A Safe-by-Design Approach for the Synthesis of a Novel Cross-Linked Hyaluronic Acid with Improved Biological and Physical Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cross-Linked HA–Arg
2.2. Characterization of Cross-Linked HA–Arg
2.2.1. H-NMR
2.2.2. Ninhydrin Assay
2.2.3. Infrared Spectroscopy
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Scanning Electron Microscopy (SEM)
2.2.6. Swelling Ratio
2.2.7. Rheology
2.2.8. Water Content
2.2.9. In Vitro Degradation
2.3. Antimicrobial Activity
2.4. MTS Cytotoxicity Assay
3. Material and Methods
3.1. Materials
3.2. Synthesis of Cross-Linked HA–Arg
3.3. Physico–Chemical Characterization of HA–Arg
3.3.1. Ninhydrin Assay
3.3.2. Infrared Spectroscopy
3.3.3. Thermal Analysis
3.3.4. Scanning Electron Microscopy (SEM) Morphological Analysis
3.3.5. Swelling Degree (SD)
3.3.6. Rheology
3.3.7. Dynamic Vapor Sorption
3.4. In Vitro Enzymatic Degradation Assay
3.5. Biological Activity
3.5.1. Assessment of the Minimal Inhibitory Concentration (MIC) of the Compounds against Staphylococcus aureus and Propionibacterium acne
3.5.2. Cells Culture
3.5.3. MTS Assay
3.6. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goel, H.; Gupta, N.; Santhiya, D.; Dey, N.; Bohidar, H.B.; Bhattacharya, A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int. J. Biol. Macromol. 2021, 174, 240–253. [Google Scholar] [CrossRef]
- Douglas, T.E.L.; Dziadek, M.; Schietse, J.; Boone, M.; Declercq, H.A.; Coenye, T.; Vanhoorne, V.; Vervaet, C.; Balcaen, L.; Buchweitz, M.; et al. Pectin-bioactive glass self-gelling, injectable composites with high antibacterial activity. Carbohydr. Polym. 2019, 205, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Sun, J.; Sun, Y.; Xiang, Y.; Yan, Y.; Han, Z.; Bi, W.; Yang, F.; Zhou, Q.; Wang, L.; et al. Multifunctional injectable protein-based hydrogel for bone regeneration. Chem. Eng. J. 2020, 394, 124875. [Google Scholar] [CrossRef]
- Kogan, G.; Solt’es, L.; Stern, R.; Gemeiner, P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007, 29, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, N.K.; Theoharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rosseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Sugita, S.; Liu, A.; Naito, Y.; Hwang, W.; Qiu, H.; Sakamoto, A.; Sawa, T.; Matthay, M.A.; Lee, J.W. Therapeutic effects of high molecular weight hyaluronic acid in severe Pseudomonas aeruginosa pneumonia in ex vivo perfused human lungs. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2021, 321, L827–L836. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Laurent, U.; Fraser, J. Turnover of hyaluronan in synovial joints: Elimination of labelled hyaluronan from the knee joint of the rabbit. Exp. Physiol. 1991, 76, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Jung, H. Hyaluronidase: An overview of its properties, applications, and side effects. Arch. Plast. Surg. 2020, 47, 297–300. [Google Scholar] [CrossRef]
- Tamer, M. Hyaluronan degradation under free-radical oxidation stress: Action and healing. In Engineering of Polymers and Chemical Complexity; Apple Academic Press, Inc.: Palm Bay, FL, USA, 2014; Volume 2, Chapter 6. [Google Scholar]
- Žádníková, P.; Šínová, R.; Pavlík, V.; Šimek, M.; Šafránková, B.; Hermannová, M.; Nešporová, K.; Velebný, V. The Degradation of Hyaluronan in the Skin. Biomolecules 2022, 12, 251. [Google Scholar] [CrossRef]
- Girish, K.S.; Kemparaju, K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sci. 2007, 80, 1921–1943. [Google Scholar] [CrossRef]
- Valachová, K.; Mach, M.; Soltés, L. Oxidative Degradation of High-Molar-Mass Hyaluronan: Effects of Some Indole Derivatives to Hyaluronan Decay. Macromolecules 2020, 21, 5609. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.; Hawkins, C.L.; Davies, M. Hypochlorit.e and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem. J. 2004, 381, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowman, M.K.; Schmidt, T.A.; Raghavan, P.; Stecco, A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000Research 2015, 4, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef] [PubMed]
- Ponnuraj, K.; Jedrzejas, M. Mechanism of hyaluronan binding and degradation: Structure of Streptococcus pneumoniaehyaluronatelyase in complex with hyaluronic acid disaccharide at 1.7 Å resolution. J. Mol. Biol. 2000, 299, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokeshwar, V.B.; Schroeder, G.L.; Care, R.I.; Soloway, M.; Iida, N. Regulation of hyaluronidase activity by alternative mRNA splicing. J. Biol. Chem. 2002, 277, 33654–33663. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Baba, D.; Kimura, M.; Yamashita, M.; Kashiwabara, S.; Baba, T. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc. Natl. Acad. Sci. USA 2005, 50, 18028–18033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girish, K.S.; Kemparaju, K. Inhibition of Naja naja venon hyaluronidase: Role in the management of poisonous bite. Life Sci. 2006, 87, 1433–1440. [Google Scholar] [CrossRef]
- Nazipi, S.; Stødkilde, K.; Scavenius, C.; Brüggemann, H. The skin bacterium Propiniumbacterium acnes employs two variants of hyaluronate lyase with distinct properties. Microorganisms 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Paris, J.B.; Seyer, D.; Jouenne, T.; Thébault, P. Various methods to combine hyaluronic acid and antimicrobial peptides coatings and evaluation of their antibacterial behaviour. Int. J. Biol. Macromol. 2019, 139, 468–474. [Google Scholar] [CrossRef]
- Alipoor, R.; Ayan, M.; Hamblin, M.R.; Ranjbar, R.; Rashki, S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Front. Bioeng. Biotechnol. 2022, 10, 913912. [Google Scholar] [CrossRef] [PubMed]
- Hintze, V.; Schnabelrauch, M.; Rother, S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front. Chem. 2022, 10, 830671. [Google Scholar] [CrossRef] [PubMed]
- Knopf-Marques, H.; Pravda, M.; Wolfova, L.; Velebny, V.; Schaaf, P.; Vrana, N.; Lavalle, P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv. Healthc. Mater. 2016, 5, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Buhren, B.A.; Schrumpf, H.; Bölke, E.; Kammers, K.; Gerber, P.A. Standardized in vitro analysis of the degradability of hyaluronic acid fllers by hyaluronidase. Eur. J. Med. Res. 2018, 23, 37. [Google Scholar] [CrossRef] [PubMed]
- Salma-Acane, K.; Sceglovs, A.; Tracuma, E.; Wychowaniec, J.K.; Aunina, K.; Ramata-Stunda, A.; Nikolajeva, V.; Loca, D. Effect of crosslinking strategy on the biological, antibacterial and physicochemical performance of hyaluronic acid and ε-polylysine based hydrogels. Int. J. Biol. Macromol. 2022, 208, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Yarimitsu, S.; Sasaki, S.; Murakami, T.; Suzuki, A. Evaluation of lubrication properties of hydrogel artificial cartilage materials for joint prosthesis. Biosurf. Biotribol. 2016, 2, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr. Polym. 2019, 223, 115023. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Liu, J.; Jiao, H.; Liu, B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin Nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl. Mater. Interfaces 2018, 10, 23595–23604. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, M.J.; Kim, D.Y.; Heo, S.H.; Jeong, Y.Y. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers 2018, 10, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makvandi, P.; Ali, G.W.; Della Sala, F.; Abdel-Fattah, W.I.; Borzacchiello, A. Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration. Mater. Sci. Eng. C 2020, 107, 110195. [Google Scholar] [CrossRef]
- Gao, Y.; Vogus, D.; Zhao, Z.; He, W.; Krishnan, V.; Kim, J.; Shi, Y.; Sarode, A.; Ukidve, A.; Mitragotri, S. Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for long-term treatment of inflammatory arthritis. Bioeng. Transl. Med. 2022, 7, e10245. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, S.; Guo, S.; Chang, R.; He, Y.; Yao, M.; Guan, F. Functionalized injectable hyaluronic acid hydrogel with antioxidative and photothermal antibacterial activity for infected wound healing. Int. J. Biol. Macromol. 2022, 210, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Romanò, C.L.; De Vecchi, E.; Bortolin, M.; Morelli, I.; Drago, L. Hyaluronic Acid and Its Composites as a Local Antimicrobial/Antiadhesive Barrier. J. Bone Jt. Infect. 2017, 2, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schanté, C.E.; Zuber, G.; Herlin, C.; Vandamme, F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- De Boulle, K.; Glogau, R.; Kono, T.; Nathan, M.; Tezel, A.; Roca-Martinez, J.X.; Paliwal, S.; Stroumpoulis, D. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol. Surg. 2013, 39, 1758–1766. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.Y. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr. Polym. 2014, 101, 203–212. [Google Scholar] [CrossRef]
- Fallacara, A.; Marchetti, F.; Pozzoli, M.; Citernesi, U.R.; Manfredini, S.; Vertuani, S. Formulation and characterization of native and crosslinked hyaluronic acid microspheres for dermal delivery of sodium ascorbyl phosphate: A comparative study. Pharmaceutics 2018, 10, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciabica, S.; Tafuro, G.; Semenzato, A.; Traini, D.; Silva, D.; Gomes Dos Reis, L.; Canilli, L.; Terno, M.; Durini, E.; Vertuani, S.; et al. Design, synthesis, characterization and in vitro evaluation of a new cross-linked Hyaluronic acid for Pharmaceutical and Cosmetic applications. Pharmaceutics 2021, 13, 1672. [Google Scholar] [CrossRef] [PubMed]
- Longo, R.; Avesani, A.; Dalla Mura, G.; Dell’Orco, D.; Manfredini, S.; Panozzo, G. Clinical improvement of ocular surface parameters in dry eye patients following treatment with urea/crosslinked-hyaluronate eyedrops correlates with the secretion of MUC-4. Expert. Rev. Ophthalmol. 2021, 16, 497–504. [Google Scholar] [CrossRef]
- Fallacara, A.; Vertuani, S.; Panozzo, G.; Pecorelli, A.; Valacchi, G.; Manfredini, S. Novel artificial tears containing cross-linked hyaluronic acid: An in vitro re-epithelization study. Molecules 2017, 22, 2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battistin, M.; Pascalicchio, P.; Tabaro, B.; Hasa, D.; Bonetto, A.; Manfredini, S.; Baldisserotto, A.; Scarso, A.; Ziosi, P.; Brunetta, A.; et al. A Safe-by-Design Approach to “Reef Safe” Sunscreens Based on ZnO and Organic UV Filters. Antioxidants 2022, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Meininger, C.J.; McNeal, C.J.; Bazer, F.W.; Rhoads, J.M. Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. Amino Acids in Nutrition and Health. In Advances in Experimental Medicine and Biology; Wu, G., Ed.; Springer: Cham, Switzerland, 2021; Volume 1332. [Google Scholar] [CrossRef]
- Gambardella, J.; Khondkar, W.; Morelli, M.B.; Wang, X.; Santulli, G.; Trimarco, V. Arginine and Endothelial function. Biomedicines 2020, 8, 277. [Google Scholar] [CrossRef]
- Jahani, M.; Noroznezhad, F.; Mansouri, K. Arginine: Challenges and opportunities of this two-faced molecule in cancer therapy. Biomed. Pharmacother. 2018, 102, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Szondi, D.C.; Wong, J.K.; Vardy, L.A.; Cruickshank, S.M. Arginase Signalling as a Key Player in Chronic Wound Pathophysiology and Healing. Front. Mol. Biosci. 2021, 29, 8:773866. [Google Scholar]
- Arezki, N.; Williams, A.; Cobb, A.; Brown, M. Design, synthesis and characterization of linear unnatural amino acids for skin moisturization. Int. J. Cosmet. Sci. 2017, 39, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Sepahi, M.; Jalal, R.; Mashreghi, M. Antibacterial activity of poly-l-arginine under different conditions. Iran. J. Microbiol. 2017, 9, 103–111. [Google Scholar]
- Bergman, K.; Elvingson, C.; Hilborn, J.; Svensk, G.; Bowden, T. Hyaluronic acid derivatives prepared in aqueous media by triazine-activated amidation. Biomacromolecules 2007, 8, 2190–2195. [Google Scholar] [CrossRef]
- Gubanova, G.N.; Petrova, V.A.; Kononova, S.V.; Popova, E.N.; Smirnova, V.E.; Bugrov, A.N.; Klechkovskaya, V.V.; Skorik, Y.A. Thermal Properties and Structural Features of Multilayer Films Based on Chitosan and Anionic Polysaccharides. Biomolecules 2021, 11, 762. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P.; Gaur, M.S. Thermal analysis of polymer blends and double layer by DSC. Polym. Polym. Compos. 2021, 29, S11–S18. [Google Scholar] [CrossRef]
- Li, Z.; Yu, C.; Kumar, H.; He, X.; Lu, Q.; Bai, H.; Kim, K.; Hu, J. The Effect of Crosslinking Degree of Hydrogels on Hydrogel Adhesion. Gels 2022, 8, 682. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 525, 203–210. [Google Scholar] [CrossRef]
- Shukla, V.; Shukla, D.; Tiwary, S.; Agrawal, S.; Rastogi, A. Evaluation of pH measurement as a method of wound assessment. J. Wound Care 2007, 16, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Sturabotti, E.; Consalvi, S.; Tucciarone, L.; Macrì, E.; Di Lisio, V.; Francolini, I.; Minichiello, C.; Piozzi, A.; Vuotto, C.; Martinelli, A. Synthesis of Novel Hyaluronic Acid Sulfonated Hydrogels Using Safe Reactants: A Chemical and Biological Characterization. Gels 2022, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, A.; Vázquez Molina, J.; Kyritsis, A.M.; Vallés Lluch, A.; Gallego Ferrer, G.; Pissis, P. Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels. Food Biophys. 2013, 8, 192–202. [Google Scholar] [CrossRef]
- Ghosh, K.; Shu, X.M.; Prestwich, G.; Rafailovich, M.H.; Clark, R.A.F. Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromolecules 2005, 6, 2857–2865. [Google Scholar] [CrossRef]
- Guilherme, M.R.; Campese, G.M.; Radovanovic, E.; Rubira, A.; Feitosa, J.P.; Muniz, E.C. Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties. Polymer 2005, 46, 7867–7873. [Google Scholar] [CrossRef]
- Noh, I.; Kim, G.C.; Kim, M.; Park, Y.; Lee, K.; Kim, I.; Hwang, S.; Tae, G. Effects of cross-linking molecular weights in a hyaluronic acid–poly(ethylene oxide) hydrogel network on its properties. Biomed. Mater. 2006, 1, 116–123. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H. A modified uronic acid carbazole reaction. Analyt. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Romberg, B.; Metselaar, J.M.; de Vringer, T.; Motonaga, K.; Kettenesvan den Bosch, J.J.; Oussoren, C.; Storm, G.; Hennink, W.E. Enzymatic degradation of liposome-grafted poly(hydroxyethyl L-glutamine). Bioconj. Chem. 2005, 16, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapasin, R.; Pricl, S. Rheology of Industrial Polysaccharides: Theory and Applications; Blackie Academic & Professional: London, UK, 1995. [Google Scholar]
- Tadros, T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interface Sci. 2004, 108, 227–258. [Google Scholar] [CrossRef] [PubMed]
Specimen | Wavenumber [cm−1] | Functional Group |
---|---|---|
HA | 3267.14 | O-H; N-H |
1610.95 | C=O | |
1404.00 | C=O | |
1040.00 | C-OH | |
HA–Arg | 3298.94 | N-H |
1729.51 | COOCH3 | |
1636.04 | C=O amide | |
1560.15 | N-H | |
1374.77 | C=O | |
1038.54 | C-OH |
Treatments | Calu-3 Cells | H441 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HA | HA–Arg | HA | HA–Arg | |||||||||
Mean | Stdev | Mean | Stdev | Mean | Stdev | Mean | Stdev | |||||
Control Media | 100.0 | ± | 6.7 | 100.0 | ± | 0.8 | 100.0 | ± | 2.0 | 100.0 | ± | 5.9 |
HA 0.30% | 97.8 | ± | 2.2 | 100.3 | ± | 3.2 | 78.7 | ± | 1.0 | 87.7 | ± | 4.8 |
HA 0.15% | 97.0 | ± | 4.3 | 96.5 | ± | 6.0 | 84.2 | ± | 2.3 | 99.0 | ± | 3.3 |
HA 0.075% | 96.3 | ± | 5.9 | 98.1 | ± | 0.9 | 86.5 | ± | 2.5 | 95.5 | ± | 4.0 |
HA 0.0375% | 100.1 | ± | 2.6 | 97.9 | ± | 6.7 | 91.8 | ± | 2.0 | 98.4 | ± | 1.0 |
HA 0.018% | 93.7 | ± | 3.1 | 95.6 | ± | 4.3 | 90.8 | ± | 6.7 | 112.6 | ± | 5.2 |
HA 0.009% | 93.1 | ± | 5.9 | 98.0 | ± | 5.6 | 90.6 | ± | 2.8 | 105.0 | ± | 4.1 |
DMSO 20% | 47.47 | ± | 1.36 | 51.99 | ± | 1.78 | 11.84 | ± | 2.20 | 14.97 | ± | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciabica, S.; Barbari, R.; Fontana, R.; Tafuro, G.; Semenzato, A.; Traini, D.; Silva, D.M.; Reis, L.G.D.; Canilli, L.; Terno, M.; et al. A Safe-by-Design Approach for the Synthesis of a Novel Cross-Linked Hyaluronic Acid with Improved Biological and Physical Properties. Pharmaceuticals 2023, 16, 431. https://doi.org/10.3390/ph16030431
Sciabica S, Barbari R, Fontana R, Tafuro G, Semenzato A, Traini D, Silva DM, Reis LGD, Canilli L, Terno M, et al. A Safe-by-Design Approach for the Synthesis of a Novel Cross-Linked Hyaluronic Acid with Improved Biological and Physical Properties. Pharmaceuticals. 2023; 16(3):431. https://doi.org/10.3390/ph16030431
Chicago/Turabian StyleSciabica, Sabrina, Riccardo Barbari, Riccardo Fontana, Giovanni Tafuro, Alessandra Semenzato, Daniela Traini, Dina M. Silva, Larissa Gomes Dos Reis, Luisa Canilli, Massimo Terno, and et al. 2023. "A Safe-by-Design Approach for the Synthesis of a Novel Cross-Linked Hyaluronic Acid with Improved Biological and Physical Properties" Pharmaceuticals 16, no. 3: 431. https://doi.org/10.3390/ph16030431
APA StyleSciabica, S., Barbari, R., Fontana, R., Tafuro, G., Semenzato, A., Traini, D., Silva, D. M., Reis, L. G. D., Canilli, L., Terno, M., Marconi, P., Baldisserotto, A., Vertuani, S., & Manfredini, S. (2023). A Safe-by-Design Approach for the Synthesis of a Novel Cross-Linked Hyaluronic Acid with Improved Biological and Physical Properties. Pharmaceuticals, 16(3), 431. https://doi.org/10.3390/ph16030431