A Review of Recent Pharmacological Advances in the Management of Diabetes-Associated Peripheral Neuropathy
Abstract
:1. Introduction
2. Clinical Characteristics
3. Epidemiology
4. Societal and Economic Burden
5. Pharmacological Management in Diabetic Peripheral Neuropathy
5.1. Symptomatic Therapy
5.1.1. Serotonin Norepinephrine Reuptake Inhibitors (SNRIs)
5.1.2. Gabapentinoids
5.1.3. Sodium Channel Blockers
5.1.4. Tricyclic Antidepressants
5.2. Pathogenesis-Based Therapy
5.2.1. GLP-1
Possible Role of GLP-1 Agonists in the Treatment/Prevention of Ongoing Diabetic Neuropathy
Microvascular Disease
Nerve Fiber Repair
5.2.2. SGLT-2 Inhibitors
6. Clinical Trials
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DN | Diabetic neuropathy |
DPN | Diabetic peripheral neuropathy |
DSMP | Distal sensorimotor polyneuropathy |
AAN | American Academy of Neurology |
ADA | American Diabetes Association |
SNRI | Selective norepinephrine reuptake inhibitor |
SERT | Serotonin transporter |
NET | Norepinephrine transporter |
TTX | Tetrodotoxin |
TCA | Tricyclic antidepressants |
GLP-1 | Glucagon-like peptide 1 |
SGLT-2 | Sodium-glucose transporter protein 2 |
DPP4 | Dipeptidyl-peptidase 4 |
GRP | Gastrin-releasing peptide |
References
- American Diabetes Association American Academy of Neurology. Consensus Statement: Report and Recommendations of the San Antonio Conference on Diabetic Neuropathy. Diabetes Care 1988, 11, 592–597. [Google Scholar] [CrossRef]
- Gylfadottir, S.S.; Weeracharoenkul, D.; Andersen, S.T.; Niruthisard, S.; Suwanwalaikorn, S.; Jensen, T.S. Painful and Non-Painful Diabetic Polyneuropathy: Clinical Characteristics and Diagnostic Issues. J. Diabetes Investig. 2019, 10, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.M.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic Somatic Neuropathies. Diabetes Care 2004, 27, 1458–1486. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef]
- Jensen, T.S.; Finnerup, N.B. Allodynia and Hyperalgesia in Neuropathic Pain: Clinical Manifestations and Mechanisms. Lancet Neurol. 2014, 13, 924–935. [Google Scholar] [CrossRef]
- Tesfaye, S.; Boulton, A.J.M.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef]
- Ziegler, D.; Papanas, N.; Vinik, A.I.; Shaw, J.E. Epidemiology of Polyneuropathy in Diabetes and Prediabetes. Handb. Clin. Neurol. 2014, 126, 3–22. [Google Scholar] [CrossRef]
- Apfel, S.C.; Asbury, A.K.; Bril, V.; Bruns, T.M.; Campbell, J.N.; Chalk, C.H.; Dyck, P.J.; Dyck, P.J.B.; Feldman, E.L.; Fields, H.L.; et al. Positive Neuropathic Sensory Symptoms as Endpoints in Diabetic Neuropathy Trials. J. Neurol. Sci. 2001, 189, 3–5. [Google Scholar] [CrossRef]
- Didangelos, T.; Doupis, J.; Veves, A. Painful Diabetic Neuropathy: Clinical Aspects. Handb. Clin. Neurol. 2014, 126, 53–61. [Google Scholar] [CrossRef]
- Torrance, N.; Smith, B.H.; Watson, M.C.; Bennett, M.I. Medication and Treatment Use in Primary Care Patients with Chronic Pain of Predominantly Neuropathic Origin. Fam. Pract. 2007, 24, 481–485. [Google Scholar] [CrossRef]
- Boulton, A.J.M. The Pathway to Foot Ulceration in Diabetes. Med. Clin. N. Am. 2013, 97, 775–790. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Relation between Risk of Falling and Postural Sway Complexity in Diabetes. Gait Posture 2012, 35, 662–668. [Google Scholar] [CrossRef]
- Wallace, C.; Reiber, G.E.; LeMaster, J.; Smith, D.G.; Sullivan, K.; Hayes, S.; Vath, C. Incidence of Falls, Risk Factors for Falls, and Fall-Related Fractures in Individuals with Diabetes and a Prior Foot Ulcer. Diabetes Care 2002, 25, 1983–1986. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W. The Challenges of Diabetic Polyneuropathy: A Brief Update. Curr. Opin. Neurol. 2019, 32, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, E67–E492. [Google Scholar] [CrossRef]
- Daousi, C.; MacFarlane, I.A.; Woodward, A.; Nurmikkot, T.J.; Bundred, P.E.; Benbow, S.J. Chronic Painful Peripheral Neuropathy in an Urban Community: A Controlled Comparison of People with and without Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2004, 21, 976–982. [Google Scholar] [CrossRef]
- Barrett, A.M.; Lucero, M.A.; Le, T.; Robinson, R.L.; Dworkin, R.H.; Chappell, A.S. Epidemiology, Public Health Burden, and Treatment of Diabetic Peripheral Neuropathic Pain: A Review. Pain Med. Malden Mass 2007, 8 (Suppl. S2), S50–S62. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.M.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H. Vascular Risk Factors and Diabetic Neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef]
- Young, M.J.; Boulton, A.J.M.; Macleod, A.F.; Williams, D.R.R.; Sonksen, P.H. A Multicentre Study of the Prevalence of Diabetic Peripheral Neuropathy in the United Kingdom Hospital Clinic Population. Diabetologia 1993, 36, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Brophy, S.; Williams, R.; Taylor, A. The Prevalence, Severity, and Impact of Painful Diabetic Peripheral Neuropathy in Type 2 Diabetes. Diabetes Care 2006, 29, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, M.; Lauer, A.; Martin, C.L.; Bell, R.A.; Divers, J.; Dabelea, D.; Pettitt, D.J.; Saydah, S.; Pihoker, C.; Standifordn, D.A.; et al. Peripheral Neuropathy in Adolescents and Young Adults with Type 1 and Type 2 Diabetes from the SEARCH for Diabetes in Youth Follow-up Cohort: A Pilot Study. Diabetes Care 2013, 36, 3903–3908. [Google Scholar] [CrossRef] [PubMed]
- Barkai, L.; Kempler, P.; Vamosi, I.; Lukacs, K.; Marton, A.; Keresztes, K. Peripheral Sensory Nerve Dysfunction in Children and Adolescents with Type 1 Diabetes Mellitus. Diabet. Med. 1998, 15, 228–233. [Google Scholar] [CrossRef]
- Eppens, M.C.; Craig, M.E.; Cusumano, J.; Hing, S.; Chan, A.K.F.; Howard, N.J.; Silink, M.; Donaghue, K.C. Prevalence of Diabetes Complications in Adolescents with Type 2 Compared with Type 1 Diabetes. Diabetes Care 2006, 29, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Sosenko, J.M.; Boulton, A.J.M.; Kubrusly, D.B.; Weintraub, J.K.; Skyler, J.S. The Vibratory Perception Threshold in Young Diabetic Patients: Associations with Glycemia and Puberty. Diabetes Care 1985, 8, 605–607. [Google Scholar] [CrossRef]
- Massin, M.M.; Derkenne, B.; Tallsund, M.; Rocour-Brumioul, D.; Ernould, C.; Lebrethon, M.C.; Bourguignon, J.P. Cardiac Autonomic Dysfunction in Diabetic Children. Diabetes Care 1999, 22, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
- Barkai, L.; Kempler, P. Puberty as a Risk Factor for Diabetic Neuropathy. Diabetes Care 2000, 23, 1044–1045. [Google Scholar] [CrossRef]
- Tölle, T.; Xu, X.; Sadosky, A.B. Painful Diabetic Neuropathy: A Cross-Sectional Survey of Health State Impairment and Treatment Patterns. J. Diabetes Complicat. 2006, 20, 26–33. [Google Scholar] [CrossRef]
- Alleman, C.J.M.; Westerhout, K.Y.; Hensen, M.; Chambers, C.; Stoker, M.; Long, S.; van Nooten, F.E. Humanistic and Economic Burden of Painful Diabetic Peripheral Neuropathy in Europe: A Review of the Literature. Diabetes Res. Clin. Pract. 2015, 109, 215–225. [Google Scholar] [CrossRef]
- O’Connor, A.B. Neuropathic Pain: Quality-of-Life Impact, Costs and Cost Effectiveness of Therapy. PharmacoEconomics 2009, 27, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Gordois, A.; Scuffham, P.; Shearer, A.; Oglesby, A.; Tobian, J.A. The Health Care Costs of Diabetic Peripheral Neuropathy in the US. Diabetes Care 2003, 26, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Price, R.; Smith, D.; Franklin, G.; Gronseth, G.; Pignone, M.; David, W.S.; Armon, C.; Perkins, B.A.; Bril, V.; Rae-Grant, A.; et al. Oral and Topical Treatment of Painful Diabetic Polyneuropathy: Practice Guideline Update Summary: Report of the AAN Guideline Subcommittee. Neurology 2022, 98, 31–43. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gibbons, C.H.; Giurini, J.M.; Hilliard, M.E.; et al. Retinopathy, Neuropathy, and Foot Care: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S203–S215. [Google Scholar] [CrossRef]
- Lunn, M.P.; Hughes, R.A.; Wiffen, P.J. Duloxetine for Treating Painful Neuropathy, Chronic Pain or Fibromyalgia. Cochrane Database Syst. Rev. 2014, 4–5. [Google Scholar] [CrossRef]
- Ko, Y.-C.; Lee, C.-H.; Wu, C.-S.; Huang, Y.-J. Comparison of Efficacy and Safety of Gabapentin and Duloxetine in Painful Diabetic Peripheral Neuropathy: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int. J. Clin. Pract. 2021, 75, e14576. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-S.; Huang, Y.-J.; Ko, Y.-C.; Lee, C.-H. Efficacy and Safety of Duloxetine in Painful Diabetic Peripheral Neuropathy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Syst. Rev. 2023, 12, 53. [Google Scholar] [CrossRef]
- Liampas, A.; Rekatsina, M.; Vadalouca, A.; Paladini, A.; Varrassi, G.; Zis, P. Pharmacological Management of Painful Peripheral Neuropathies: A Systematic Review. Pain Ther. 2021, 10, 55–68. [Google Scholar] [CrossRef] [PubMed]
- van Nooten, F.; Treur, M.; Pantiri, K.; Stoker, M.; Charokopou, M. Capsaicin 8% Patch Versus Oral Neuropathic Pain Medications for the Treatment of Painful Diabetic Peripheral Neuropathy: A Systematic Literature Review and Network Meta-Analysis. Clin. Ther. 2017, 39, 787–803.e18. [Google Scholar] [CrossRef]
- Vinik, A.; Rosenstock, J.; Sharma, U.; Feins, K.; Hsu, C.; Merante, D.; on behalf of the DS5565-A-U201 US Phase II Study Investigators. Efficacy and Safety of Mirogabalin (DS-5565) for the Treatment of Diabetic Peripheral Neuropathic Pain: A Randomized, Double-Blind, Placebo- and Active Comparator–Controlled, Adaptive Proof-of-Concept Phase 2 Study. Diabetes Care 2014, 37, 3253–3261. [Google Scholar] [CrossRef]
- Baba, M.; Matsui, N.; Kuroha, M.; Wasaki, Y.; Ohwada, S. Mirogabalin for the Treatment of Diabetic Peripheral Neuropathic Pain: A Randomized, Double-blind, Placebo-controlled Phase III Study in Asian Patients. J. Diabetes Investig. 2019, 10, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Buksnys, T.; Armstrong, N.; Worthy, G.; Sabatschus, I.; Boesl, I.; Buchheister, B.; Swift, S.L.; Noake, C.; Huertas Carrera, V.; Ryder, S.; et al. Systematic Review and Network Meta-Analysis of the Efficacy and Safety of Lidocaine 700 Mg Medicated Plaster vs. Pregabalin. Curr. Med. Res. Opin. 2020, 36, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.P.; Mick, G.; Piano, V.; et al. Pharmacological and Non-Pharmacological Treatments for Neuropathic Pain: Systematic Review and French Recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Farag, H.M.; Yunusa, I.; Goswami, H.; Sultan, I.; Doucette, J.A.; Eguale, T. Comparison of Amitriptyline and US Food and Drug Administration-Approved Treatments for Fibromyalgia: A Systematic Review and Network Meta-Analysis. JAMA Netw. Open 2022, 5, e2212939. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for Neuropathic Pain in Adults: A Systematic Review and Meta-Analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Tesfaye, S.; Sloan, G.; Petrie, J.; White, D.; Bradburn, M.; Julious, S.; Rajbhandari, S.; Sharma, S.; Rayman, G.; Gouni, R.; et al. Comparison of Amitriptyline Supplemented with Pregabalin, Pregabalin Supplemented with Amitriptyline, and Duloxetine Supplemented with Pregabalin for the Treatment of Diabetic Peripheral Neuropathic Pain (OPTION-DM): A Multicentre, Double-Blind, Randomised Crossover Trial. Lancet 2022, 400, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Htike, Z.Z.; Zaccardi, F.; Papamargaritis, D.; Webb, D.R.; Khunti, K.; Davies, M.J. Efficacy and Safety of Glucagon-like Peptide-1 Receptor Agonists in Type 2 Diabetes: A Systematic Review and Mixed-Treatment Comparison Analysis. Diabetes Obes. Metab. 2017, 19, 524–536. [Google Scholar] [CrossRef]
- Lin, D.S.-H.; Yu, A.-L.; Lo, H.-Y.; Lien, C.-W.; Lee, J.-K.; Chen, W.-J. Major Adverse Cardiovascular and Limb Events in People with Diabetes Treated with GLP-1 Receptor Agonists vs SGLT2 Inhibitors. Diabetologia 2022, 65, 2032–2043. [Google Scholar] [CrossRef]
- Dinh Le, T.; Phi Thi Nguyen, N.; Tran, T.T.H.; Luong Cong, T.; Ho Thi Nguyen, L.; Do Nhu, B.; Tien Nguyen, S.; Van Ngo, M.; Dinh, T.H.; Thi Nguyen, H.; et al. Diabetic Peripheral Neuropathy Associated with Cardiovascular Risk Factors and Glucagon-Like Peptide-1 Concentrations Among Newly Diagnosed Patients with Type 2 Diabetes Mellitus. DMSO 2022, 15, 35–44. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Issar, T.; Kwai, N.C.G.; Poynten, A.M.; Arnold, R.; Milner, K.-L.; Krishnan, A.V. Effect of Exenatide on Peripheral Nerve Excitability in Type 2 Diabetes. Clin. Neurophysiol. 2021, 132, 2532–2539. [Google Scholar] [CrossRef]
- Spina, E.; Trifirò, G.; Caraci, F. Clinically Significant Drug Interactions with Newer Antidepressants. CNS Drugs 2012, 26, 39–67. [Google Scholar] [CrossRef]
- Calandre, E.P.; Rico-Villademoros, F.; Slim, M. Alpha2delta Ligands, Gabapentin, Pregabalin and Mirogabalin: A Review of Their Clinical Pharmacology and Therapeutic Use. Expert Rev. Neurother. 2016, 16, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Ding, X.; Cheng, Y.; Fan, D.; Tan, L.; Wang, Y.; Zhao, Z.; Hong, Z.; Zhou, D.; Pan, X.; et al. Efficacy of Pregabalin for Peripheral Neuropathic Pain: Results of an 8-Week, Flexible-Dose, Double-Blind, Placebo-Controlled Study Conducted in China. Clin. Ther. 2011, 33, 159–166. [Google Scholar] [CrossRef]
- Backonja, M.M. Gabapentin Monotherapy for the Symptomatic Treatment of Painful Neuropathy: A Multicenter, Double-Blind, Placebo-Controlled Trial in Patients with Diabetes Mellitus. Epilepsia 1999, 40 (Suppl. S6), S57–S59; discussion S73–S74. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Arakawa, N.; Domon, Y.; Matsuda, F.; Inoue, T.; Kitano, Y.; Takahashi, M.; Yamamura, N.; Kai, K. Pharmacological, Pharmacokinetics and Safety Profiles of DS-5565, a Novel A2δ Ligand. J. Neurol. Sci. 2013, 333 (Suppl. S1), e535. [Google Scholar] [CrossRef]
- de Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef]
- Lee, C.H.; Ruben, P.C. Interaction between Voltage-Gated Sodium Channels and the Neurotoxin, Tetrodotoxin. Channels 2008, 2, 407–412. [Google Scholar] [CrossRef]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.P.; MacFarlane, J.; MacDonald, M.L.; Thompson, J.; Dube, M.-P.; Mattice, M.; Fraser, R.; Young, C.; Hossain, S.; Pape, T.; et al. Loss-of-Function Mutations in the Nav1.7 Gene Underlie Congenital Indifference to Pain in Multiple Human Populations. Clin. Genet. 2007, 71, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Dib-Hajj, S.D.; Yang, Y.; Black, J.A.; Waxman, S.G. The Na(V)1.7 Sodium Channel: From Molecule to Man. Nat. Rev. Neurosci. 2013, 14, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, A.J.; Brown, A.R.; Chapman, M.L.; Estacion, M.; Turner, J.; Mis, M.A.; Wilbrey, A.; Payne, E.C.; Gutteridge, A.; Cox, P.J.; et al. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release. PLoS ONE 2016, 11, e0152405. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Chen, Y.; Gu, M.; Gao, Z.; Nan, F. Discovery of Aryl Sulfonamide-Selective Nav1.7 Inhibitors with a Highly Hydrophobic Ethanoanthracene Core. Acta Pharmacol. Sin. 2020, 41, 293–302. [Google Scholar] [CrossRef]
- Jo, S.; Bean, B.P. Lidocaine Binding Enhances Inhibition of Nav1.7 Channels by the Sulfonamide PF-05089771. Mol. Pharmacol. 2020, 97, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Kremer, M.; Salvat, E.; Muller, A.; Yalcin, I.; Barrot, M. Antidepressants and Gabapentinoids in Neuropathic Pain: Mechanistic Insights. Neuroscience 2016, 338, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Trindade, E.; Menon, D.; Topfer, L.A.; Coloma, C. Adverse Effects Associated with Selective Serotonin Reuptake Inhibitors and Tricyclic Antidepressants: A Meta-Analysis. CMAJ 1998, 159, 1245–1252. [Google Scholar]
- American Geriatrics Society 2012 Beers Criteria Update Expert Panel American Geriatrics Society Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J. Am. Geriatr. Soc. 2012, 60, 616–631. [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Willard, F.S.; Douros, J.D.; Gabe, M.B.N.; Showalter, A.D.; Wainscott, D.B.; Suter, T.M.; Capozzi, M.E.; van der Velden, W.J.C.; Stutsman, C.; Cardona, G.R.; et al. Tirzepatide Is an Imbalanced and Biased Dual GIP and GLP-1 Receptor Agonist. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
- Urva, S.; Coskun, T.; Loh, M.T.; Du, Y.; Thomas, M.K.; Gurbuz, S.; Haupt, A.; Benson, C.T.; Hernandez-Illas, M.; D’Alessio, D.A.; et al. LY3437943, a Novel Triple GIP, GLP-1, and Glucagon Receptor Agonist in People with Type 2 Diabetes: A Phase 1b, Multicentre, Double-Blind, Placebo-Controlled, Randomised, Multiple-Ascending Dose Trial. Lancet 2022, 400, 1869–1881. [Google Scholar] [CrossRef]
- Uccellatore, A.; Genovese, S.; Dicembrini, I.; Mannucci, E.; Ceriello, A. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists. Diabetes Ther. 2015, 6, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Bai, L.; Fan, B.; Ding, H.; Ding, H.; Hou, L.; Ma, H.; Xing, N.; Wang, F. Effect of SGLT2 Inhibitors versus DPP4 Inhibitors or GLP-1 Agonists on Diabetic Foot-Related Extremity Amputation in Patients with T2DM: A Meta-Analysis. Prim. Care Diabetes 2022, 16, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Nukada, H. Ischemia and Diabetic Neuropathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 469–487. ISBN 978-0-444-53480-4. [Google Scholar]
- Bakbak, E.; Terenzi, D.C.; Trac, J.Z.; Teoh, H.; Quan, A.; Glazer, S.A.; Rotstein, O.D.; Al-Omran, M.; Verma, S.; Hess, D.A. Lessons from Bariatric Surgery: Can Increased GLP-1 Enhance Vascular Repair during Cardiometabolic-Based Chronic Disease? Rev. Endocr. Metab. Disord. 2021, 22, 1171–1188. [Google Scholar] [CrossRef]
- Shiraishi, D.; Fujiwara, Y.; Komohara, Y.; Mizuta, H.; Takeya, M. Glucagon-like Peptide-1 (GLP-1) Induces M2 Polarization of Human Macrophages via STAT3 Activation. Biochem. Biophys. Res. Commun. 2012, 425, 304–308. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Glucagon-like Peptide-1 (GLP-1) Inhibits Advanced Glycation End Product (AGE)-Induced up-Regulation of VCAM-1 MRNA Levels in Endothelial Cells by Suppressing AGE Receptor (RAGE) Expression. Biochem. Biophys. Res. Commun. 2010, 391, 1405–1408. [Google Scholar] [CrossRef]
- Liu, W.J.; Jin, H.Y.; Lee, K.A.; Xie, S.H.; Baek, H.S.; Park, T.S. Neuroprotective Effect of the Glucagon-like Peptide-1 Receptor Agonist, Synthetic Exendin-4, in Streptozotocin-Induced Diabetic Rats. Br. J. Pharmacol. 2011, 164, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shi, M.; Zhang, X.; Liu, X.; Chen, J.; Zhang, R.; Wang, X.; Zhang, H. GLP-1R Agonists Ameliorate Peripheral Nerve Dysfunction and Inflammation via P38 MAPK/NF-κB Signaling Pathways in Streptozotocin-induced Diabetic Rats. Int. J. Mol. Med. 2018, 41, 2977–2985. [Google Scholar] [CrossRef]
- Jaiswal, M.; Martin, C.L.; Brown, M.B.; Callaghan, B.; Albers, J.W.; Feldman, E.L.; Pop-Busui, R. Effects of Exenatide on Measures of Diabetic Neuropathy in Subjects with Type 2 Diabetes: Results from an 18-Month Proof-of-Concept Open Label Randomized Study. J. Diabetes Complicat. 2015, 29, 1287–1294. [Google Scholar] [CrossRef]
- Ponirakis, G.; Abdul-Ghani, M.A.; Jayyousi, A.; Almuhannadi, H.; Petropoulos, I.N.; Khan, A.; Gad, H.; Migahid, O.; Megahed, A.; DeFronzo, R.; et al. Effect of Treatment with Exenatide and Pioglitazone or Basal-Bolus Insulin on Diabetic Neuropathy: A Substudy of the Qatar Study. BMJ Open Diabetes Res. Care 2020, 8, e001420. [Google Scholar] [CrossRef]
- Takakura, S.; Toyoshi, T.; Hayashizaki, Y.; Takasu, T. Effect of Ipragliflozin, an SGLT2 Inhibitor, on Progression of Diabetic Microvascular Complications in Spontaneously Diabetic Torii Fatty Rats. Life Sci. 2016, 147, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Oelze, M.; Kröller-Schön, S.; Welschof, P.; Jansen, T.; Hausding, M.; Mikhed, Y.; Stamm, P.; Mader, M.; Zinßius, E.; Agdauletova, S.; et al. The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity. PLoS ONE 2014, 9, e112394. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Jin, H.Y.; Lee, N.Y.; Kim, Y.J.; Park, T.S. Effect of Empagliflozin, a Selective Sodium-Glucose Cotransporter 2 Inhibitor, on Kidney and Peripheral Nerves in Streptozotocin-Induced Diabetic Rats. Diabetes Metab. J. 2018, 42, 338–342. [Google Scholar] [CrossRef] [PubMed]
Name/Reference | Type | Year | RCTs/Studies | Patients | Treatment/Intervention/Measurement | Outcomes |
---|---|---|---|---|---|---|
Lunn et al. [35] | SR | 2014 | 18 | 6407 | Duloxetine: 60, 120 mg/day | Primary: Short-term improvement in pain |
Secondary: Long-term improvement in pain, improvement in quality of life score, patient-reported pain, adverse effects during treatment | ||||||
Yuan-Chun Ko et al. [36] | SR and MA | 2021 | 3 | 290 | Duloxetine: 20–80 mg/day Gabapentin: 300–1200 mg/day | Primary: VAS (Visual Analogue Scale) Secondary: Sleep Interference Score, Clinical Global Impression of Change, Patient Global Impression of Change, DN Symptom Score, DN Examination Score, Neuropathic Disability score |
Chung-Sheng Wu et al. [37] | SR and MA | 2023 | 7 | 2205 | Duloxetine: 20–120 mg/day | Pain improvement, patient-reported health performance and quality of life |
Andreas Limpas et al. [38] | SR | 2021 | 83 | / | Anticonvulsants, SNRIs, TCAs, opioids, topical treatment, cannabinoids, monoclonal antibodies, botulinum toxin, other | / |
Floortje van Nooten et al. [39] | SR and MA | 2017 | 24 | 5870 | Capsaicin 8% | At least 30% pain reduction, at least 50% pain reduction, tolerability |
Aaron Vinik et al. [40] | R, DB, Comparator-Controlled Study | 2014 | / | 452 | Mirogabalin: 5–30 mg/day | Primary: ADPS (Average Daily Pain Score) change from baseline Secondary: Characterizing dose response, incidence of responders, comparing effects of mirogabalin to pregabalin, assessing time to meaningful pain relief |
Masayuki Baba et al. [41] | RA, DB, PC Study | 2019 | / | 834 | Mirogabalin: 15–30 mg/day | Efficacy, safety, and tolerability |
Titas Buksnys et al. [42] | SR and MA | 2020 | 43 | / | Lidocaine medicated plaster 700 mg | Efficacy, adverse effects |
Moisset et al. [43] | SR | 2020 | 131 | / | TCAs, SNRIs, antiepileptics, opioids, topical agents, cannabinoids, ketamine, other | Comprehensive assessment of all therapies for neuropathic pain treatment |
Farag Hussein et al. [44] | SR and MA | 2022 | 36 | 11,930 | Duloxetine: 60 and 120 mg/day Pregabalin: 150–600 mg/day Milnacipran: 100 and 200 mg/day Amitriptyline | Comparative effectiveness and acceptability of medication for pain, sleep, depression, fatigue, and quality of life |
Nanna Finnerup et al. [45] | SR and MA | 2015 | 229 | / | TCAs, SNRIs, antiepileptics, opioids, oromucosal cannabinoids, topical lidocaine, capsaicin patches, other | Individual and combined number needed to treat and number needed to harm values |
Solomon Tesfaye et al. [46] | R, DB, Multicenter, Crossover Trial | 2022 | / | 130 | Primary: Difference in 7-day average NRS (Numerical Rating Scale) daily pain Secondary: HADS (Hospital Anxiety and Depression Scale), proportion of patients achieving 30% and 50% pain reduction from baseline, ISI (Insomnia Severity Index), NPSI (Neuropathic Pain Symptom Inventory), other | |
Zin Zin Htike et al. [47] | SR and Mixed-Treatment Comparison Analysis | 2017 | 34 | 14,464 | Glucagon-like peptide-1 receptor agonist (GLP-1ARs): albiglutide, dulaglutide, exenatide, liraglutide, others | Glycemic control, body weight, blood pressure and lipid profile, gastrointestinal and other side effects |
Donna Shu-Han Lin et al. [48] | Retrospective Cohort | 2022 | / | 101,440 | Glucagon-like peptide-1 receptor agonist (GLP-1ARs); Sodium-glucose cotransporter 2 inhibitors (SGLT2is) | Primary: Major adverse limb events (MALE) Secondary: Major adverse cardiac events (MACE), death from any cause, hospitalization due to heart failure |
Tuan Dinh Le et al. [49] | Cross-sectional | 2022 | / | 473 | GLP-1 serum levels | Prevalence of DPN and its risk factors, relation between DPN and fasting GLP-1 levels |
Steven Marso et al. [50] | R, DB Trial | 2016 | / | 9340 | Liraglutide 1.8 mg/day | Fist occurrence of death from cardiovascular causes, non-fatal MI, or non-fatal stroke, microvascular outcomes (renal and retinal), neoplasms, pancreatitis |
Steven Marso et al. [51] | R, DB Trial | 2016 | / | 3297 | Semaglutide 0.5 or 1.0 mg/week | Fist occurrence of death from cardiovascular causes, non-fatal MI, or non-fatal stroke, microvascular outcomes (renal and retinal) |
Tushar Issar et al. [52] | Cross-sectional | 2021 | / | 90 | GLP-1RA, DPP-4i, SGLT-2i | Improvement in nerve excitability |
Sponsor | NCT Number | Study Description | Phase | Intervention | Total # | Per Arm | Description of Results | Results |
---|---|---|---|---|---|---|---|---|
Helixmith Co. | NCT02427464 | R, DB, PC, Multicenter Study | 3 | Engensis (VM202) (plasmid DNA encoding hepatocyte growth factor (HGF)) | 500 | 336 (VM202 0.5 mL inj.) | Participants with at least 50% reduction in average 24 h pain score from baseline on day 90 | 69 (20.5%) |
28 (17.1%) | ||||||||
Placebo | 164 (Placebo) | Participants with at least 50% reduction in average 24 h pain score from baseline on day 180 | 113 (33.6%) | |||||
42 (25.6%) | ||||||||
Pfizer | NCT01087203 | R, DB, PC, Multicenter Study | 2 | Tanezumab (monoclonal antibody against nerve growth factor) | 73 | 38 (tanezumab 20 mg inj.) | Change from baseline in average diabetic peripheral neuropathy (DPN) pain score in week 16 (shown as mean (SD)) | −1.04 (1.92) |
Placebo | 35 (Placebo) | −2.10 (3.14) | ||||||
Eli Lilly and Co. | NCT04476108 | R, PC, Parallel Assignment Trial | 2 | LY3016859 (anti-TGFA recombinant antibody) | 125 | 84 (LY3016859 750 mg) | Change from baseline in average pain intensity as measured using the NRS (shown as mean (95% CI)) | −1.98 (−2.42 to 1.55) |
−1.56 (−2.17 to −0.96) | ||||||||
Placebo | 41(Placebo) | Change from baseline in the Brief Pain Inventory–Short Form (BPI-SF) total interference score (shown as mean (95% CI)) | −2.11 (−2.55 to −1.65) | |||||
−1.74 (−2.35 to −1.12) | ||||||||
Daiichi Sankyo and Co. | NCT01496365 | R, DB, PC, Parallel Assignment Study | 2 | DS-5565 (Mirogabalin) | 216 | 112 (placebo) | Mean change from baseline to week 5 in Average Daily Pain Score (ADPS) following treatment with DS-5565 compared to pregabalin and placebo (shown as mean (SD)) | −1.86 (2.18) |
56 (pregabalin 150 mg BID) | −1.79 (2.27) | |||||||
Pregabalin | 57 (DS-5565 5 mg QD) | −2.04 (2.22) | ||||||
57 (DS-5565 10 mg QD) | −2.32 (2.17) | |||||||
57 (DS-5565 15 mg QD) | −2.66 (2.37) | |||||||
Placebo | 56 (DS-5565 10 mg BID) | 2.64 (2.45) | ||||||
57 (DS-5565 15 mg BID) | −2.79 (2.43) |
Sponsor/PI | NCT Number | Study Description | # of Participants | Phase | Intervention | Drug Group |
---|---|---|---|---|---|---|
Vrooman et al. | NCT04678895 | R, DB, PC, Crossover Trial | 35 | 2 | Naltrexone Placebo | Opioid antagonist |
AstraZeneca | NCT03755934 | R, DB, PC, Dose–Response Study | 111 | 2 | MEDI7352 Placebo | Fusion protein binding nerve growth factor (NGF) to tumor necrosis factor receptor 2 (TNFR2) |
Rathmell et al. | NCT05480228 | Prospective, Parallel Group, Multicenter, R, DB, PC | 122 | 2 | NRD135SE.1 Placebo | Non-opioid molecule with unknown target |
Basit et al. | NCT05080530 | Non-R, No Masking (Open-Label) | 216 | N/A | Cholecalciferol | Vitamin D analog |
Vertex Pharmaceuticals | NCT05660538 | R, DB, Active-Controlled, Dose-Ranging, Parallel Design Study | 175 | 2 | VX-548 Pregabalin Placebo | Selective NaV1.8 sodium channel inhibitor GABA analog |
Mittendorfer et al. | NCT05145452 | R, DB, Controlled Trial | 60 | N/A | Fish oil-derived n-3 polyunsaturated fatty acids | Lipid-regulating agent |
Eli Lilly and Co. | NCT05620576 | R, PC Master Protocol | 125 | 2 | LY3857210 Placebo | P2XY inhibitor |
Elsharab et al. | NCT05369793 | R, No Masking (Open-Label) | 60 | 3 | Alpha-lipoic acid Roflumilast | Antioxidant Phosphodiesterase inhibitor |
Zhao et al. | NCT05507697 | R, Open-Label, Single-Center Trial | 42 | 2 | HUC-MSCs Lipoic acid | Stem cells |
Rastogi et al. | NCT05162690 | R, PC, Double Masking Trial | 40 | 3 | Dapagliflozin Placebo | Sodium-glucose cotransporter 2 (SGLT2) inhibitor |
Emara et al. | NCT04766450 | R, Open-Label, Controlled Trial | 30 | 4 | Acetyl-cysteine | Anti-oxidant |
Ameo et al. | NCT05247034 | R, DB, Controlled Trial | 5 | N/A | Cocoa supplement | Anti-inflammatory and anti-oxidant |
Wang et al. | NCT04457531 | R, Open-Label, Controlled Study | 60 | 1 | LiuWeiLuoBi granule | Anti-inflammatory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, O.; Jancic, P.; Knezevic, N.N. A Review of Recent Pharmacological Advances in the Management of Diabetes-Associated Peripheral Neuropathy. Pharmaceuticals 2023, 16, 801. https://doi.org/10.3390/ph16060801
Syed O, Jancic P, Knezevic NN. A Review of Recent Pharmacological Advances in the Management of Diabetes-Associated Peripheral Neuropathy. Pharmaceuticals. 2023; 16(6):801. https://doi.org/10.3390/ph16060801
Chicago/Turabian StyleSyed, Osman, Predrag Jancic, and Nebojsa Nick Knezevic. 2023. "A Review of Recent Pharmacological Advances in the Management of Diabetes-Associated Peripheral Neuropathy" Pharmaceuticals 16, no. 6: 801. https://doi.org/10.3390/ph16060801
APA StyleSyed, O., Jancic, P., & Knezevic, N. N. (2023). A Review of Recent Pharmacological Advances in the Management of Diabetes-Associated Peripheral Neuropathy. Pharmaceuticals, 16(6), 801. https://doi.org/10.3390/ph16060801