Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review
Abstract
:1. Introduction
2. Results and Discussion
2.1. Database Search
2.2. Lactic Acid Bacteria (LAB)
2.3. Neurodegenerative Diseases (NDs)
2.4. Recent In Vitro, In Vivo, and Clinical Evidence of Neuroprotective Activities of Probiotics LAB
Main Author, Year | LAB/Probiotics Formulation Containing LAB | Activities/Results | Ref. |
---|---|---|---|
Michael et al., 2019 | Formulation Lab4: Lactobacillus acidophilus CUL21 (NCIMB 30156) Lactobacillus acidophilus CUL60 (NCIMB 30157) Bifidobacterium bifidum CUL20 (NCIMB 30153) Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 30172) Formulation Lab4b: Lactobacillus salivarius CUL61 (NCIMB 30211) Lactobacillus paracasei CUL08 (NCIMB 30154) Bifidobacterium bifidum CUL20 (NCIMB 30153) Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 30172)) | Induced proliferation in SH-SY5Y cells. Protect undifferentiated cells from cytotoxic effect of rotenone and MPP+. Protect differentiated cells from the cytotoxic actions of rotenone. Attenuate intracellular ROS accumulation in SH-SY5Y cells. | [45] |
Lim et al., 2020 | Lactococcus lactis Lacticaseibacillus rhamnosus GG Lactobacillus delbrueckii KU200170 Lactobacillus plantarum KU200661 | L. lactis KC24-CM protected SH-SY5Y cells against oxidative stress. Enhanced expression of brain-derived neurotropic factor (BDNF). Reduced the apoptosis-related Bax/Bcl-2 ratio. | [46] |
Sirin and Aslim, 2020 | Lactobacillus delbrueckii ssp. bulgaricus B3 Lactobacillus plantarum GD2 | LAB exopolysaccharides reduced the apoptotic activity exerted by Aβ1-42 on SH-SY5Y cells. Exerted depolarizing effect on mitochondrial membrane potential. | [48] |
Sirin and Aslim, 2020 | Lactobacillus delbrueckii ssp. bulgaricus B3 Lactobacillus plantarum GD2 | Exopolysaccharides protected SH-SY5Y cells from Aβ mediated neurotoxicity. Antioxidative activities exerted via upregulation of ERK1, ERK2, JNK, JUN, NF-κB/p65, and p38 and also by downregulation of AKT/PKB. | [49] |
Teran et al., 2021 | Lactobacillus plantarum CRL 1905 Lactobacillus casei CRL 238 Lactobacillus brevis CRL 2013 Lactococcus lactis subsp. cremoris CRL 462 and MG1363 | Significant neuroprotective activity by Lactobacillus plantarum CRL 1905 (A9 clone) associated with decreased levels of IL-6 released by the neuronal cells. | [50] |
Bock et al., 2022 | Levilactobacillus brevis KU15152 | Levilactobacillus brevis KU15152-CM protected SH-SY5Y cells against H2O2-induced oxidative stress. | [51] |
Kim et al., 2022 | Leuconostoc mesenteroides Latilactobacillus curvatus Lactiplantibacillus plantarum | Significantly inhibited production of NO and pro-inflammatory cytokine by neuro-inflamed LPS-stimulated microglia cells. | [52] |
Main Author, Year | LAB/Probiotic Formulation Containing LAB | Animal | Activities/Results | Ref. |
---|---|---|---|---|
Azm et al., 2018 | Lactobacillus acidophilus (1688FL431-16LA02) Lactobacillus fermentum (ME3) Bifidobacterium lactis (1195SL609-16BS01) Bifidobacterium longum (1152SL593-16BL03) | Eight-week-old male Wistar rats Aβ-induced Alzheimer’s disease (AD) model | Significant improvement in spatial memory in rats. Improved oxidative stress biomarkers. | [59] |
Bonfili et al., 2018 | Formulation SLAB51: Lactobacillus acidophilus DSM 32241 Lactobacillus helveticus DSM 32242 Lactobacillus paracasei DSM 32243 Lactobacillus plantarum DSM 32244 Lactobacillus brevis DSM 27961 Bifidobacterium lactis DSM 32246 Bifidobacterium lactis DSM 32247 Streptococcus thermophilus DSM 32245 | Eight-week-old male transgenic Alzheimer’s disease (AD) mice (3xTg-AD) | Significantly reduced oxidative stress in AD mice brain by activating SIRT1-dependent mechanisms. | [62] |
Corpuz et al., 2018 | Lactobacillus paracasei K71 Lactobacillus casei subsp. Casei zz | Fourteen-week-old female SAMP8 mice | Better cognitive performance in the Barnes maze and passive avoidance tests after K71 supplementation. Upregulation in BDNF expression and CREB phosphorylation in the hippocampus. | [53] |
Choi et al., 2019 | Lactobacillus plantarum | Seven-week-old male C57BL/6J mice | Reduced depression-like behavior by elevating BDNF expression. | [56] |
Rezaei Asl et al., 2019 | Lactobacillus acidophilus Bifidobacterium bifidum Bifidobacterium longum | Adult male Wistar rats Aβ-induced Alzheimer’s disease (AD) model | Improved maze navigation. Restored long-term potentiation (LTP) in rats. | [60] |
Rezaeiasl et al., 2019 | Lactobacillus acidophilus Bifidobacterium bifidum Bifidobacterium longum | Adult male Wistar rats Aβ-induced Alzheimer’s disease (AD) model | Significant improvement in learning. Increased paired-pulse facilitation (PPF) ratios. | [61] |
Bonfili et al., 2020 | Formulation SLAB51: Lactobacillus acidophilus DSM 32241 Lactobacillus helveticus DSM 32242 Lactobacillus paracasei DSM 32243 Lactobacillus plantarum DSM 32244 Lactobacillus brevis DSM 27961 Bifidobacterium lactis DSM 32246 Bifidobacterium lactis DSM 32247 Streptococcus thermophilus DSM 32245 | Eight-week-old male transgenic Alzheimer’s disease (AD) mice (3xTg-AD) | Improvement in glucose uptake in the brain. Memory improvement. | [63] |
Mehrabadi and Sadr, 2020 | Lactobacillus reuteri Lacticaseibacillus rhamnosus Bifidobacterium infantis | Male Wistar rats, Aβ1-40-induced Alzheimer’s disease (AD) model | Significant improvement in spatial memory and reduced Aβ plaques. Reduced IL-1β and TNF-α inflammation markers. | [65] |
Kaur et al., 2020 | VSL#3® Formulation: Lactobacillus acidophilus Lactobacillus plantarum Lactobacillus paracasei Lactobacillus delbrueckii subsp. bulgaricus Streptococcus thermophilus Bifidobacterium longum Bifidobacterium breve Bifidobacterium infantis | C57BL/6 wild-type (WT) AppNL-G-F mice, Alzheimer’s disease (AD) model | Altered levels of lactate and acetate in both serum and brain. Upregulated expression of the neuronal activity marker, c-Fos. | [64] |
Visnuk et al., 2020 | Lactobacillus plantarum CRL 2130 (a riboflavin producer) Streptococcus thermophilus CRL 807 (an immunomodulatory strain) Streptococcus thermophilus CRL 808 (a folate producer) | Eight-week-old male C57BL/6 mice (MPTP/probenecid parkinsonism model) | Enhanced motor skills. Higher brain tyrosine-hydrolase-positive cell counts. Reduced IL-6 and TNF-α in serum. Elevated levels of IL-10 in serum and brain tissues. Improvement in neuroinflammation. | [43] |
Yang et al., 2020 | ProBiotic-4 formulation: Lactobacillus casei Lactobacillus acidophilus Bifidobacterium lactis Bifidobacterium bifidum | Nine-month-old senescence-accelerated mouse prone 8 (SAMP8) | Improved the memory deficits, cerebral neuronal and synaptic injuries, glial activation, and microbiota composition in the feces and brains. | [55] |
Beltagy et al., 2021 | Lactobacillus acidophilus | Adult male albino rats (6–7 weeks age) | Significant changes in neurotransmitters and antioxidants levels. Alleviate learning- and memory-associated injuries in Alzheimer’s rats. | [58] |
Wang et al., 2021 | Lactobacillus plantarum DP189 | MPTP-induced Parkinson’s disease (PD) model mice | Improved behavioral ability. Significant neuroprotective effect in PD mice. | [66] |
Zolfaghari et al., 2021 | Lacticaseibacillus rhamnosus Lactobacillus reuteri Lactobacillus plantarum | Adult male Wistar rats | Prevented LPS-induced elevation of TNF-α mRNA and memory deterioration. Probiotics exert neuroprotective activity via immune-modulatory properties. | [57] |
Liu et al., 2022 | Lacticaseibacillus rhamnosus GG | Male C57BL/6J mice (8-week-old) | Prevented dopaminergic neuronal loss and weakened muscle strength in behavior tests. Neuroprotective activities possibly due to enhancement of striatal glial-cell-derived neurotrophic factor (GDNF) expression. | [67] |
Sahin et al., 2022 | VSL#3® Formulation: Lactobacillus acidophilus Lactobacillus plantarum Lactobacillus paracasei Lactobacillus delbrueckii subsp. bulgaricus Streptococcus thermophilus Bifidobacterium longum Bifidobacterium breve Bifidobacterium infantis | Eight-week-old Wistar Albino rats | Decreased oxidative stress and inflammatory markers. Reduced neurotoxic effects of aflatoxin B1 in rats. | [54] |
Visnuk et al., 2022 | Lactiplantibacillus plantarum CRL2130 Lactiplantibacillus plantarum CRL725 | Eight-week-old male C57BL/6 mice (MPTP/probenecid parkinsonism model) | Attenuated motor deficits Prevented dopaminergic neuronal death. Decreased pro-inflammatory cytokines and increase in IL-10 levels in serum and brain | [42] |
Main Author, Year, Country, Study Design | LAB/Probiotic Formulation Containing LAB | Participants | Results | Ref. |
---|---|---|---|---|
Hwang et al., 2019, South Korea, Multi-center, randomized, double-blind, controlled clinical trial | Lactobacillus plantarum combined with fermented soybean powder | 100 men and women diagnosed with mild cognitive impairment (MCI) according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5), were recruited at Chonbuk National University Hospital and Kyung Hee University Hospital | Greater improvements in the combined cognitive functions. Elevated serum BDNF levels. | [68] |
Tamtaji et al., 2019, Iran, Randomized, double-blind, controlled trial | Lactobacillus acidophilus Bifidobacterium bifidum Bifidobacterium longum co-supplemented with selenium | AD patients (55–100 years of age) at the Golabchi Welfare Organization (Kashan, Iran) and Madar, Shayestegan, and Amin Welfare Organizations (Shahrekord, Iran) | Improved MMSE score, hs-CRP, TAC, GSH, insulin metabolism markers, triglycerides, VLDL-, LDL-, total-/HDL cholesterol. Enhanced gene expression of TNF-a, PPAR-g, and LDLR. Improved cognitive function and some metabolic profiles. | [69] |
2.5. Mechanisms of Action of LAB on Neuroprotective Activity
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021, 27, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Matej, R.; Tesar, A.; Rusina, R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin. Biochem. 2019, 73, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Danics, K.; Forrest, S.L.; Kapas, I.; Erber, I.; Schmid, S.; Törő, K.; Majtenyi, K.; Kovacs, G.G. Neurodegenerative proteinopathies associated with neuroinfections. J. Neural Transm. 2021, 128, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.; Vieira, M.; Delerue-matos, C.; Grosso, C.; Soares, C. Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Matine Drugs 2022, 20, 362. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Angeloni, C.; Vauzour, D. Natural products and neuroprotection. Int. J. Mol. Sci. 2019, 20, 5570. [Google Scholar] [CrossRef]
- Jusril, N.A.; Juhari, A.N.N.M.; Abu Bakar, S.I.; Saad, W.M.M.; Adenan, M.I. Combining in silico and in vitro studies to evaluate the acetylcholinesterase inhibitory profile of different accessions and the biomarker triterpenes of Centella asiatica. Molecules 2020, 25, 3353. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, L.; Wang, L. Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed. Pharmacother. 2023, 159, 114229. [Google Scholar] [CrossRef]
- Li, X.; Fei, Z.; Fei, F.; Su, N. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen. Res. 2020, 15, 2008–2015. [Google Scholar] [CrossRef]
- Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol. 2018, 9, 1383. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, Y.; Kumar, G.P.; Ramya, E.M.; Anilakumar, K.R. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem. Res. 2018, 43, 1150–1160. [Google Scholar] [CrossRef]
- Yadavalli, C.; Garlapati, P.K.; Raghavan, A.K. Gallic Acid from Terminalia Bellirica Fruit Exerts Antidepressant-like Activity. Rev. Bras. Farm. 2020, 30, 357–366. [Google Scholar] [CrossRef]
- Castelli, V.; D’Angelo, M.; Quintiliani, M.; Benedetti, E.; Cifone, M.G.; Cimini, A. The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson’s disease? Neural Regen. Res. 2021, 16, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.R. Mixed messages. Can. Fam. Physician 2005, 51, 1455–1457. [Google Scholar]
- Azaïs-Braesco, V.; Bresson, J.L.; Guarner, F.; Corthier, G. Not all lactic acid bacteria are probiotics, but some are. Br. J. Nutr. 2010, 103, 1079–1081. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.A.; Ibrahim, S.A. Current limitations and challenges with lactic acid bacteria: A review. Food Nutr. Sci. 2013, 04, 73–87. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y. Lactic Acid Bacteria: Fundamentals and Practice; Springer Science+Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Hogervorst, E.; Mursjid, F.; Priandini, D.; Setyawan, H.; Ismael, R.I.; Bandelow, S.; Rahardjo, T.B. Borobudur revisited: Soy consumption may be associated with better recall in younger, but not in older, rural Indonesian elderly. Brain Res. 2011, 1379, 206–212. [Google Scholar] [CrossRef]
- Murai, U.; Sawada, N.; Charvat, H.; Inoue, M.; Yasuda, N.; Yamagishi, K.; Shoichiro Tsugane For the JPHC Study Group. Soy product intake and risk of incident disabling dementia: The JPHC Disabling Dementia Study. Eur. J. Nutr. 2022, 61, 4045–4057. [Google Scholar] [CrossRef]
- Salami, M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front. Neurosci. 2021, 15, 613120. [Google Scholar] [CrossRef]
- Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr. Neuropharmacol. 2019, 17, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Umbrello, G.; Esposito, S. Microbiota and neurologic diseases: Potential effects of probiotics. J. Transl. Med. 2016, 14, 298. [Google Scholar] [CrossRef] [PubMed]
- Bonfili, L.; Gong, C.; Lombardi, F.; Cifone, M.G.; Eleuteri, A.M. Strategic modification of gut microbiota through oral bacteriotherapy influences hypoxia inducible factor-1α: Therapeutic implication in Alzheimer’s disease. Int. J. Mol. Sci. 2021, 23, 357. [Google Scholar] [CrossRef]
- Bonfili, L.; Cecarini, V.; Berardi, S.; Scarpona, S.; Suchodolski, J.S.; Nasuti, C.; Fiorini, D.; Boarelli, M.C.; Rossi, G.; Eleuteri, A.M. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 2017, 7, 2426. [Google Scholar] [CrossRef]
- Quinto, E.J.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 2014, 05, 1765–1775. [Google Scholar] [CrossRef]
- Mokoena, M.P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Van Doan, H.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish-An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; Da Silva, R.; Ibrahim, S.A. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Kamsan, N.; Noor, N.R.A.M. The Prevalence of Lactic Acid Bacteria as Probiotic in Malaysian. Inaug. Symp. Res. Innov. Food 2021, 2021, 54–57. [Google Scholar]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Rizzi, L.; Rosset, I.; Roriz-Cruz, M. Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res. Int. 2014, 2014, 908915. [Google Scholar] [CrossRef] [PubMed]
- Barber, K.; Mendonca, P.; Soliman, K.F.A. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer’s Disease. Brain Sci. 2023, 13, 145. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.A.S.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol. 2019, 167, 231–255. [Google Scholar] [CrossRef]
- Barai, P.; Raval, N.; Acharya, S.; Borisa, A.; Bhatt, H.; Acharya, N. Neuroprotective effects of bergenin in Alzheimer’s disease: Investigation through molecular docking, in vitro and in vivo studies. Behav. Brain Res. 2018, 356, 18–40. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Visñuk, D.P.; del Milagro Teran, M.; de Giori, G.S.; LeBlanc, J.G.; de Moreno de LeBlanc, A. Neuroprotective Effect of Riboflavin Producing Lactic Acid Bacteria in Parkinsonian Models. Neurochem. Res. 2022, 47, 1269–1279. [Google Scholar] [CrossRef]
- Visñuk, D.P.; de Giori, G.S.; LeBlanc, J.G.; de Moreno de LeBlanc, A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition 2020, 79–80, 110995. [Google Scholar] [CrossRef] [PubMed]
- Cicirelli, G.; Impedovo, D.; Dentamaro, V.; Marani, R.; Pirlo, G.; D’Orazio, T.R. Human Gait Analysis in Neurodegenerative Diseases: A Review. IEEE J. Biomed. Health Inform. 2021, 26, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Michael, D.R.; Davies, T.; Loxley, K.; Allen, M.; Good, M.; Hughes, T.; Plummer, S. In vitro neuroprotective activities of two distinct probiotic consortia. Benef. Microbes 2019, 10, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-M.; Lee, N.-K.; Paik, H.-D. Potential neuroprotective effects of heat-killed Lactococcus lactis KC24 using SH-SY5Y cells against oxidative stress induced by hydrogen peroxide. Food Sci. Biotechnol. 2020, 29, 1735–1740. [Google Scholar] [CrossRef]
- Abarquero, D.; Renes, E.; Fresno, J.M.; Tornadijo, M.E. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: A review. Int. J. Food Sci. Technol. 2021, 57, 16–26. [Google Scholar] [CrossRef]
- Sirin, S.; Aslim, B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Sci. Rep. 2020, 10, 8124. [Google Scholar] [CrossRef]
- Sirin, S.; Aslim, B. Protective effect of exopolysaccharides from lactic acid bacteria against amyloid beta1-42induced oxidative stress in SH-SY5Y cells: Involvement of the AKT, MAPK, and NF-κB signaling pathway. Process. Biochem. 2021, 106, 50–59. [Google Scholar] [CrossRef]
- Del Milagro Teran, M.; de Moreno de LeBlanc, A.; de Giori, G.S.; LeBlanc, J.G. Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Appl. Microbiol. Biotechnol. 2021, 105, 2097–2107. [Google Scholar] [CrossRef]
- Bock, H.-J.; Lee, N.-K.; Paik, H.-D. Neuroprotective effects of heat-killed Levilactobacillus brevis KU15152 on H2O2-induced oxidative stress. SSRN Electron. J. 2022, 1–30, Available at SSRN 4269976. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.H.; Kim, E.H.; Reaney, M.J.T.; Shim, Y.Y.; Chung, M.J. Immunomodulatory Activity of Extracellular Vesicles of Kimchi-Derived Lactic Acid Bacteria (Leuconostoc mesenteroides, Latilactobacillus curvatus, and Lactiplantibacillus plantarum). Foods 2022, 11, 313. [Google Scholar] [CrossRef]
- Corpuz, H.M.; Ichikawa, S.; Arimura, M.; Mihara, T.; Kumagai, T.; Mitani, T.; Nakamura, S.; Katayama, S. Long-Term Diet Supplementation with Lactobacillus paracasei K71 Prevents Age-Related Cognitive Decline in Senescence-Accelerated Mouse Prone 8. Nutrients 2018, 10, 762. [Google Scholar] [CrossRef]
- Sahin, G.A.; Karabulut, D.; Unal, G.; Sayan, M.; Sahin, H. Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sci. 2022, 306, 120798. [Google Scholar] [CrossRef]
- Yang, X.; Yu, D.; Xue, L.; Li, H.; Du, J. Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B 2020, 10, 475–487. [Google Scholar] [CrossRef]
- Choi, J.; Kim, Y.K.; Han, P.L. Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice. Exp. Neurobiol. 2019, 28, 158–171. [Google Scholar] [CrossRef]
- Zolfaghari, S.I.; Khorasgani, M.R.; Noorbakhshnia, M. The effects of lactobacilli (L. rhamnosus, L. reuteri, L. Plantarum) on LPS-induced memory impairment and changes in CaMKII-α and TNF-α genes expression in the hippocampus of rat. Physiol. Behav. 2020, 229, 113224. [Google Scholar] [CrossRef]
- Beltagy, D.M.; Nawar, N.F.; Mohamed, T.M.; Tousson, E.; El-Keey, M.M. Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer’s disease. J. Complement. Integr. Med. 2021, 18, 761–767. [Google Scholar] [CrossRef]
- Azm, S.A.N.; Djazayeri, A.; Safa, M.; Azami, K.; Ahmadvand, B.; Sabbaghziarani, F.; Sharifzadeh, M.; Vafa, M. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl. Physiol. Nutr. Metab. 2018, 43, 718–726. [Google Scholar] [CrossRef]
- Asl, Z.R.; Sepehri, G.; Salami, M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav. Brain Res. 2019, 376, 112183. [Google Scholar] [CrossRef]
- Rezaeiasl, Z.; Salami, M.; Sepehri, G. The Effects of Probiotic Lactobacillus and Bifidobacterium Strains on Memory and Learning Behavior, Long-Term Potentiation (LTP), and Some Biochemical Parameters in β-Amyloid-Induced Rat’s Model of Alzheimer’s Disease. Prev. Nutr. Food Sci. 2019, 24, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Bonfili, L.; Cecarini, V.; Cuccioloni, M.; Angeletti, M.; Berardi, S.; Scarpona, S.; Rossi, G.; Eleuteri, A.M. SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Mol. Neurobiol. 2018, 55, 7987–8000. [Google Scholar] [CrossRef]
- Bonfili, L.; Cecarini, V.; Gogoi, O.; Berardi, S.; Scarpona, S.; Angeletti, M.; Rossi, G.; Eleuteri, A.M. Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2019, 87, 35–43. [Google Scholar] [CrossRef]
- Kaur, H.; Golovko, S.; Golovko, M.Y.; Singh, S.; Darland, D.C.; Combs, C.K. Effects of probiotic supplementation on short chain fatty acids in the App NL-G-F mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2020, 76, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, S.; Sadr, S.S. Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer’s Disease Model of Rats. Iran. Biomed. J. 2020, 24, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, S.; Jiang, Y.; Zhao, Z.; Shen, Y.; Zhang, J.; Zhao, L. Neuroprotective effect of Lactobacillus plantarum DP189 on MPTP-induced Parkinson’s disease model mice. J. Funct. Foods 2021, 85, 104635. [Google Scholar] [CrossRef]
- Liu, X.; Du, Z.R.; Wang, X.; Sun, X.R.; Zhao, Q.; Zhao, F.; Wong, W.T.; Wong, K.H.; Dong, X.-L. Polymannuronic acid prebiotic plus Lacticaseibacillus rhamnosus GG probiotic as a novel synbiotic promoted their separate neuroprotection against Parkinson’s disease. Food Res. Int. 2022, 155, 111067. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.H.; Park, S.; Paik, J.-W.; Chae, S.-W.; Kim, D.-H.; Jeong, D.-G.; Ha, E.; Kim, M.; Hong, G.; Park, S.-H.; et al. Efficacy and safety of lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients 2019, 11, 305. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer ’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 2018, 38, 2569–2575. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, H.; Kang, S.S. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control. 2019, 106, 106758. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Syaifie, P.H.; Hemasita, A.W.; Nugroho, D.W.; Mardliyati, E.; Anshori, I. In silico investigation of propolis compounds as potential neuroprotective agent. Biointerface Res. Appl. Chem. 2022, 12, 8285–8306. [Google Scholar] [CrossRef]
- Shahinozzaman; Obanda, D.N.; Tawata, S. Chemical composition and pharmacological properties of Macaranga-type Pacific propolis: A review. Phyther. Res. 2020, 35, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.P.; de Castro, A.A.; Soares, F.V.; da Cunha, E.F.F.; Ramalho, T.C. Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules 2019, 24, 4410. [Google Scholar] [CrossRef]
- Carrington, E.M.; Zhan, Y.; Brady, J.L.; Zhang, J.-G.; Sutherland, R.M.; Anstee, N.S.; Schenk, R.L.; Vikstrom, I.B.; Delconte, R.B.; Segal, D.; et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ. 2017, 24, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical Implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Vaynman, S.; Ying, Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 2008, 28, 2278–2287. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Kim, K.S. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022, 14, 2370. [Google Scholar] [CrossRef]
- Pfister, J.A.; Ma, C.; D’mello, S.R. Catalytic-independent neuroprotection by SIRT1 is mediated through interaction with HDAC1. PLoS ONE 2019, 14, e0215208. [Google Scholar] [CrossRef]
- Julien, C.; Tremblay, C.; Émond, V.; Lebbadi, M.; Salem, N., Jr.; Bennett, D.A.; Calon, F. Sirtuin 1 reduction parallels the accumulation of tau in alzheimer disease. J. Neuropathol. Exp. Neurol. 2009, 68, 48–58. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Selkoe, D.J. Giving Alzheimer’s the Old One-Two. Cell 2010, 142, 194–196. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, S.C.; Yu, T.; Yi, Y.-S.; Rhee, M.H.; Sung, G.-H.; Yoo, B.C.; Cho, J.Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat. Inflamm. 2014, 2014, 352371. [Google Scholar] [CrossRef] [PubMed]
- Albert-gasc, H.; Ros-bernal, F.; Castillo-Gomez, E.; Olucha-Bordonau, F.E. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its E ff ect on Pathological and Neurodegenerative Processes. Int. J. Mol. Sci. 2020, 21, 4471. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kaarniranta, K.; Haapasalo, A.; Soininen, H.; Hiltunen, M. AMP-activated protein kinase: A potential player in Alzheimer’s disease. J. Neurochem. 2011, 118, 460–474. [Google Scholar] [CrossRef]
- Duran-Aniotz, C.; Hetz, C. Glucose Metabolism: A Sweet Relief of Alzheimer’s Disease. Curr. Biol. 2016, 26, R806–R809. [Google Scholar] [CrossRef]
- Dhakal, R.; Bajpai, V.K.; Baek, K.H. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef]
- Ngo, D.H.; Vo, T.S. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef]
- Cho, Y.R.; Chang, J.Y.; Chang, H.C. Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 2007, 17, 104–109. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Mutalib, N.; Syed Mohamad, S.A.; Jusril, N.A.; Hasbullah, N.I.; Mohd Amin, M.C.I.; Ismail, N.H. Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals 2023, 16, 712. https://doi.org/10.3390/ph16050712
Abd Mutalib N, Syed Mohamad SA, Jusril NA, Hasbullah NI, Mohd Amin MCI, Ismail NH. Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals. 2023; 16(5):712. https://doi.org/10.3390/ph16050712
Chicago/Turabian StyleAbd Mutalib, Nurliana, Sharifah Aminah Syed Mohamad, Nor Atiqah Jusril, Nur Intan Hasbullah, Mohd Cairul Iqbal Mohd Amin, and Nor Hadiani Ismail. 2023. "Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review" Pharmaceuticals 16, no. 5: 712. https://doi.org/10.3390/ph16050712
APA StyleAbd Mutalib, N., Syed Mohamad, S. A., Jusril, N. A., Hasbullah, N. I., Mohd Amin, M. C. I., & Ismail, N. H. (2023). Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals, 16(5), 712. https://doi.org/10.3390/ph16050712