Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.1.1. Specificity
2.1.2. Calibration Curves
2.1.3. Accuracy and Precision
2.1.4. Dilution Integrity
2.1.5. Stability
2.1.6. Recovery and Matrix Effect
2.2. Pharmacokinetic (PK) Analysis and PK Parameter
2.2.1. Fragmentation of CAM106
2.2.2. Metabolites of CAM106
2.2.3. Discussion
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Animals and Experiments
3.3. Calibration Standard
3.4. Preparation of Quality Control Samples
3.5. Pharmacokinetic Sample Preparation
3.6. Instruments and UHPLC-MS/MS Conditions
3.7. Method Validation
3.7.1. Specificity
3.7.2. Calibration Curves
3.7.3. Accuracy and Precision
3.7.4. Dilution Integrity
3.7.5. Stability
3.7.6. Recovery and Matrix Effect
3.8. Metabolic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.L.; Li, Y.G.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676–680. [Google Scholar] [CrossRef]
- Shiu, E.Y.C.; Leung, N.H.L.; Cowling, B.J. Controversy around airborne versus droplet transmission of respiratory viruses: Implication for infection prevention. Curr. Opin. Infect. Dis. 2019, 32, 372–379. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. The logic of virus evolution. Cell Host Microbe 2022, 30, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Boersma, S.; Rabouw, H.H.; Bruurs, L.J.M.; Pavlovic, T.; van Vliet, A.L.W.; Beumer, J.; Clevers, H.; van Kuppeveld, F.J.M.; Tanenbaum, M.E. Translation and replication dynamics of single RNA viruses. Cell 2020, 183, 1930–1946. [Google Scholar] [CrossRef]
- Drezen, J.M.; Bezier, A.; Burke, G.R.; Strand, M.R. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Curr. Opin. Insect Sci. 2022, 49, 93–100. [Google Scholar] [CrossRef]
- Konan, K.V.; Ogbamikael, S.A.; Yager, E.; Yamaji, T.; Cerone, J.; Monaco-Brown, M.; Barroso, M.; Hanada, K. Modulation of Zika virus replication via glycosphingolipids. Virology 2022, 572, 17–27. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, W.Z.; Liu, M.; Liu, J. Health disparity and mortality trends of infectious diseases in BRICS from 1990 to 2019. J. Glob. Health 2022, 12, 04028. [Google Scholar] [CrossRef] [PubMed]
- Maleski, A.L.A.; Rosa, J.G.S.; Bernardo, J.T.G.; Astray, R.M.; Walker, C.I.B.; Lopes-Ferreira, M.; Lima, C. Recapitulation of retinal damage in zebrafish larvae infected with Zika Virus. Cells 2022, 11, 1457. [Google Scholar] [CrossRef]
- Obadia, T.; Gutierrez-Bugallo, G.; Duong, V.; Nunez, A.I.; Fernandes, R.S.; Kamgang, B.; Hery, L.; Gomard, Y.; Abbo, S.R.; Jiolle, D.; et al. Zika vector competence data reveals risks of outbreaks: The contribution of the European ZIKAlliance project. Nat. Commun. 2022, 13, 4490. [Google Scholar] [CrossRef] [PubMed]
- Pyle, J.D.; Whelan, S.P.J.; Bloyet, L.-M. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021, 50, 21–78. [Google Scholar]
- Lin, Y.H.; Fujita, M.; Chiba, S.; Hyodo, K.; Andika, I.B.; Suzuki, N.; Kondo, H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 2019, 533, 125–136. [Google Scholar] [CrossRef]
- Song, W.J.; Qin, K. Human-infecting influenza A (H9N2) virus: A forgotten potential pandemic strain? Zoonoses Public Health 2020, 67, 203–212. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Hui, D.S.; Zambon, M.; Wentworth, D.E.; Monto, A.S. Influenza. Lancet 2022, 400, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R. Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 2006, 12, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Gunther, A.; Krone, O.; Svansson, V.; Pohlmann, A.; King, J.; Hallgrimsson, G.T.; Skarphedinsson, K.H.; Sigurdardottir, H.; Jonsson, S.R.; Beer, M.; et al. Iceland as stepping stone for spread of highly pathogenic avian influenza virus between Europe and North America. Emerg. Infect. Dis. 2022, 28, 2383–2388. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Questioning the evidence for genetic recombination in the 1918 “Spanish flu” virus—Response. Science 2002, 296, 211. [Google Scholar]
- Korlof, B.; Morner, J.; Zetterberg, B.; Bottiger, M.; Heller, L.; Johnsson, T.; Backelin, B. The influenza epidemic of 1957–58 in Sweden; epidemiology. Nord. Med. 1958, 60, 1704–1706. [Google Scholar]
- John Wiley & Sons, Inc. Influenza: The virus Hong Kong virus. Med. J. Aust. 1968, 2, 196. [Google Scholar] [CrossRef]
- Selvaraju, S.B.; Selvarangan, R. Evaluation of Three Influenza A and B Real-Time Reverse Transcription-PCR Assays and a New 2009 H1N1 Assay for Detection of Influenza Viruses. J. Clin. Microbiol. 2010, 48, 3870–3875. [Google Scholar] [CrossRef]
- Guo, Y.K.; Ming, S.L.; Zeng, L.; Chang, W.R.; Pan, J.J.; Zhang, C.; Wan, B.; Wang, J.; Su, Y.; Yang, G.Y.; et al. Inhibition of histone deacetylase 1 suppresses pseudorabies virus infection through cGAS-STING antiviral innate immunity. Mol. Immunol. 2021, 136, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, C.; Zhang, X.; Cao, C.; Wang, X.; Cai, G. Single-stranded RNA viruses activate and hijack host apical DNA damage response kinases for efficient viral replication. Genome Instab. Dis. 2022, 3, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Yong, J.P.; Lu, C.Z.; Aisa, H.A. Advances in studies on the rupestonic acid derivatives as anti-influenza agents. Mini Rev. Med. Chem. 2013, 13, 310–315. [Google Scholar]
- Zhao, J.; Akber, A.H. Synthesis of Novel Isoxazole Contained Rupestonic Acid Derivatives and In Vitro Inhibitory Activity against Influenza Viruses A and B. Chin. J. Org. Chem. 2012, 32, 333–337. [Google Scholar] [CrossRef]
- Wan, Y.J.; Xia, J.X.; Tang, L. Chemical constituents, biological activities and clinical applications of artemisia rupestris. Chin. J. Chin. Mater. Med. 2017, 42, 4565–4573. [Google Scholar]
- Wu, T.; He, F.; Ma, Q.L.; Chen, J.; Aisa, H.A. Chemical constituents of artemisia rupestris. Chem. Nat. Compd. 2017, 53, 991–993. [Google Scholar] [CrossRef]
- Yu, Q.W.; Hu, J.; Wang, H.; Chen, X.; Zhao, F.; Gao, P.; Yang, Q.B.; Sun, D.D.; Zhang, L.Y.; Yan, M. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b). Chin. J. Nat. Med. 2016, 14, 363–369. [Google Scholar]
- Cai, X.; He, J.; Gu, Z.; Zhang, R.; Mao, Y. Simultaneous determination of 5 constituents in Artemisia rupestris L. by HPLC-MS/MS. Chin. J. Pharm. Anal. 2013, 33, 1672–1676. [Google Scholar]
- Ma, L.L.; Wang, H.Q.; Wu, P.; Hu, J.; Yin, J.Q.; Wu, S.; Ge, M.; Sun, W.F.; Zhao, J.Y.; Aisa, H.A.; et al. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response. Free Radic. Biol. Med. 2016, 96, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xia, K.X.; Wu, S.Y.; Wang, Q.T.; Cheng, W.H.; Ji, C.; Yang, W.; Kang, C.; Yuan, Z.; Li, Y.F. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC-MS/MS after oral administration of Astragalus Membranaceus aqueous extract. Biomed. Chromatogr. 2022, 36, e5488. [Google Scholar] [CrossRef]
- Padhye, T.; Maravajjala, K.; Swetha, K.L.; Sharma, S.; Roy, A. A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J. Drug Deliv. Sci. Technol. 2021, 61, 102178. [Google Scholar] [CrossRef]
- Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 29 March 2023).
Analytes | Nominal Concentration (ng/mL) | Intra-Day Mean | RSD (%) | RE (%) | Inter-Day Mean | RSD (%) | RE (%) |
---|---|---|---|---|---|---|---|
CAM106 | 2.13 | 1.94 | 10.24 | −8.92 | 2.07 | 6.63 | −5.16 |
10.64 | 10.60 | 8.95 | −0.38 | 10.25 | 4.50 | −3.67 | |
106.38 | 114.48 | 2.76 | 7.61 | 110.96 | 2.70 | 4.31 | |
638.30 | 645.41 | 1.52 | 7.11 | 630.82 | 4.44 | −1.17 |
Analytes | Nominal Concentration (ng/mL) | Accuracy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CAM106 | Autosampler stability | Long-term stability | Stock solution- 15 days | Room temperature | Thaw | |||||
0 h | 4 h | 8 h | 12 h | 1 day | 7 days | |||||
10.64 | 95.02 | 93.52 | 91.35 | 100.38 | 97.93 | 103.20 | 91.26 | 96.71 | 97.21 | |
106.38 | 106.05 | 101.96 | 101.46 | 98.88 | 104.02 | 94.03 | 108.39 | 101.12 | 106.13 | |
638.30 | 100.00 | 102.58 | 97.09 | 96.48 | 103.73 | 90.36 | 95.27 | 102.21 | 100.09 |
Analytes | Nominal Concentration (ng/mL) | Recovery | Matrix Effect | ||
---|---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | ||
CAM106 | 10.64 | 86.72 | 5.98 | 100.08 | 9.46 |
106.38 | 92.61 | 13.75 | 98.23 | 2.97 | |
638.30 | 92.87 | 7.32 | 97.89 | 4.81 | |
IS | 319.15 | 96.55 | 6.71 | 93.99 | 5.53 |
Parameters | Unit | PO * (180.0 mg/kg) | IV * (18.0 mg/kg) |
---|---|---|---|
AUC0–t * | h·(ng/mL) | 200.94 ± 87.45 | 1255.32 ± 544.72 |
AUC0–inf * | h·(ng/mL) | 294.19 ± 221.69 | 1287.93 ± 549.25 |
MRT0–t * | h | 3.42 ± 0.73 | 0.63 ± 0.17 |
MRT0–inf * | h | 6.69 ± 3.57 | 0.79 ± 0.23 |
Tmax * | h | 1.21 ± 0.51 | — |
T1/2 * | h | 4.56 ± 2.31 | 1.34 ± 0.64 |
Cmax * | ng/mL | 61.03 ± 30.81 | 2313.88 ± 1004.00 |
CL* | mL/h/kg | 799,138.27 ± 322,246.50 | 16,624.89 ± 8171.11 |
Vd * | mL/kg | 4,605,807.05 ± 2,044,928.13 | 27,359.73 ± 10,321.12 |
F (%) * | 1.60 |
Metabolites | RT * (min) | Formula | Observed [M+H] + | Calculated [M+H] + | Error (ppm) | MS/MS | Transformation | Rat | ||
---|---|---|---|---|---|---|---|---|---|---|
P * | U * | F * | ||||||||
CAM106 | 27.15 | C25H27FN2O3 | 423.2078 | 423.2078 | 0.02 | 405.1974, 231.1380, 203.1432,193.0773, 177.1274 | Parent | √ | √ | √ |
M1 | 16.05 | C15H21NO2 | 248.1643 | 248.1645 | −0.79 | 231.1379, 203.1431, 177.1273 | Broken amide bond | × | √ | √ |
M2 | 19.07 | C25H27FN2O4 | 439.2029 | 439.2028 | 0.06 | 421.1920, 245.1171, 217.1221, 178.0661 | Oxidation | × | √ | √ |
M3 | 19.33 | C25H29FN2O4 | 441.2184 | 441.2184 | −0.02 | 423.2081, 405.1989, 286.1436, 258.1488, 229.1233, 201.1275 | Reduction, Oxidation | × | √ | √ |
M4 | 19.56 | C17H25NO2 | 276.1955 | 276.1958 | −1.13 | 231.1380, 203.1431, 177.1274 | Methylation | × | × | √ |
M5 | 20.98 | C25H26O5N2F | 453.1819 | 453.1820 | −0.08 | 435.1717, 261.1124, 243.1016, 233.1169, 215.1068 | Oxidation | √ | √ | × |
M6 | 21.92 | C25H25FN2O4 | 437.1859 | 437.1871 | −2.85 | 419.1765, 245.1172, 203.1066, 199.1 117, 193.0773, 175.1120 | Desaturation, Oxidation | √ | √ | √ |
M7−A | 22.64 | C25H25FN2O3 | 421.1925 | 421.1922 | 0.84 | 403.1831, 229.1223, 201.1274, 175.1118 | Desaturation | √ | √ | × |
M7−B | 24.57 | C25H25FN2O3 | 421.1927 | 421.1922 | 1.31 | 403.1827, 229.1226, 201.1276, 175.1127 | Desaturation | √ | √ | × |
M7−C | 25.38 | C25H25FN2O3 | 421.1930 | 421.1922 | 1.96 | 403.1833, 229.1227, 201.1227, 175.1119 | Desaturation | √ | √ | × |
M7−D | 27.56 | C25H25FN2O3 | 421.1927 | 421.1922 | 1.16 | 403.1837, 229.1227, 201.1227, 175.1120 | Desaturation | √ | √ | × |
M8 | 25.13 | C25H29FN2O3 | 425.2219 | 425.2235 | −3.69 | 407.2128, 231.1379 203.1431, 177.1273 | Reduction | × | × | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, R.; Abdulla, R.; Zhao, J.; Aisa, H.A.; Liu, Y. Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS. Pharmaceuticals 2023, 16, 728. https://doi.org/10.3390/ph16050728
Xi R, Abdulla R, Zhao J, Aisa HA, Liu Y. Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS. Pharmaceuticals. 2023; 16(5):728. https://doi.org/10.3390/ph16050728
Chicago/Turabian StyleXi, Ruqi, Rahima Abdulla, Jiangyu Zhao, Haji Akber Aisa, and Yongqiang Liu. 2023. "Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS" Pharmaceuticals 16, no. 5: 728. https://doi.org/10.3390/ph16050728
APA StyleXi, R., Abdulla, R., Zhao, J., Aisa, H. A., & Liu, Y. (2023). Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS. Pharmaceuticals, 16(5), 728. https://doi.org/10.3390/ph16050728