Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug–Extract Ratio (DRE)
2.2. Bioguided Phytochemical Analysis
2.2.1. Phytochemical Screening and Antimicrobial Activity
2.2.2. Isolation, Detection and Tentative Identification of the Main Bioactive Marker Compounds
2.2.3. Antimicrobial Activity of the Major Marker Compounds and 96% Hydroethanolic Extracts of Both Asphodelus Root Tubers
2.3. Pre-Clinical Safety Assessment
2.3.1. Evaluation of the Cytotoxicity Potential
2.3.2. Evaluation of the Genotoxicity/Mutagenicity Potential
3. Methods and Materials
3.1. Chemical and Biological Reagents
3.2. Plant Materials
3.3. Preparation of Extracts
3.4. Chromatographic Analysis
3.5. Isolation and Identification of the Main Marker Compounds
3.6. In Vitro Antimicrobial Activity
3.7. In Vitro Cytotoxicity Evaluation using MTT Assay
3.8. In Vitro Genotoxicity/Mutagenicity Evaluation using Ames Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Regional Office for Europe; European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, R.S.; Suriyanarayanan, B. Plants: A Source for New Antimycobacterial Drugs. Planta Med. 2014, 80, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M. Ethnopharmacology and Drug Discovery. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 351–381. [Google Scholar]
- Brahmachari, G. Bioactive Natural Products; World Scientific: Singapore, 2011; ISBN 978-981-4335-37-9. [Google Scholar]
- Malmir, M.; Serrano, R.; Caniça, M.; Silva-Lima, B.; Silva, O. A Comprehensive Review on the Medicinal Plants from the Genus Asphodelus. Plants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Al-kayali, R.; Kitaz, A.; Haroun, M. Antibacterial Activity of Asphodelin lutea and Asphodelus microcarpus Against Methicillin Resistant Staphylococcus aureus Isolates. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1964–1968. [Google Scholar]
- Oskay, M.; Aktaş, K.; Sari, D.; Azeri, C. A Comparative Study of Antimicrobial Activity Using Well and Disk Diffusion Method on Asphodelus aestivus (Liliaceae). Ekoloji 2007, 16, 62–65. [Google Scholar]
- Abuhamdah, S. Phytochemical Investigations and Antibacterial Activity of Selected Medicinal Plants from Jordan. Eur. J. Med. Plants 2013, 3, 394–404. [Google Scholar] [CrossRef]
- El-Seedi, H.R. Antimicrobial Arylcoumarins from Asphodelus microcarpus. J. Nat. Prod. 2007, 70, 118–120. [Google Scholar] [CrossRef]
- Menghani, E. Isolation and Characterization of Bioactives from Arid Zone Plants. Int. J. Pharm. Res. Dev. 2012, 4, 113–118. [Google Scholar]
- Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.-E.I.; Jacob, M.; Radwan, M.M.; Doerksen, R.J.; Cutler, S.J.; Ross, S.A. Asphodosides A-E, Anti-MRSA Metabolites from Asphodelus microcarpus. Phytochemistry 2014, 105, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Howladar, S.; Mohamed, H.; Al-Robai, S. Phytochemistry, Antimicrobial, Antigiardial and Antiamoebic Activities of Selected Plants from Albaha Area, Saudi Arabia. Br. J. Med. Med. Res. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; Yenesew, A.; Dagne, E. Chemotaxonomic Significance of Anthraquinones in the Roots of Asphodeloideae (Asphodelaceae). Biochem. Syst. Ecol. 1995, 23, 277–281. [Google Scholar] [CrossRef]
- Abdel-Gawad, M.M.; Hasan, A.; Raynaud Par, J. Estude de l’insaponifiable et Des Acides Gras Des Tuberculus d’ Asphodelus albus. Fitoterapia 1976, 47, 111–112. [Google Scholar]
- Abdel-Gawad, M.M.; Raynaud, J.; Netien, G. Les Anthraquinones Libres d’Asphodelus albus Var. Delphinensze et d’Asphodelus cerasifer (Free Anthraquinones of Asphodelus albus Var. delphinensis and A. cerasifer). Planta Med. 1976, 30, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, F.M.; Rizk, A.M.; El-Nasr, M.M.S.; Asr, E.-N. Anthraquinones of Certain Egyptian Asphodelus Species. Z. Naturforsch. C 1974, 29, 351–354. [Google Scholar] [CrossRef]
- González, A.G.; Freire, R.; Hernández, R.; Salazar, J.A.; Suárez, E. Asphodelin and Microcarpin, Two New Bianthraquinones from Asphodelus microcarpus; Society of Chemical Industry: London, UK, 1973; pp. 851–852. [Google Scholar]
- Ghoneim, M.M.; Ma, G.; El-Hela, A.A.; Mohammad, A.-E.I.; Kottob, S.; El-Ghaly, S.; Cutler, S.J.; Ross, S.A. Biologically Active Secondary Metabolites from Asphodelus microcarpus. Nat. Prod. Commun. 2013, 8, 1934578X1300800. [Google Scholar] [CrossRef]
- Rizk, A.M.; Hammouda, F.M.; Abdel-Gawad, M.M. Anthraquinones of Asphodelus microcarpus. Phytochemistry 1972, 11, 2122–2125. [Google Scholar] [CrossRef]
- Ghaleb, H.; Rizk, A.M.; Hammouda, F.M.; Abdel-Gawad, M.M.; Ghaleb, H.; Rizk, A.M.; Hammouda, F.M.; Abdel-Gawad, M.M. The Active Constituents of Asphodelus microcarpus Salzm et Vivi. Qual. Plant. Mater. Veg. 1972, 21, 237–251. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.E.I.; Jacob, M.; Cutler, S.J.; Doerksen, R.J.; Ross, S.A. Isolation and Characterization of New Secondary Metabolites from Asphodelus microcarpus. Med. Chem. Res. 2014, 23, 3510–3515. [Google Scholar] [CrossRef]
- Caldas, F.B.; Moreno Saiz, J.C. The International Union for the Conservation of Nature (IUCN) Red List of Threatened Species; IUCN: Cambridge, UK, 2011. [Google Scholar]
- Clamote, F.; Gomes, C.T. Asphodelus bento-rainhae P.Silva Subsp. bento-rainhae—Distribution Map. Flora-On: Interactive Flora of Portugal, Portuguese Botanical Society. Available online: http://www.Flora-on.Pt/#wAsphodelus+bento-Rainhae+subsp.+bento-Rainhae (accessed on 31 May 2022).
- Malmir, M.; Serrano, R.; Lima, K.; Duarte, M.P.; Moreira da Silva, I.; Silva Lima, B.; Caniça, M.; Silva, O. Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines. Plants 2022, 11, 3173. [Google Scholar] [CrossRef]
- Alhage, J.; Elbitar, H. In Vitro Screening for Antioxidant and Antimicrobial Properties of Three Lebanese Medicinal Plants Crude Extracts. Pharmacogn. Res. 2019, 11, 127. [Google Scholar] [CrossRef]
- Kitaz, A. Comparison of the Total Phenol, Flavonoid Contents and Antioxidant Activity of Methanolic Roots Extracts of Asphodelus microcarpus and Asphodeline lutea Growing in Syria. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 159–164. [Google Scholar] [CrossRef]
- Çalış, I.; Birincioǧlu, S.S.; Kırmızıbekmez, H.; Pfeiffer, B.; Heilmann, J. Secondary Metabolites from Asphodelus aestivus. Z. Naturforsch. B 2006, 61, 1304–1310. [Google Scholar] [CrossRef]
- Chimona, C.; Karioti, A.; Skaltsa, H.; Rhizopoulou, S. Occurrence of Secondary Metabolites in Tepals of Asphodelus ramosus L. Plant Biosyst. 2013, 148, 31–34. [Google Scholar] [CrossRef]
- Adinolfi, M.; Lanzelta, R.; Marciano, C.E.; Parrilli, M.; Giulio, A.D.E. A New Class of Anthraquinone-Anthrone-C-Glycosides from Asphodelus ramosus Tubers. Tetrahedron 1991, 47, 4435–4440. [Google Scholar] [CrossRef]
- AbdEl-Salam, I.M.; Arafa, M.; Marwa, S.A.-B.; Hatem, A. Anti-eczematic and molecular modeling of anthraquinones isolated from the seeds of Asphodelus microcarpus salzm. viv. growing in Egypt. Pharmacogn. Mag. 2019, 15, 586. [Google Scholar] [CrossRef]
- Williams, C.A. Biosystematics of the Monocotyledoneae—Flavonoid Patterns in Leaves of the Liliaceae. Biochem. Syst. Ecol. 1975, 3, 229–244. [Google Scholar] [CrossRef]
- van Rheede van Oudtshoorn, M.C.B. Chemotaxonomic Investigations in Asphodeleae and Aloineae (Liliaceae). Phytochemistry 1964, 3, 383–390. [Google Scholar] [CrossRef]
- Abd El-Fattah, H. Chemistry of Asphodelus fistulosus. Int. J. Pharmacogn. 1997, 35, 274–277. [Google Scholar] [CrossRef]
- El-Ghaly, E.-S. Phytochemical and Biological Activities of Asphodelus microcarpus Leaves. J. Pharmacogn. Phytochem. 2017, 6, 259–264. [Google Scholar]
- Lanzetta, R.; Parrilli, M.; Adinolfi, M.; Aquila, T.; Michela Corsaro, M. Bianthrone C-Glycosides. 2. Three New Compounds from Asphodelus ramosus Tubers. Tetrahedron 1990, 46, 1287–1294. [Google Scholar] [CrossRef]
- Dangi, A.S.; Aparna; Sharma, M.; Yadav, J.P.; Arora, D.R.; Chaudhary, U. Antimicrobial Potential of Asphodelus tenuifolius. J. Evol. Med. Dent. Sci. 2013, 2, 5663–5667. [Google Scholar]
- Hammouda, F.M.; Rizk, A.M.; Ghaleb, H.; Abdel-Gawad, M.M. Chemical and Pharmacological Studies of Asphodelus microcarpus. Planta Med. 1972, 22, 188–195. [Google Scholar] [CrossRef]
- Rizk, A.M.; Hammouda, F.M. Phytochemical Studies of Asphodelus microcarpus (Lipids and Carbohydrates). Planta Med. 1970, 18, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mogib, M.; Basaif, S. Two New Naphthalene and Anthraquinone Derivatives from Asphodelus tenuifolius. Pharmazie 2002, 57, 286–287. [Google Scholar]
- Fell, K.R.; Hammouda, F.M.; Rizk, A.M. The Constituents of the Seeds of Asphodelus microcarpus Viviani and A. fistulosus L. J. Pharm. Pharmacol. 1968, 20, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Tang, H.; Song, J.; Long, J.; Zhang, L.; Li, X. Chrysophanol: A Review of Its Pharmacology, Toxicity and Pharmacokinetics. J. Pharm. Pharmacol. 2019, 71, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Malmir, M.; Serrano, R.; Silva, O. Anthraquinones as Potential Antimicrobial Agents—A Review. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2017; pp. 55–61. [Google Scholar]
- Koohsari, H.; Ghaemi, E.A.; Sadegh Sheshpoli, M.; Jahedi, M.; Zahiri, M. The Investigation of Antibacterial Activity of Selected Native Plants from North of Iran. J. Med. Life 2015, 8, 38–42. [Google Scholar]
- EMEA (European Medicines Agency). Guideline on Selection of Test Materials for Genotoxicity Testing for Traditional Herbal Medicinal Products; EMEA/HMPC/67644/2009; European Medicines Agency: Amsterdam, The Netherlands, 2009.
- OECD (Organisation for Economic Co-Operation and Development). Guideline for Testing of Chemicals: No.471-Bacterial Reverse Mutation Test; OECD: Paris, France, 2020; ISBN 9789264071247. [Google Scholar]
- ICH (International Conference on Harmonization). S2(R1) Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. Step 4 Version of November; ICH: Geneva, Switzerland, 2011. [Google Scholar]
- Kelber, O.; Wegener, T.; Steinhoff, B.; Staiger, C.; Wiesner, J.; Knöss, W.; Kraft, K. Assessment of Genotoxicity of Herbal Medicinal Products: Application of the “Bracketing and Matrixing” Concept Using the Example of Valerianae Radix (Valerian Root). Phytomedicine 2014, 21, 1124–1129. [Google Scholar] [CrossRef]
- Bocayuva Tavares, G.D.; Fortes Aiub, C.A.; Felzenszwalb, I.; Carrão Dantas, E.K.; Araújo-Lima, C.F.; Siqueira Júnior, C.L. In Vitro Biochemical Characterization and Genotoxicity Assessment of Sapindus saponaria Seed Extract. J. Ethnopharmacol. 2021, 276, 114170. [Google Scholar] [CrossRef]
- Shin, K.Y.; Won, B.Y.; Ha, H.J.; Yun, Y.S.; Lee, H.G. Genotoxicity Studies on the Root Extract of Polygala tenuifolia Willdenow. Regul. Toxicol. Pharmacol. 2015, 71, 365–370. [Google Scholar] [CrossRef]
- Liberman, D.F.; Schaefer, F.L.; Fink, R.C.; Ramgopal, M.; Ghosh, A.C.; Mulcahy, R. Mutagenicity of Islandicin and Chrysophanol in the Salmonella/Microsome System. Appl. Environ. Microbiol. 1980, 40, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, I.; Zengin, G.; Sinan, K.I.; Aneva, I.; Uysal, S.; Picot-Allain, M.C.N.; Aktumsek, A.; Bouyahya, A.; Mahomoodally, M.F. Metabolomics Profiling and Biological Properties of Root Extracts from Two Asphodelus Species: A. albus and A. aestivus. Food Res. Int. 2020, 134, 109277. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- CLSI document M07-A9. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, ISBN 1-56238-783-9.
- Santos, J.M.; Camões, S.P.; Filipe, E.; Cipriano, M.; Barcia, R.N.; Filipe, M.; Teixeira, M.; Simões, S.; Gaspar, M.; Mosqueira, D.; et al. Three-Dimensional Spheroid Cell Culture of Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Leads to Enhanced Paracrine Induction of Wound Healing. Stem Cell Res. Ther. 2015, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res. Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef] [PubMed]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/Microsome Mutagenicity Assay. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
Bacteria (Gram +) | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
AbR 70% | AmR 70% | AbR-1 | AmR-1 | AbR-2 | AmR-2 | AbR-3 | AmR-3 | |
S. aureus ATCC 29213 | >2000 | >2000 | 250 | 250 | >2000 | >2000 | >2000 | >2000 |
S. aureus CQINSA4923 | >2000 | >2000 | 125 | 125 | >2000 | >2000 | >2000 | >2000 |
S. aureus INSA790 | >2000 | >2000 | 250 | 250 | >2000 | >2000 | >2000 | >2000 |
S. aureus INSA936 | >2000 | >2000 | 250 | 250 | >2000 | >2000 | >2000 | >2000 |
S. aureus INSA896 | >2000 | >2000 | 125 | 125 | >2000 | >2000 | >2000 | >2000 |
S. saprophyticus INSA842 | >2000 | >2000 | 125 | 250 | >2000 | >2000 | >2000 | >2000 |
S. saprophyticus INSA867 | >2000 | >2000 | 500 | 1000 | >2000 | >2000 | >2000 | >2000 |
S. epidermidis INSA796 | >2000 | >2000 | 125 | 500 | >2000 | >2000 | >2000 | >2000 |
S. epidermidis INSA958 | >2000 | >2000 | 250 | 500 | >2000 | >2000 | >2000 | >2000 |
S. epidermidis INSA960 | >2000 | >2000 | 125 | 250 | >2000 | >2000 | >2000 | >2000 |
S. haemolyticus INSA982 | >2000 | >2000 | 16 | 32 | >2000 | >2000 | >2000 | >2000 |
S. haemolyticus INSA984 | >2000 | >2000 | 62 | 125 | >2000 | >2000 | >2000 | >2000 |
Bacteria (Gram +) | MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|---|
AbR 96% | AmR 96% | p | q | r | s | t | |
S. aureus ATCC 29213 | 125 | 1000 | 25 | 100 | 100 | 100 | 200 |
S. aureus CQINSA4923 | 125 | 2000 | 100 | 100 | 200 | 100 | 100 |
S. aureus INSA790 | 500 | >2000 | 100 | 200 | 200 | 200 | 200 |
S. aureus INSA936 | 250 | >2000 | 100 | 200 | 200 | 200 | 200 |
S. aureus INSA896 | 250 | >2000 | 100 | 200 | 200 | 200 | 200 |
S. saprophyticus INSA842 | 500 | >2000 | 200 | 200 | 200 | 200 | 200 |
S. saprophyticus INSA867 | 1000 | >2000 | 200 | 200 | 200 | 200 | 200 |
S. epidermidis INSA796 | 500 | >2000 | 25 | 100 | 50 | 100 | 50 |
S. epidermidis INSA958 | 1000 | 2000 | 12.5 | 12.5 | 3.2 | 12.5 | 100 |
S. epidermidis INSA960 | 250 | >2000 | 12.5 | 100 | 100 | 100 | 100 |
S. haemolyticus INSA982 | 125 | 2000 | 6.25 | 200 | 100 | 200 | 100 |
S. haemolyticus INSA984 | 250 | >2000 | 6.25 | 200 | 200 | 200 | 200 |
AbR 96% µg/Plate | Number of Revertant Colonies without Metabolic Activation, Mean (n = 3) ± Standard Deviation (SD) | ||||
---|---|---|---|---|---|
TA98 | TA100 | TA102 | TA1535 | TA1537 | |
500 | 39 ± 2 | 150 ± 3 | 319 ± 8 | 15 ± 5 | 17 ± 2 |
1000 | 37 ± 5 | 166 ± 8 | 306 ± 9 | 16 ± 3 | 18 ± 6 |
2000 | 38 ± 1 | 142 ± 6 | 305 ± 12 | 13 ± 3 | 22 ± 6 |
2500 | 42 ± 4 | 152 ± 9 | 301 ± 4 | 10 ± 1 | 24 ± 8 |
3750 | 45 ± 1 | 163 ± 8 | 327 ± 3 | 13 ± 3 | 24 ± 3 |
5000 | 49 ± 3 | 143 ± 11 | 320 ± 8 | 16 ± 1 | 20 ± 6 |
NC | 38 ± 6 | 142 ± 2 | 320 ± 4 | 15 ± 2 | 20 ± 2 |
PC | 2-NF | SA | tBHP | SA | 9-AA |
488 ± 30 | 1048 ± 43 | 881 ± 26 | 827 ± 13 | 1354 ± 5 | |
Number of Revertant Colonies with Metabolic Activation (S9), Mean (n = 3) ± Standard Deviation (SD) | |||||
1000 | 43 ± 1 | 145 ± 1 | 221 ± 6 | 12 ± 4 | 11 ± 4 |
2000 | 33 ± 3 | 147 ± 1 | 217 ± 5 | 12 ± 6 | 13 ± 2 |
4000 | 33 ± 4 | 162 ± 2 | 215 ± 5 | 11 ± 6 | 11 ± 3 |
5000 | 36 ± 1 | 159 ± 6 | 237 ± 2 | 13 ± 3 | 14 ± 1 |
NC | 44 ± 8 | 157 ± 6 | 172 ± 2 | 11 ± 2 | 12 ± 1 |
PC | 2-AA | BaP | 2-AA | 2-AA | 2-AA |
832 ± 35 | 947 ± 148 | 732 ± 12 | 266 ± 1 | 306 ± 50 |
Bacteria (Gram +) | Demonstration of Resistance to the Antibiotics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CIP | DAP | ERY | FA | FOX | GN | LNZ | OXA | PEN | TEI | TET | VAN | |
S. aureus ATCC 29213 | S | MS | ||||||||||
S. aureus CQINSA4923 | R | R | S | R | R | S | R | R | S | S | S | |
S. aureus INSArefV | R | R | R | |||||||||
S. aureus INSA936 | R | |||||||||||
S. aureus INSA896 | R | R | R | R | ||||||||
S. saprophyticus INSA842 | R | R | ||||||||||
S. saprophyticus INSA867 | R | |||||||||||
S. epidermidis INSA796 | R | R | R | R | ||||||||
S. epidermidis INSA958 | R | R | ||||||||||
S. epidermidis INSA960 | R | |||||||||||
S. haemolyticus INSA982 | R | R | R | |||||||||
S. haemolyticus INSA984 | R | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malmir, M.; Lima, K.; Camões, S.P.; Manageiro, V.; Duarte, M.P.; Miranda, J.P.; Serrano, R.; da Silva, I.M.; Lima, B.S.; Caniça, M.; et al. Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers. Pharmaceuticals 2023, 16, 830. https://doi.org/10.3390/ph16060830
Malmir M, Lima K, Camões SP, Manageiro V, Duarte MP, Miranda JP, Serrano R, da Silva IM, Lima BS, Caniça M, et al. Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers. Pharmaceuticals. 2023; 16(6):830. https://doi.org/10.3390/ph16060830
Chicago/Turabian StyleMalmir, Maryam, Katelene Lima, Sérgio Póvoas Camões, Vera Manageiro, Maria Paula Duarte, Joana Paiva Miranda, Rita Serrano, Isabel Moreira da Silva, Beatriz Silva Lima, Manuela Caniça, and et al. 2023. "Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers" Pharmaceuticals 16, no. 6: 830. https://doi.org/10.3390/ph16060830
APA StyleMalmir, M., Lima, K., Camões, S. P., Manageiro, V., Duarte, M. P., Miranda, J. P., Serrano, R., da Silva, I. M., Lima, B. S., Caniça, M., & Silva, O. (2023). Bioguided Identification of Active Antimicrobial Compounds from Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers. Pharmaceuticals, 16(6), 830. https://doi.org/10.3390/ph16060830