Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review
Abstract
:1. Introduction
2. Medicinal Plants for the Treatment of Type 2 Diabetes Mellitus
2.1. Fenugreek
Medicinal Plant | Sex/Age (Range or Mean) | T2DM Inclusion Criteria | Blinding/ Randomization | Intervention | Results | Reference |
---|---|---|---|---|---|---|
Fenugreek (powdered whole seeds) | Women and men 40.535 years | Diagnostic criteria not reported | Triple-blind/randomized (method not reported) | 10 g/day for 8 weeks | ↓ FPG ↓ A1C ↓ HOMA-IR | [10] |
Fenugreek (seed extract) | Women and men 25–60 years | FPG ≤ 180 mg/dL A1C > 7.5% | Double-blind/randomized (computer-generated randomization code) | 1 g/day for 90 days | ↓ FPG ↓ PPG ↔ A1C | [11] |
Fenugreek (seeds soaked in hot water) | Women and men >18 years | American Diabetes Association: FPG ≥ 126 mg/dL A1C ≥ 6.5% 2-h PG during OGTT ≥ 200 mg/dL | Single-blind/randomized (Stat Trek’s Random Number Generator) | 10 g/day for 6 months | ↓ FPG ↓ A1C | [12] |
Fenugreek (hydroalcoholic seed extract) | Women and men 49.16 ± 6.57 years | FPG < 200 mg/dL | Double-blind/randomization not reported | 1 g/day for 2 months | ↓ FPG ↑ insulin sensitivity | [51] |
Fenugreek (seed) | Women and men >18 years | FPG ≥ 140 mg/dL A1C ≥ 7% | Open-label/randomized (computer-generated randomization list) | 2 g/day for 12 weeks | ↑ fasting insulin ↔ FPG ↔ A1C ↔ HOMA-IR | [52] |
Fenugreek (saponin extract) | Women and men 25–65 years | American Diabetes Association: FPG > 7 mmol/L and <13 mmol/L | Double-blind/randomized (random number table in the ratio of 2:1) | 0.35 g/pill; each gram of powder equals to 16 g of crude drug, 6 capsules each time and thrice a day for 12 weeks | ↓ FPG ↓ PPG ↓ A1C | [53] |
Fenugreek (seed powder) | Women and men 32–60 years | World Health Organization criteria | Blinding not reported/randomized (method not reported) | 100 g/day for 10 or 20 days | ↓ FPG ↓ PPG | [54] |
Fenugreek (seed powder) | Women and men 30–70 years | FPG ≥ 100 mg/dL and ≤125 mg/dL 2-h PG during OGTT ≥ 140 mg/dL and ≤199 mg/dL | Single-blind/randomized (computer-generated random numbers) | 10 g/day for 3 years (prediabetic patients) | ↓ FPG ↓ PPG ↑ fasting insulin | [55] |
2.2. Cinnamon
Medicinal Plant | Sex/Age (Range or Mean) | T2DM Inclusion Criteria | Blinding/ Randomization | Intervention | Results | Reference |
---|---|---|---|---|---|---|
Cinnamon from C. cassia | Women and men >40 years | FPG ≥ 7.8 mmol/L and ≤22.2 mmol/L | Blinding not reported/randomized (block randomization) | 1, 3 or 6 g/day for 40 days | ↓ FPG | [15] |
Cinnamon from C. cassia | Women and men ≥40 years | FPG > 125 mg/dL | Blinding not reported/randomized (method not reported) | 1.5 g/day for 30 days | ↓ FPG | [16] |
Cinnamon from C. cassia (dried bark powder) | Women and men ≥18 years | FPG > 7 mmol ⁄ L A1C > 7% | Double-blind/randomized (computer generated randomized list) | 2 g/day for 12 weeks | ↓ FPG ↓ A1C | [17] |
Cinnamon from C. zeylanicum | Women and men 30–65 years | World Health Organization: FPG ≥ 126 mg/dL and ≤160 mg/dL A1C ≥ 6% and ≤8% | Double-blind/randomized (method not reported) | 3 g/day for 8 weeks | ↓ FPG ↓ A1C ↔ fasting insulin | [72] |
Cinnamon from C. cassia (extract) | Women and men >48 years | FPG > 8.0 mmol/L A1C > 7.0% | Double-blind/randomized (method not reported) | 120 mg/day or 360 for 3 months | ↓ FPG ↓ A1C | [73] |
Cinnamon from C. cassia (water extract) | Women and men 61.3 ± 0.8 years | FPG > 6.1 mmol/L 2-h PG during OGTT > 7.8 mmol/L | Double-blind/randomized (random number table) | 500 mg/day for 2 months (elevated serum glucose patients) | ↓ FPG ↓ PPG ↓ HOMA-IR | [74] |
Cinnamon from C. zeylanicum | Women and men 30–80 years | American Diabetes Association: FPG ≥ 126 mg/dL and ≤250 mg/dL | Triple-blind/randomized (random number table) | 1000 mg/day for 3 months | ↓ FPG ↓ PPG ↓ A1C ↓ HOMA-IR | [75] |
Cinnamon from C. zeylanicum | Women and men 25–70 years | FPG < 180 mg/dL 2-h PG during OGTT < 250 mg/dL | Double-blind/randomized (method not reported) | 3 g/day for 8 weeks | ↔ FPG ↔ A1C ↔ fasting insulin ↔ HOMA-IR | [76] |
2.3. Curcuma longa
Medicinal Plant | Sex/Age (Range or Mean) | T2DM Inclusion Criteria | Blinding/ Randomization | Intervention | Results | Reference |
---|---|---|---|---|---|---|
Curcuminoids from Curcuma longa | Women and men 18–65 years | FPG ≥ 7.0 mmol/L 2-h PG during OGTT ≥ 11.1 mmol/L | Double-blind/randomized (block randomization with random numbers generated by SPSS) | 300 mg/day for 3 months | ↓ FPG ↓ A1C ↓ HOMA-IR | [20] |
Curcumin from Curcuma longa | Women and men >18 years | American Diabetes Association: FPG ≥ 126 mg/dL 2-h PG during OGTT > 200 mg/dL | Double-blind/randomized (random numbers generated by a computer software) | 80 mg/day for 3 months | ↓ FPG ↓ A1C | [21] |
Curcumin from Curcuma longa | Women and men 30–60 years | Diagnostic criteria not reported | Double-blind/randomized (block randomization) | 80 mg/day for 8 weeks | ↓ FPG ↓ A1C | [22] |
Curcuminoids from Curcuma longa | Women and men 40–70 years | American Diabetes Association | Double-blind/randomized (block randomization) | 1.5 g/day for 10 weeks | ↓ FPG | [84] |
Curcumin from Curcuma longa | Women and men 18–80 years | Diagnostic criteria not reported | Double-blind/randomized (computer-generated random numbers) | 80 mg/day for 12 weeks | ↓ FPG ↔ HOMA-IR ↔ QUICKI | [85] |
Curcuminoids from Curcuma longa | Women and men 40–70 years | Diagnostic criteria not reported | Double-blind/randomized (block randomization) | 1.5 g/day for 10 weeks | ↓ FPG ↔ fasting insulin ↔ A1C ↔ HOMA-β ↔ HOMA-IR | [86] |
Curcuma longa (rhizome powder) | Women and men 30–70 years | FPG < 200 mg/dL A1C > 6.0% | Double-blind/randomized (block randomization) | 2.1 g/day for 8 weeks | ↔ FPG ↔ A1C ↔ HOMA-IR ↔ fasting insulin | [87] |
Curcuminoids from Curcuma longa | Women and men ≥35 years | American Diabetes Association: FPG ≥ 100 mg/dL and ≤125 mg/dL A1C ≥ 5.7% and ≤6.4% 2-h PG during OGTT ≥ 140 mg/dL and ≤199 mg/d | Double-blind/randomized (computer-generated random numbers) | 1500 mg/day for 9 months (prediabetic patients) | ↓ FPG ↓ PPG ↓ A1C ↓ HOMA-IR | [88] |
2.4. Berberine
Medicinal Plant | Sex/Age (Range or Mean) | T2DM Inclusion Criteria | Blinding/ Randomization | Intervention | Results | Reference |
---|---|---|---|---|---|---|
Berberine (hydrochloride) | Women and men 25–75 years | FPG > 7.0 mmol/L A1C > 7.0% | Blinding not reported)/ randomized (method not reported) | Study A 1.5 g/day for 3 months Study B 1.5 g/day for 3 months | Study A ↓ FPG ↓ PPG ↓ A1C ↔ fasting insulin ↔ postprandial insulin Study B ↓ FPG ↓ PPG ↓ A1C ↓ HOMA-IR | [25] |
Berberine (hydrochloride) | Women and men 57 ± 8 years | FPG ≥ 7.0 mmol/L 2-h PG during OGTT ≥ 11.1 mmol/L | Blinding not reported)/ randomized (method not reported) | 1 g/day for 2 months | ↓ FBG ↓ A1C | [26] |
Berberine | Women and men 30–65 years old | American Diabetes Association: FPG ≥ 126 mg/dL and ≤200 mg/dL A1C ≥ 7% and ≤8.5% | Double-blind/ randomized (block randomization) | 1 g/day for 4 weeks | ↓ FPB ↓ PPG ↑ HOMA-β ↔ fasting insulin ↔ HOMA-IR | [27] |
Berberine | Women and men 25–70 years | World Health Organization: FPG ≥ 7 mmol/L and <8 mmol/L 2-h PG during OGTT ≥ 11.1 mmol/L | Double-blind/ randomization (block randomization) | 1 g/day for 3 months | ↓ FPG ↓ PPG ↓ A1C ↓ HOMA-IR ↔ fasting insulin ↔ postprandial insulin | [103] |
Berberine alone Berberine plus probiotics | Women and men 20–70 years | World Health Organization: FPG ≥ 7.0 mmol/L and ≤13.3 mmol/L A1C ≥ 6.5% and ≤10.0% | Double-blind/ randomization (block randomization) | 7.2 g/day for 12 weeks | ↓ A1C ↓ HOMA-IR | [104] |
Berberine plus ursodeoxycholic acid | Women and men 26–75 years | A1C ≥ 5.1% and ≤9.4% | Double blind/ randomization (block randomization) | 1 g/day or 2 g/day for 18 weeks | ↓ A1C ↔ FPG ↔ fasting insulin ↔ HOMA-IR | [105] |
Berberine (Berberis aristata) plus Silybum marianum | Women and men 25–75 years | A1C ≥ 7.5% and ≤9.5% | Blinding not reported/ randomization not reported | 588 mg for 90 days | ↓ A1C ↓ HOMA-IR ↔ FPG | [106] |
2.5. Momordica charantia
Medicinal Plant | Sex/Age (Range or Mean) | T2DM Inclusion Criteria | Blinding/ Randomization | Intervention | Results | Reference |
---|---|---|---|---|---|---|
Momordica charantia (dried leaves) | Women and men 21–65 years | American Diabetes Association: FPG ≥ 126 mg/dL and ≤205 mg/dL A1C ≥ 6.5% and ≤9.0% | Double-blind/ randomized (method not reported) | 100 mg/kg/day (single dose) | ↑ insulin secretion | [30] |
Momordica charantia (fruit powder) | Women and men 35–60 years | American Diabetes Association: FPG < 11.6 mmol/L A1C ≥ 7% and ≤9% | Double-blind/ randomized (random number list) | 2 g/day for 12 weeks | ↑ insulin secretion ↓ PPG ↓ A1C ↔ FPG ↔ insulin sensitivity | [31] |
Momordica charantia (fruit extract) | Women and men 20–70 years | A1C ≤ 7.5% | Double-blind/ randomized (block randomization) | 2.38 g/day for 12 weeks | ↓ HOMA-IR ↓ FPG ↔ A1C ↔ HOMA-β | [32] |
Momordica charantia (fruit powder) | Women and men 30–70 years | World health Organization: FPG ≥ 126 mg/dL and ≤240 mg/dL | Double-blind/ randomized (method not reported) | 2 g/day and 4 g/day for 10 weeks | ↓ A1C ↓ FPG ↔ PPG | [127] |
Momordica charantia (fruit juice powder) | Women and men 30–70 years | FPG ≥ 110 mg/dL and <250 mg/dL A1C > 7% and <10% | Open-label/ randomized (block randomization) | 1.2 g/day for 90 days | ↓ FPG ↓ PPG ↔ A1C | [128] |
Momordica charantia (fruit powder) | Women and men 30–65 years | FPG ≥ 5.6 mmol/L and ≤6.9 mmol/L A1C ≥ 5.7% and ≤7.5% | Single-blind/ randomized (Mersenne Twister random number generator) | 2.5 g/day for 8 weeks (prediabetic patients) | ↓ FPG ↔ A1C ↔ fasting insulin | [129] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersmann, A.; Müller-Wieland, D.; Müller, U.A.; Landgraf, R.; Nauck, M.; Freckmann, G.; Heinemann, L.; Schleicher, E. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2019, 127, S1–S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Das, S.R.; Gibbons, C.H.; et al. Introduction and methodology: Standards of care in diabetes-2023. Diabetes Care 2023, 46, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.K.; Kumarm, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis. 2012, 2, 239–250. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Desai, C.; Patel, P.; Shah, A.; Dikshit, R.K. An evaluation of the impact of antidiabetic medication on treatment satisfaction and quality of life in patients of diabetes mellitus. Perspect. Clin. Res. 2018, 9, 15–22. [Google Scholar]
- Gale, E.A. Collateral damage: The conundrum of drug safety. Diabetologia 2009, 52, 1975–1982. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Hannan, J.M.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br. J. Nutr. 2007, 97, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.L.; Li, X.S.; Zhang, J.; Liu, Y.H.; Wang, Z.L.; Zhang, R.J. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asian Pac. J. Clin. Nutr. 2007, 16, 422–426. [Google Scholar]
- Rafraf, M.; Malekiyan, M.; Asghari-Jafarabadi, M.; Aliasgarzadeh, A. Effect of Fenugreek Seeds on Serum Metabolic Factors and Adiponectin Levels in Type 2 Diabetic Patients. Int. J. Vitam. Nutr. Res. 2014, 84, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Usman, K.; Patel, N.; Jain, A.; Dhakre, S.; Swaroop, A.; Bagchi, M.; Kumar, P.; Preuss, H.G.; Bagchi, D. A multicenter clinical study to determine the efficacy of a novel fenugreek seed (Trigonella foenum-graecum) extract (Fenfuro™) in patients with type 2 diabetes. Food Nutr. Res. 2016, 60, 32382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, M.; Mudgalkar, N. A simple dietary addition of fenugreek seed leads to the reduction in blood glucose levels: A parallel group, randomized single-blind trial. Ayu 2017, 38, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Murali, K.Y.; Tandon, V.; Murthy, P.S.; Chandra, R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem. Biol. Interact. 2010, 186, 72–81. [Google Scholar] [CrossRef]
- Yaghmoor, S.S.; Khoja, S.M. Effect of cinnamon on plasma glucose concentration and the regulation of 6-phosphofructo-1-kinase activity from the liver and small intestine of streptozotocin induced diabetic rats. J. Biol. Sci. 2010, 10, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Safdar, M.; Ali Khan, M.M.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003, 26, 3215–3218. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Khan, Z.; Shah, S.H. Cinnamon May Reduce Glucose, Lipid and Cholesterol Level in Type 2 Diabetic Individuals. Pak. J. Nutr. 2010, 9, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Akilen, R.; Tsiami, A.; Devendra, D.; Robinson, N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: A randomized, placebo-controlled, double-blind clinical trial. Diabet. Med. 2010, 27, 1159–1167. [Google Scholar] [CrossRef]
- Jain, S.K.; Rains, J.; Croad, J.; Larson, B.; Jones, K. Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid. Redox Signal. 2009, 11, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.I.; Choi, M.S.; Jung, U.J.; Kim, H.J.; Yeo, J.; Jeon, S.M.; Lee, M.K. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res. 2008, 52, 995–1004. [Google Scholar] [CrossRef]
- Na, L.X.; Li, Y.; Pan, H.Z.; Zhou, X.L.; Sun, D.J.; Meng, M.; Li, X.X.; Sun, C.H. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: A double-blind, placebo-controlled trial. Mol. Nutr. Food Res. 2013, 57, 1569–1577. [Google Scholar] [CrossRef]
- Rahimi, H.R.; Mohammadpour, A.H.; Dastani, M.; Jaafari, M.R.; Abnous, K.; Mobarhan, M.G.; Oskuee, R.K. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna J. Phytomed. 2016, 6, 567–577. [Google Scholar]
- Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Khamoshian, K.; Sotoudeh, G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med. 2019, 43, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.J.; Zhang, H.; Song, D.Q.; Xue, R.; Zhao, W.; Wei, J.; Wang, Y.M.; Shan, N.; Zhou, Z.X.; Yang, P.; et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 2009, 58, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, Y.C.; Guo, F.J.; Meng, Y.; Li, M.L. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J. 2008, 121, 2124–2128. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008, 57, 712–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wei, J.; Xue, R.; Wu, J.D.; Zhao, W.; Wang, Z.Z.; Wang, S.K.; Zhou, Z.X.; Song, D.Q.; Wang, Y.M.; et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010, 59, 285–292. [Google Scholar] [CrossRef]
- Rashidi, H.; Namjoyan, F.; Mehraban, Z.; Zakerkish, M.; Ghaderian, S.B.; Latifi, S.M. The Effects of Active Ingredients of Barberry Root (Berberine) on Glycemic Control and Insulin Resistance in Type 2 Diabetic Patients. Jundishapur J. Nat. Pharm. Prod. 2018, 13, e64180. [Google Scholar] [CrossRef]
- Ali, A.M.; Moqbel, M.S.; Al-Hizab, F.A. Effect of momordica charantia on insulin immune-reactive pancreatic beta cells and blood glucose levels in streptozotocin-induced diabetic rats. J. Nutr. Sci. Vitaminol. 2022, 68, 438–445. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Oyedokun, V.O.; Iwaloye, O.; Lawal, A.O.; Ejelonu, O.C. Momordica charantia silver nanoparticles modulate SOCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. J. Diabetes Metab. Disord. 2021, 20, 245–260. [Google Scholar] [CrossRef]
- Lim, S.T.; Jimeno, C.A.; Razon-Gonzales, E.B.; Velasquez, M.E.N. The MOCHA DM study: The effect of Momordica charantia tablets on glucose and insulin levels during the postprandial state among patients with type 2 diabetes mellitus. Phillippine J. Intern. Med. 2010, 48, 19–25. [Google Scholar]
- Cortez-Navarrete, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G.; González-Ortiz, M.; Méndez-Del Villar, M. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J. Med. Food 2018, 21, 672–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.K.; Jung, J.; Jung, J.H.; Yoon, N.; Kang, S.S.; Roh, G.S.; Hahm, J.R. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement. Ther. Med. 2020, 52, 102524. [Google Scholar] [CrossRef]
- Visuvanathan, T.; Than, L.T.L.; Stanslas, J.; Chew, S.Y.; Vellasamy, S. Revisiting Trigonella foenum-graecum L. Pharmacology and Therapeutic Potentialities. Plants 2022, 11, 1450. [Google Scholar] [CrossRef]
- Geberemeskel, G.A.; Debebe, Y.G.; Nguse, N.A. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella foenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J. Diabetes Res. 2019, 2019, 8507453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, S.; Stephens, J.M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv. Nutr. 2015, 6, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.Z.; El-Sawalhi, M.M.; Ismail, M.F.; El-Tanbouly, N.D. Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites. Mol. Cell. Biochem. 2006, 281, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Al-Habori, M.; Raman, A.; Lawrence, M.J.; Skett, P. In vitro effect of fenugreek extracts on intestinal sodium-dependent glucose uptake and hepatic glycogen phosphorylase A. Int. J. Exp. Diabetes Res. 2001, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Madar, Z. Fenugreek (Trigonella foenum-graecum) as a means of reducing postprandial glucose level in diabetic rats. Nutr. Rep. Int. 1989, 29, 1267–1273. [Google Scholar]
- Raju, J.; Gupta, D.; Rao, A.R.; Yadava, P.K.; Baquer, N.Z. Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell. Biochem. 2001, 224, 45–51. [Google Scholar] [CrossRef]
- Sauvaire, Y.; Petit, P.; Broca, C.; Manteghetti, M.; Baissac, Y.; Fernandez-Alvarez, J.; Gross, R.; Roye, M.; Leconte, A.; Gomis, R.; et al. 4-Hydroxyisoleucine: A novel amino acid potentiator of insulin secretion. Diabetes 1998, 47, 206–210. [Google Scholar] [CrossRef]
- Hillaire-Buys, D.; Petit, P.; Manteghetti, M.; Baissac, Y.; Sauvaire, Y.; Ribes, G. A recently identified substance extracted from fenugreek seeds stimulates insulin secretion in rat. Diabetologia 1993, 36, A119. [Google Scholar]
- Ribes, G.; Sauvaire, Y.; Costa, C.D.; Baccou, J.C.; Loubatieres-Mariani, M.M. Antidiabetic effects of subfractions from fenugreek seeds in diabetic dogs. Proc. Soc. Exp. Biol. Med. 1986, 182, 159–166. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Lin, N.P.; Cheng, Y.H.; Chen, G.H.; Chein, R.J. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed. J. Biol. Chem. 2015, 290, 26235–26248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, M.V.; Singh, S.; Chhipa, R.R.; Bhat, M.K. The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br. J. Pharmacol. 2005, 146, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, N.; Maurya, C.K.; Venkateswarlu, K.; Sukanya, P.; Srivastava, A.K.; Narender, T.; Tamrakar, A.K. 4-Hydroxyisoleucine stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells via phosphatidylinositol-3-kinase-dependent pathway. Eur. J. Nutr. 2012, 51, 893–898. [Google Scholar] [CrossRef]
- Maurya, C.K.; Singh, R.; Jaiswal, N.; Venkateswarlu, K.; Narender, T.; Tamrakar, A.K. 4-Hydroxyisoleucine ameliorates fatty acid-induced insulin resistance and inflammatory response in skeletal muscle cells. Mol. Cell. Endocrinol. 2014, 395, 51–60. [Google Scholar] [CrossRef]
- Yu, H.; Wu, M.; Lu, F.R.; Xie, J.; Zheng, N.; Qin, Y.; Gao, F.; Du, W.; Jian, L.M. Effect of Trigonella foenum-graecum 4-hydroxyisoleucine on high-glucose induced insulin resistance in 3T3-L1 adipocytes of mice. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2013, 33, 1394–1399. (In Chinese) [Google Scholar]
- Bafadam, S.; Mahmoudabady, M.; Niazmand, S.; Rezaee, S.A.; Soukhtanloo, M. Cardioprotective effects of Fenugreek (Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats. J. Cardiovasc. Thorac. Res. 2021, 13, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Ishteyaque, S.; Prajapati, R.; Yadav, K.S.; Singh, R.; Kumar, A.; Sharma, S.; Narender, T.; Mugale, M.N. Assessment of antidiabetic effect of 4-HIL in type 2 diabetic and healthy Sprague Dawley rats. Hum. Exp. Toxicol. 2022, 41, 9603271211061873. [Google Scholar] [CrossRef]
- Eidi, A.; Eidi, M.; Sokhteh, M. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr. Res. 2007, 27, 728–733. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, R.; Lal, B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J. Assoc. Phys. India 2001, 49, 1057–1061. [Google Scholar]
- Najdi, R.A.; Hagras, M.M.; Kamel, F.O.; Magadmi, R.M. A randomized controlled clinical trial evaluating the effect of Trigonella foenum-graecum (fenugreek) versus glibenclamide in patients with diabetes. Afr. Health. Sci. 2019, 19, 1594–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.R.; Shen, L.; Qin, Y.; Gao, L.; Li, H.; Dai, Y. Clinical observation on Trigonella foenum-graecum L. total saponins in combination with sulfonylureas in the treatment of type 2 diabetes mellitus. Chin. J. Integr. Med. 2008, 14, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.D.; Raghuram, T.C. Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutr. Res. 1990, 10, 731–739. [Google Scholar] [CrossRef]
- Gaddam, A.; Galla, C.; Thummisetti, S.; Marikanty, R.K.; Palanisamy, U.D.; Rao, P.V. Role of Fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord. 2015, 14, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, P.; Jayawardana, R.; Galappaththy, P.; Constantine, G.R.; de Vas Gunawardana, N.; Katulanda, P. Efficacy and safety of ‘true’ cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: A systematic review and meta-analysis. Diabet. Med. 2012, 29, 1480–1492. [Google Scholar] [CrossRef]
- Sharma, S.; Mandal, A.; Kant, R.; Jachak, S.; Jagzape, M. Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus? J. Pak. Med. Assoc. 2020, 70, 2065–2069. [Google Scholar]
- Beejmohun, V.; Peytavy-Izard, M.; Mignon, C.; Muscente-Paque, D.; Deplanque, X.; Ripoll, C.; Chapal, N. Acute effect of Ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC. Complement. Altern. Med. 2014, 14, 351. [Google Scholar] [CrossRef] [Green Version]
- Vangalapati, M.; Satya, N.; Prakash, D.V.; Avanigadda, S. A review on pharmacological activities and clinical effects of Cinnamon species. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 653–663. [Google Scholar]
- Ulbricht, C.; Seamon, E.; Windsor, R.C.; Armbruester, N.; Bryan, J.K.; Costa, D.; Giese, N.; Gruenwald, J.; Iovin, R.; Isaac, R.; et al. An evidence-based systematic review of cinnamon (Cinnamomum spp.) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2011, 8, 378–454. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Rao, L.J. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.; Abdul Majid, F.A.; Sarmidi, M.R. A proanthocyanidin from cinnamomum zeylanicum stimulates phosphorylation of insulin receptor in 3T3-L1 adipocytes. J. Teknol. 2006, 44, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Adisakwattana, S.; Lerdsuwankij, O.; Poputtachai, U.; Minipun, A.; Suparpprom, C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods Hum. Nutr. 2011, 66, 143–148. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Kwon, Y.I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.T.; Perera, K.I.; Athauda, S.B.P.; Sivakanesan, R.; Kumar, N.S.; Jayasinghe, L. Heat stability of the in vitro inhibitory effect of spices on lipase, amylase, and glucosidase enzymes. Food Sci. Nutr. 2019, 7, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Sham Shihabudeen, H.; Hansi Priscilla, D.; Thirumurugan, K. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats. Nutr. Metab. 2011, 8, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannappan, S.; Jayaraman, T.; Rajasekar, P.; Ravichandran, M.K.; Anuradha, C.V. Cinnamon bark extract improves glucose metabolism and lipid profile in the fructose-fed rat. Singap. Med. J. 2006, 47, 858–863. [Google Scholar]
- Shen, Y.; Fukushima, M.; Ito, Y.; Muraki, E.; Hosono, T.; Seki, T.; Ariga, T. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Biosci. Biotechnol. Biochem. 2010, 74, 2418–2425. [Google Scholar] [CrossRef] [Green Version]
- Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde—A potential antidiabetic agent. Phytomedicine 2007, 14, 15–22. [Google Scholar] [CrossRef]
- Kim, S.H.; Choung, S.Y. Antihyperglycemic and antihyperlipidemic action of Cinnamomi Cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice. Arch. Pharm. Res. 2010, 33, 325–333. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Prasanna, B.; Rengarajan, R.L.; Rathinam, A.; Velayuthaprabhu, S.; Vijaya Anand, A. Anti-diabetic and hypolipidemic effects of Cinnamon cassia bark extracts: An in vitro, in vivo, and in silico approach. Arch. Physiol. Biochem. 2023, 129, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Vafa, M.; Mohammadi, F.; Shidfar, F.; Sormaghi, M.S.; Heidari, I.; Golestan, B.; Amiri, F. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int. J. Prev. Med. 2012, 3, 531–536. [Google Scholar] [PubMed]
- Lu, T.; Sheng, H.; Wu, J.; Cheng, Y.; Zhu, J.; Chen, Y. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutr. Res. 2012, 32, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Zhan, Z.; Luo, R.; Guo, X.; Guo, Q.; Zhou, J.; Kong, J.; Davis, P.A.; Stoecker, B.J. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J. Tradit. Complement. Med. 2015, 6, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Zare, R.; Nadjarzadeh, A.; Zarshenas, M.M.; Shams, M.; Heydari, M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin. Nutr. 2019, 38, 549–556. [Google Scholar] [CrossRef]
- Talaei, B.; Amouzegar, A.; Sahranavard, S.; Hedayati, M.; Mirmiran, P.; Azizi, F. Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients 2017, 9, 991. [Google Scholar] [CrossRef] [Green Version]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Flores, L.M.; López-Briones, S.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Pérez-Vázquez, V. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 2014, 19, 8289–8302. [Google Scholar] [CrossRef] [Green Version]
- Na, L.X.; Zhang, Y.L.; Li, Y.; Liu, L.Y.; Li, R.; Kong, T.; Sun, C.H. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 526–533. [Google Scholar] [CrossRef]
- Picard, F.; Auwerx, J. PPAR(gamma) and glucose homeostasis. Annu. Rev. Nutr. 2002, 22, 167–197. [Google Scholar] [CrossRef]
- Cheng, T.C.; Lin, C.S.; Hsu, C.C.; Chen, L.J.; Cheng, K.C.; Cheng, J.T. Activation of muscarinic M-1 cholinoceptors by curcumin to increase glucose uptake into skeletal muscle isolated from Wistar rats. Neurosci. Lett. 2009, 465, 238–241. [Google Scholar] [CrossRef] [PubMed]
- El-Moselhy, M.A.; Taye, A.; Sharkawi, S.S.; El-Sisi, S.F.; Ahmed, A.F. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem. Toxicol. 2011, 49, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Adibian, M.; Hodaei, H.; Nikpayam, O.; Sohrab, G.; Hekmatdoost, A.; Hedayati, M. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2019, 33, 1374–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafabakhsh, R.; Asemi, Z.; Reiner, Z.; Soleimani, A.; Aghadavod, E.; Bahmani, F. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial. Iran. J. Kidney Dis. 2020, 14, 290–299. [Google Scholar] [PubMed]
- Hodaei, H.; Adibian, M.; Nikpayam, O.; Hedayati, M.; Sohrab, G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetol. Metab. Syndr. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adab, Z.; Eghtesadi, S.; Vafa, M.R.; Heydari, I.; Shojaii, A.; Haqqani, H.; Arablou, T.; Eghtesadi, M. Effect of turmeric on glycemic status, lipid profile, hs-CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytother. Res. 2019, 33, 1173–1181. [Google Scholar] [CrossRef]
- Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35, 2121–2127. [Google Scholar] [CrossRef] [Green Version]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Suadoni, M.T.; Atherton, I. Berberine for the treatment of hypertension: A systematic review. Complement. Ther. Clin. Pract. 2021, 42, 101287. [Google Scholar] [CrossRef]
- Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yin, J.; Gao, H.; Xu, L.; Wang, Y.; Xu, L.; Li, M. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid. Based Complement. Altern. Med. 2012, 2012, 363845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Gao, Z.; Liu, D.; Liu, Z.; Ye, J. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol.-Endocrinol. Metab. 2008, 294, E148–E156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Liu, L.; Wang, X.; Liu, X.; Liu, X.; Xie, L.; Wang, G. Modulation of glucagon-like peptide-1 release by berberine: In vivo and in vitro studies. Biochem. Pharmacol. 2010, 79, 1000–1006. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Y.L.; Yang, J.S.; Li, Y.; Liu, Y.W.; Liang, Y.; Liu, X.D.; Xie, L.; Wang, G.J. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. Naunyn Schmiedeberg’s Arch. Pharmacol. 2010, 381, 371–381. [Google Scholar] [CrossRef]
- Han, J.; Lin, H.; Huang, W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med. Sci. Monit. 2011, 17, RA164–RA167. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jin, C.; Zhang, X.; Jia, W.; Le, J.; Ye, J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr. Diabetes 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 2011, 6, e16556. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.D.; Li, Y.; Sun, M.; Yu, C.J.; Li, J.Y.; Wang, S.H.; Yang, D.; Guo, C.L.; Du, X.; Zhang, W.J.; et al. Effect of berberine on hyperglycaemia and gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. World J. Gastroenterol. 2021, 27, 708–724. [Google Scholar] [CrossRef]
- Wang, D.; Ren, Y.; Sun, W.; Gong, J.; Zou, X.; Dong, H.; Xu, L.; Wang, K.; Lu, F. Berberine Ameliorates Glucose Metabolism in Diabetic Rats through the alpha7 Nicotinic Acetylcholine Receptor-Related Cholinergic Anti-Inflammatory Pathway. Planta Med. 2022, 88, 33–42. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, J.; Sun, C.; Lopez, A. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance. ISRN. Endocrinol. 2011, 2011, 519371. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, H.; Zheng, M.; Yang, Y.; Ren, H.; Kong, Y.; Wang, S.; Wang, J.; Jiang, Y.; Yang, J.; et al. Berberine Slows the Progression of Prediabetes to Diabetes in Zucker Diabetic Fatty Rats by Enhancing Intestinal Secretion of Glucagon-Like Peptide-2 and Improving the Gut Microbiota. Front. Endocrinol. 2021, 12, 609134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab. 2008, 93, 2559–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gu, Y.; Ren, H.; Wang, S.; Zhong, H.; Zhao, X.; Ma, J.; Gu, X.; Xue, Y.; Huang, S.; et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat. Commun. 2020, 11, 5015. [Google Scholar] [CrossRef]
- Harrison, S.A.; Gunn, N.; Neff, G.W.; Kohli, A.; Liu, L.; Flyer, A.; Goldkind, L.; Di Bisceglie, A.M. A phase 2 proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat. Commun. 2021, 12, 5503. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Villanova, N.; Agostini, F.; Marzocchi, R.; Soverini, V.; Marchesini, G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab. Syndr. Obes. 2012, 5, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Ray, R.B. Bitter Melon (Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers 2020, 12, 2064. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Navarrete, M.; Méndez-Del Villar, M.; Ramos-González, E.J.; Pérez-Rubio, K.G. Momordica Charantia: A Review of Its Effects on Metabolic Diseases and Mechanisms of Action. J. Med. Food 2021, 24, 1017–1027. [Google Scholar] [CrossRef]
- Tan, S.P.; Kha, T.C.; Parks, S.E.; Roach, P.D. Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Rev. Int. 2016, 32, 181–202. [Google Scholar] [CrossRef]
- Kumar Shetty, A.; Suresh Kumar, G.; Veerayya Salimath, P. Bitter gourd (Momordica charantia) modulates activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats. Mol. Nutr. Food. Res. 2005, 49, 791–796. [Google Scholar] [CrossRef]
- Nhiem, N.X.; Kiem, P.V.; Minh, C.V.; Ban, N.K.; Cuong, N.X.; Tung, N.H.; Ha, L.M.; Ha, D.T.; Tai, B.H.; Quang, T.H.; et al. Alpha-Glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Chem. Pharm. Bull. 2010, 58, 720–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Adeghate, E.; Cummings, E.; Sharma, A.K.; Singh, J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol. Cell. Biochem. 2004, 261, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Rathi, S.S.; Grover, J.K.; Vats, V. The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytother. Res. 2002, 16, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.P.; Lagishetty, C.V.; Panda, V.S.; Naik, S.R. An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC. Complement. Altern. Med. 2007, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibib, B.A.; Khan, L.A.; Rahman, R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: Depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 1993, 292, 267–270. [Google Scholar]
- Tan, M.J.; Ye, J.M.; Turner, N.; Hohnen-Behrens, C.; Ke, C.Q.; Tang, C.P.; Chen, T.; Weiss, H.C.; Gesing, E.R.; Rowland, A.; et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 2008, 15, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.C.; Lin, C.H.; Lin, W.L.; Wu, J.B. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J. Ethnopharmacol. 2009, 123, 82–90. [Google Scholar] [CrossRef]
- Shih, C.C.; Lin, C.H.; Lin, W.L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res. Clin. Pract. 2008, 81, 134–143. [Google Scholar] [CrossRef]
- Sridhar, M.G.; Vinayagamoorthi, R.; Arul Suyambunathan, V.; Bobby, Z.; Selvaraj, N. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br. J. Nutr. 2008, 99, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Klomann, S.D.; Mueller, A.S.; Pallauf, J.; Krawinkel, M.B. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice. Br. J. Nutr. 2010, 104, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
- Bhat, G.A.; Khan, H.A.; Alhomida, A.S.; Sharma, P.; Singh, R.; Paray, B.A. GLP-I secretion in healthy and diabetic Wistar rats in response to aqueous extract of Momordica charantia. BMC. Complement. Altern. Med. 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafizur, R.M.; Kabir, N.; Chishti, S. Modulation of pancreatic β-cells in neonatally streptozotocin-induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Nat. Prod. Res. 2011, 25, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Zuki, A.B.; Goh, Y.M.; Rezaeizadeh, A.; Noordin, M.M. Effects of Momordica charantia on pancreatic histopathological changes associated with streptozotocin-induced diabetes in neonatal rats. Histol. Histopathol. 2011, 26, 13–21. [Google Scholar]
- Singh, N.; Gupta, M. Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits. Indian. J. Exp. Biol. 2007, 45, 1055–1062. [Google Scholar] [PubMed]
- Hussain, F.; Hafeez, J.; Khalifa, A.S.; Naeem, M.; Ali, T.; Eed, E.M. In vitro and in vivo study of inhibitory potentials of α-glucosidase and acetylcholinesterase and biochemical profiling of M. charantia in alloxan-induced diabetic rat models. Am. J. Transl. Res. 2022, 14, 3824–3839. [Google Scholar]
- Makena, W.; Hambolu, J.O.; Timbuak, J.A.; Umana, U.E.; Iliya, A.I.; Dibal, N.I. Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J. Diabetes Metab. Disord. 2020, 19, 1303–1310. [Google Scholar] [CrossRef]
- Rahman, I.U.; Khan, R.U.; Rahman, K.U.; Bashir, M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr. J. 2015, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Suthar, A.C.; Deshmukh, A.; Babu, V.; Mohan, V.S.; Chavan, M.V.; Kumar, D.; Chauhan, V.; Sharma, S.; Sharma, M. Efficacy and safety of Glycebal (PDM011011) capsules as adjuvant therapy in subjects with type 2 diabetes mellitus: An open label, randomized, active controlled, phase II trial. Clin. Diabetol. 2016, 5, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Krawinkel, M.B.; Ludwig, C.; Swai, M.E.; Yang, R.Y.; Chun, K.P.; Habicht, S.D. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J. Ethnopharmacol. 2018, 216, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez-Navarrete, M.; Pérez-Rubio, K.G.; Escobedo-Gutiérrez, M.d.J. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals 2023, 16, 515. https://doi.org/10.3390/ph16040515
Cortez-Navarrete M, Pérez-Rubio KG, Escobedo-Gutiérrez MdJ. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals. 2023; 16(4):515. https://doi.org/10.3390/ph16040515
Chicago/Turabian StyleCortez-Navarrete, Marisol, Karina G. Pérez-Rubio, and Miriam de J. Escobedo-Gutiérrez. 2023. "Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review" Pharmaceuticals 16, no. 4: 515. https://doi.org/10.3390/ph16040515
APA StyleCortez-Navarrete, M., Pérez-Rubio, K. G., & Escobedo-Gutiérrez, M. d. J. (2023). Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals, 16(4), 515. https://doi.org/10.3390/ph16040515