 50 mg/kg/day annatto tocotrienol | ||
Serum hyaluronic acid: | ||
Decreased in 50, 100 & 150 mg/kg/day annatto tocotrienol group vs OA control | ||
Subchondral osteoclast number: | ||
Decreased in 150 mg/kg/day annatto tocotrienol group vs OA control | ||
Serum osteocalcin: | ||
Increased in 50 mg/kg/day annatto tocotrienol group vs OA control. | ||
Decreased in 100 & 150 mg/kg/day annatto tocotrienol group vs 50 mg/kg/day annatto tocotrienol | ||
Decreased in 150 mg/kg/day annatto tocotrienol group vs all other groups except normal group | ||
Serum C-telopeptide of crosslinked collagen type I: | ||
No significant effect | ||
Al-Saadi et al. (2021) [47] | Animals: Male Sprague-Dawley rats (3 months old) Disease model: Intra-articular MIA injection at the right knee Treatment: palm tocotrienol treated (100 mg/kg/day; oral) Glucosamine sulphate treated (250 mg/kg/day; oral) palm tocotrienol (100 mg/kg/day) + glucosamine sulphate-treated group (250 mg/kg/day) (oral) Normal and OA control were given refined olive oil (vehicle in the study) Treatment period; 4 weeks | Grip strength: |
No significant change between normal control, OA control & palm tocotrienol between week 0–week 4. | ||
Increased in palm tocotrienol + glucosamine sulphate group vs sham & palm tocotrienol group from week 1–week 3. | ||
Increased in glucosamine sulphate group in week 4 vs week 1. | ||
Increased in palm tocotrienol + glucosamine sulphate group in week 4 vs week 1–3. | ||
Body weight: | ||
Increased in normal control vs OA control, palm tocotrienol & palm tocotrienol + glucosamine sulphate groups at week 1. | ||
Increased in palm tocotrienol, glucosamine sulphate and combination group vs OA control at week 3. | ||
Cartilage histology (Mankin’s score): | ||
No significant change between OA control, palm tocotrienol, glucosamine sulphate and combination group. | ||
Serum COMP: | ||
Increased in OA control vs palm tocotrienol, glucosamine sulphate and combination group. | ||
No significant change between treated group. | ||
Haflah et al. (2009) [46] | Subjects: 79 patients with knee OA (Kellgren-Lawrence score of 2 and 3) aged over 40 years Treatment: Oral palm tocotrienol (400 mg daily) for 6 months Positive control: Glucosamine sulphate (500 mg thrice daily) for 6 months Notes: Patients were not allowed to take any other analgesics | Visual analogue scale: |
Standing & walking | ||
Decreased in palm tocotrienol & glucosamine sulphate | ||
WOMAC score: | ||
Decreased in palm tocotrienol & glucosamine sulphate | ||
Serum malondialdehyde: | ||
Decreased in palm tocotrienol vs glucosamine sulphate | ||
Serum vitamin E: | ||
Increased in palm tocotrienol vs glucosamine sulphate |
Researchers | Study Design | Findings |
---|---|---|
Haleagrahara et al. (2014) [53] | Animals: Female Dark Agouti rats (6–10 weeks old) Disease model: Intradermal injection of a collagen-complete Freund’s adjuvant emulsion at the base of the tails of the rats (RA group) Treatment: δ-tocotrienol (oral, 10 mg/kg body weight) from day 25–50 post induction. Glucosamine hydrochloride (oral, 300 mg/kg body weight of treated) from day 25–50 post induction. | Mobility: |
Increased in glucosamine & δ-tocotrienol group vs RA group | ||
Paw oedema: | ||
Reduced in δ-tocotrienol & glucosamine group vs RA group | ||
Reduced in δ-tocotrienol group vs glucosamine group. | ||
Body weight: | ||
Increased in all groups from day 25–50. | ||
Decreased in δ-tocotrienol group vs RA group. | ||
Decreased in δ-tocotrienol & glucosamine group vs RA group after day 40. | ||
Histopathology: | ||
Decreased in the severity of arthritic joint changes in δ-tocotrienol & glucosamine group vs RA group. | ||
Reduced oedema, congestion & inflammation in δ-tocotrienol group vs RA group. | ||
Signs of healing present in δ-tocotrienol & glucosamine group. | ||
Reduced swelling in glucosamine group vs RA group. | ||
Reduced arthritic changes in glucosamine group. Signs of healing present in glucosamine group. | ||
Collagen induced proliferation of splenocytes: | ||
Reduced in δ-tocotrienol & glucosamine group vs RA group. | ||
Reduced in δ-tocotrienol group vs glucosamine group. | ||
CRP levels: | ||
Decreased in δ-tocotrienol & glucosamine group vs RA group. | ||
Decreased in δ-tocotrienol group vs glucosamine group. | ||
Zainal et al. (2019) [52] | Animals: Female Dark Agouti rats (4–5 weeks old) Disease model: intradermal injection of collagen 2 emulsified in complete Freund’s adjuvant into each paw of the hind limbs (RA group). Two booster injections of the same concentration of ovalbumin were administered on day 7 and 14. Treatment: palm tocotrienol (oral, 30 mg/kg body weight) daily from day 21 until day 45 post-induction. The normal control and RA group were given refined bleached deodorised-stripped vitamin E oil, which was the vehicle in the study. | Final body weight: |
Increased in palm tocotrienol group vs RA group. | ||
Paw oedema: | ||
Decreased in palm tocotrienol group vs RA group. | ||
Mobility: | ||
Increased in palm tocotrienol group vs RA group. | ||
Joint histology: | ||
Reduced in the severity of arthritic changes in palm tocotrienol group vs RA group. | ||
Reduced cartilage erosion & degeneration in palm tocotrienol group vs RA group. | ||
Increased number of cartilage cells in palm tocotrienol group vs RA group. | ||
Reduced bone resorption in palm tocotrienol group vs RA group. | ||
Plasma levels of CRP, TNF-α, IL-1β, and IL-6: | ||
Reduced in palm tocotrienol group vs RA group. | ||
Bone destruction: | ||
Reduced in palm tocotrienol group vs RA group. | ||
Bone mineral density: | ||
Increased in palm tocotrienol group vs RA group. | ||
Radhakrishnan et al. (2013) [54] | Animals: Female Dark Agouti rats (10 weeks old) Disease model: Intradermal injection of collagen-complete Freund’s adjuvant mixture into the 4 paws and tail of each rat (RA group) Treatment: γ-tocotrienol (oral, 5 mg/kg body weight) daily from day 21 to 45 post induction. It was not mentioned whether normal control or RA group were given vehicle. | Body weight: |
Increased in γ-tocotrienol group with time. | ||
Paw thickness: | ||
Decreased in γ-tocotrienol group vs RA group. | ||
Biochemical analysis: | ||
CRP: Decreased in γ-tocotrienol group vs RA group. | ||
TNF-α: Decreased in γ-tocotrienol group vs RA group. | ||
Glutathione: Increased in γ-tocotrienol group vs RA group. | ||
Superoxide dismutase: Increased in γ-tocotrienol group vs RA group. | ||
Histopathology: | ||
Reduced in grade of severity of arthritic changes in γ-tocotrienol group vs RA group. | ||
Reduced in joint space narrowing in γ-tocotrienol group vs RA group. | ||
Reduced in granulomatous accumulation in γ-tocotrienol group vs RA group. | ||
Reduced in inflammation in γ-tocotrienol group vs RA group. | ||
Kim et al. (2021) [55] | Study 1: RA FLS from synovial tissues obtained from patients undergoing total knee replacement surgery and fulfilled the American College of Rheumatology classification of RA of the knee, with Kellgren-Lawrence grade 4 (as RA FLS) Study 2: Human PBMCs cultured for 48 h with anti-CD28 and anti-CD3, IL-23, IL-6, IL-1β, IL-4-blocking antibodies, and interferon-γ-blocking antibodies to induce Th17 differentiation. Then, to investigate the suppressive effects of tocotrienol, PBMCs were cultured for 3 h with tocotrienol and then incubated using the same method as Th17 differentiation. For RANKL signal pathway analysis, RA FLS were first cultured for 3 h with or without the addition of tocotrienol. Then, RA FLS were stimulated with IL-17 for 72 h. | The suppressive effect of tocotrienol on the IL-17 activated RANKL gene and protein in RA FLS: |
Reduced in IL-17-activated expression of RANKL. | ||
Reduced in TNF-α level | ||
IL-6 and IL-8 were unchanged in RA group vs treatment | ||
Signal pathways of tocotrienol: | ||
Reduced in mTOR, ERK, IκBα levels | ||
Increased of IL-17-activated phosphorylation of AMPK. | ||
Suppressive effect of tocotrienol in IL-17- and RANKL-activated osteoclast formation: | ||
Reduced in RANKL-induced osteoclastogenesis. | ||
Decreased in osteoclast markers (TRAP, cathepsin K, DC-STAMP, NF-ATc1 and OC-STAMP). | ||
The inhibitory effect of tocotrienol in osteoclast formation with coculture of monocytes in addition to RA FLS: | ||
Reduced in differentiation of osteoclasts. | ||
Downregulation in mRNA expression of osteoclast markers. | ||
The suppressive effects of tocotrienol on Th17 cell differentiation: | ||
Reduced in IL-17+/CD4+ T cell proportion. | ||
Not differentiated into CD25+Foxp3+/CD4+ regulatory T cells. | ||
Decreased in IL-17 and soluble RANKL levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejpal Singh, H.S.; Aminuddin, A.A.; Pang, K.-L.; Ekeuku, S.O.; Chin, K.-Y. The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature. Pharmaceuticals 2023, 16, 385. https://doi.org/10.3390/ph16030385
Tejpal Singh HS, Aminuddin AA, Pang K-L, Ekeuku SO, Chin K-Y. The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature. Pharmaceuticals. 2023; 16(3):385. https://doi.org/10.3390/ph16030385
Chicago/Turabian StyleTejpal Singh, Hashwin Singh, Alya Aqilah Aminuddin, Kok-Lun Pang, Sophia Ogechi Ekeuku, and Kok-Yong Chin. 2023. "The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature" Pharmaceuticals 16, no. 3: 385. https://doi.org/10.3390/ph16030385
APA StyleTejpal Singh, H. S., Aminuddin, A. A., Pang, K. -L., Ekeuku, S. O., & Chin, K. -Y. (2023). The Role of Tocotrienol in Arthritis Management—A Scoping Review of Literature. Pharmaceuticals, 16(3), 385. https://doi.org/10.3390/ph16030385