Next Article in Journal
Recent Advances in the Green Synthesis of Active N-Heterocycles and Their Biological Activities
Previous Article in Journal
Integrated Single-Cell and Transcriptome Sequencing Analyses Identify Dipeptidase 2 as an Immune-Associated Prognostic Biomarker for Lung Adenocarcinoma
Previous Article in Special Issue
2022 FDA TIDES (Peptides and Oligonucleotides) Harvest
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents

by
Ekaterina V. Tarasova
1,*,
Natalia A. Luchnikova
1,2,
Victoria V. Grishko
1 and
Irina B. Ivshina
1,2
1
Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia
2
Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
*
Author to whom correspondence should be addressed.
Pharmaceuticals 2023, 16(6), 872; https://doi.org/10.3390/ph16060872
Submission received: 15 March 2023 / Revised: 4 June 2023 / Accepted: 5 June 2023 / Published: 12 June 2023
(This article belongs to the Special Issue Feature Reviews in Biopharmaceuticals)

Abstract

:
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.

Graphical Abstract

1. Introduction

Terpenes and their O-containing derivatives (terpenoids) are the largest (more than 80,000 compounds) and structurally most diverse group of secondary metabolites derived from natural sources. Based on the number of isoprene units, terpene derivatives are classified into mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri- (C30), sesquar- (C35), and tetra- (C40) terpenes. Terpene derivatives are widely used in the food, cosmetics, and fragrance industries [1]. They exhibit various biological activities (antitumor, anti-inflammatory, antimicrobial, antiviral, immunomodulatory, antioxidant, antifungal, etc.) and are promising therapeutic agents [2]. Production of terpene derivatives from natural sources (plants, fungi, and marine organisms) does not meet industrial needs, while chemical synthesis is often a multi-stage and low selective process.
In the last 15–20 years, it has become obvious that bacteria also produce terpenes and terpenoids and that most of the produced metabolites are represented by new compounds. Currently, the search for microorganisms synthesizing terpene derivatives is underway and microbial biosynthetic platforms are developed using such microorganisms [3]. Microbial biosynthesis has advantages over traditional methods of obtaining terpenoids: a short life cycle of microorganisms, which reduces the production time of compounds to several days, high productivity throughout the fermentation process, and the use of cheap renewable resources to produce target products [4]. The ability for terpene biosynthesis has been described for actino-, proteo-, and cyanobacteria [5,6,7].
Actinomycetes are one of the largest, most diverse and well-studied group of bacteria represented by the genera such as Mycobacterium, Nocardia, Rhodococcus, Streptomyces, Arthrobacter, Actinomyces, Corynebacterium, Micrococcus, Frankia, Micromonospora. They are characterized by a wide range of genetic, morphological, and physiological characteristics, as well as metabolic capabilities [8]. Actinomycetes are well-known producers of secondary metabolites (polyketides, antibiotics, siderophores, biosurfactants, etc.) and enzymes (amylase, lipase, cellulase, protease), which can be used in pharmaceutical, agricultural, food, pulp and paper, and other industries [9,10,11,12,13,14,15,16,17,18,19]. Of 23,000 bioactive microbial metabolites, about 10,000 metabolites were isolated from actinomycetes [15], among which compounds with herbicidal [20], antitumor [21], antifungal [22], immunomodulating [23,24,25], and other activities were found. Most of the known antimicrobials (streptomycin, streptothricin, actinomycin, etc.) were originally produced by actinomycetes, especially by the genus Streptomyces [26]. Secondary metabolites of actinomycetes are widely used in various human activities and their use will rise in the future (Table 1).
The high biotechnological potential of this group of microorganisms was confirmed by patent analysis (Figure 1), with the largest number of valid patents using actinomycete genera such as Streptomyces, Mycobacterium, Corynebacterium, Bifidobacterium, and Rhodococcus.
Terpene biosynthesis by actinomycetes is an actual research area discussed in research and review publications. However, the specialized reviews are focused on certain genera of actinomycetes and/or groups of terpene derivatives [41,42], bacterial terpenome [43], and evolution and ecology of microbial terpenoids [44]. The present review aims at assessing the biosynthetic potential (via the patent analysis in particular) of various representatives of Actinomycetes as producers of a wide range of biologically active terpenoids, including hybrid metabolites (meroterpenoids). The data can be used to create technologies for the biocatalytic production of practically valuable terpene derivatives using actinomycetes.
In writing this review, various databases were used: scientific articles and reviews were searched through platforms such as Web of Science, Scopus, and NCBI, and WIPO (World Intellectual Property Organization, https://patentscope.wipo.int/, accessed on 25 March 2022) was used to search for patents. To fully cover the topic, the review includes patents and articles (from 2000 to 2022) dedicated to terpene biosynthesis by representatives of Actinomycetes (according to the modern classification).

2. Terpene Biosynthesis by Actinomycetes

Terpene biosynthesis is one of the secondary metabolic pathways in actinomycetes, regulated by biosynthetic gene clusters (BGCs). BGCs include promoters, genes encoding carbon skeleton formation enzymes and post-modification enzymes, and regulatory genes. All terpenes are synthesized from the C5 isoprenoid precursors, namely isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are converted to isoprenyl diphosphates of varying lengths by isoprenyl transferases (Figure 2). Further formation of terpenes is catalyzed by a group of enzymes, namely terpene synthases (cyclases) (TSs) catalyzing the cyclization of geranyl (GPP), farnesyl (FPP), geranylgeranyl (GGPP), and geranylfarnesyl (GFPP) diphosphates to yield mono-, sesqui-, di-, sester-, and triterpenes. Unlike the basic biosynthetic enzymes, bacterial TSs have low homology of conserved sequences, providing an extremely diverse group. The main feature of TSs is that one enzyme can produce dozens of hydrocarbon skeletons significantly different from each other. A number of remarkable reviews have been devoted to bacterial and plant terpene synthases [5,6,45,46]. Modification of the terpene skeleton is achieved through the addition of various functional groups mediated by specialized enzymes, mainly those from the cytochrome (P450s) family.
A variety of methods (bioinformatics, genetic, analytical, biochemical, molecular) are employed to study terpene biosynthesis by actinomycetes. Direct screening of compounds from the microbial cultivation medium and their subsequent identification is a basic method of searching for new terpene derivatives; however, it is labor- and time-consuming. Currently, recently developed “genome mining” methods, namely a bioinformatics search for TS genes using the BLAST program and web-based tools such as ClustSCAN, NP.searcher, GNP/PRISM, and antiSMASH, are used to search for actinomycetes capable of producing terpene derivatives. Simultaneous discovery of new compounds and biosynthetic genes and enzymes is one of the most important advantages of the coordinated use of genome analysis and direct analysis of the metabolites. Using this approach, a few dozen terpenes (many of which are unique), several new cyclization mechanisms, and more than 120 putative genes of bacterial terpene synthases have been discovered [47].
Methods of genetic modification (e.g., gene knockout, presumably responsible for the terpene synthesis; editing of individual sections of BGCs, in particular, by introducing additional native or engineered promoters; influence on the regulatory gene expression) and heterologous expression (e.g., cloning of the interest gene in bacteria that are not capable of synthesizing the target product) are used to confirm the functional activity of the studied genes. E. coli or mutant strains Streptomyces avermitilis SUKA 2–22 with deletion of all endogenous BGCs [48], Streptomyces lividans [49], Streptomyces coelicolor, Streptomyces albus, etc. [50,51], can serve as host bacteria. The transformants are used either for the direct terpene synthesis or for the production of recombinant proteins subsequently incubated with acyclic allyl diphosphate substrates. Molecular and biochemical methods allow studying the crystal structure, kinetic and mechanistic parameters of isolated and purified TSs and mechanisms of terpene cyclization [47]. In addition, omics technologies have been actively developed to search for secondary metabolites, terpenoids in particular, to study the diversity, distribution, and evolution of BGCs [52].

2.1. Terpene Derivatives Produced by Streptomycetes and Their Enzymes

The analysis of published data indicates that most of the identified actinomycete terpene derivatives are synthesized by streptomycetes. The spectrum of produced compounds varies from mono- to tetraterpenes and their derivatives.

2.1.1. Mono- and Sesquiterpenes and Their Derivatives

The formation of monoterpenoids as secondary metabolites was registered for individual streptomycetes. Streptomyces clavuligerus ATCC 27064 have been shown to catalyze the formation of monoterpenoids cineole (1, eucalyptol) and linalool (2) [53,54,55]. Heterologous expression of terpene synthases bLinS и bCinS from S. clavuligerus ATCC 27064 in E. coli increased linalool (2) and 1,8-cineole (1) yields to 363 ± 57.9 and 116.8 ± 36.4 mg/Lorg, respectively, which exceeded the values obtained using plant enzymes. Furthermore, bLinS catalyzed the nerolidol (3) formation (159.1 ± 71.3 mg/Lorg) and acted as a mono- and sesquiterpene synthase (WO2018142109). The use of recombinant bLinS increased the nerolidol (3) and linalool (2) yields to 379 and 1054 ± 245.2 mg/Lorg, respectively [56] (WO2020234307; US20210238640). Two new nerolidol-type sesquiterpenoids rel-6R,7R,10R-6,10-epoxy-3,7,11-trimethyldodec-2-ene-1,7,11-triol (4), and rel-6R,7R,10R-7,10-epoxy-3,7,11-tri-methyldodec-2-ene-1,6,11-triol (5) were isolated from S. scopuliridis YIM 32460 [57].
2-Methylisoborneol (6) is an odorous irregular monoterpenoid identified in cultivation medium of some species of streptomycetes [58,59,60,61,62]. Using S. coelicolor A3(2) as an example, the two-gene cluster sco7700/sco7701, whose analogues were identified in S. griseus, S. ambofaciens, and S. scabies, was found to be responsible for 2-methylisoborneol (6) synthesis. Incubation of GPP with recombinant SCO7700A resulted in the production of a complex mixture of cyclic monoterpenes α-pinene (7), β-pinene (23%) (8), limonene (32%) (9), γ-terpinene (29%) (10), δ-terpinene (10%) (11), and trace amounts of monoterpene alcohols [63]. Köksal et al. (2012) determined the crystal structure of 2-methylisoborneol synthase from S. coelicolor A3(2) [64]. This enzyme was found to catalyze the formation of (1R)-(+)-camphor (12) from 2-fluorolinalyl diphosphate [65]. A non-oxidized bicyclic monoterpene 2-methyl-2-bornene (13) was identified among secondary metabolites of S. exfoliatus SMF19 [66].
Pharmaceuticals 16 00872 i001Pharmaceuticals 16 00872 i002Pharmaceuticals 16 00872 i003Pharmaceuticals 16 00872 i004
1234
Pharmaceuticals 16 00872 i005Pharmaceuticals 16 00872 i006Pharmaceuticals 16 00872 i007Pharmaceuticals 16 00872 i008
5678
Pharmaceuticals 16 00872 i009Pharmaceuticals 16 00872 i010Pharmaceuticals 16 00872 i011Pharmaceuticals 16 00872 i012Pharmaceuticals 16 00872 i013
910111213
Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabolol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol synthase is its high specificity and one terpenoid formed as the main product [68]. An uncharacterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacradien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simulation combined with site-directed mutagenesis of Gd11olS changed the reaction direction with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germacradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant strain [72], respectively. 1(10)E,5E-Germacradiene-3,11-diol (16) was detected among the secondary metabolites of S. albolongus YIM 101047 isolated from Elephas maximus feces [73].
Many streptomycetes are characterized by the formation of geosmin (22), a sesquiterpenoid causing a specific smell of moist soil [59,74,75,76]. Microbial methods of geosmin production by S. albus LBG-FXJ (CGMCC 4206), S. fradiae FJ-HX (CGMCC 4205), Streptomyces sp. QC-1 (CGMCC 4535), and Streptomyces sp. QC-2 (CGMCC 4536) have been patented (CN102719376; CN102719375; CN102181392; CN102719377). Genes and enzymes involved in geosmin biosynthesis were studied in the works of Cane et al. (2003–2008). Expression of recombinant protein SC9B1.20 (=SCO6073) from S. coelicolor A3(2) in E. coli resulted in Mg2+-dependent transformation of FPP to (4S,7R)-germacra-1(10)E,5E-dien-11-ol (23), a precursor of 22, which indicates that the enzyme belongs to germacradienol/geosmin synthase [75]. Subsequently, germacradienol/germacrene D synthase was shown to be a bifunctional enzyme that, along with 22 (13%) and 23 (74%), catalyzed the formation of (−)-(7S)-germacrene D (24) (10%) and a hydrocarbon (3%) [77,78,79,80], which was later identified as (8S,9S,10S)-8,10-dimethyl-1-octalin (25) [79]. Genes Sav2163 (geoA) and spterp13, analogs of sco6073, were found in S. avermitilis [74] and S. peucetius ATCC 27952 [81], respectively. Incubation of selina-4(15),7(11)-diene synthase from S. pristinaespiralis ATCC 25486 [82] and SAV_76 from S. avermitilis [83] with FPP produced trace amounts of germacrene B (26) and germacrene A (27). Recombinant SpS from S. xinghaiensis S187 catalyzed cyclization of FPP to germacrene D (24), germacrene A (27), and bicyclogermacrene (28) [84]. Germacrene D (24) was also isolated from the culture medium of S. hygroscopicus NRRL 15879 [66].
A new bicyclic sesquiterpenoid (5S,8S,9R,10S)-selina-4(14),7(11)-diene-8,9-diol (29) was produced by Streptomyces sp. QD518 [85]. Crystallographic, functional characteristics, and molecular mechanisms of selina-4(15),7(11)-diene synthase (SdS) from S. pristinaespiralis ATCC 25486 catalyzing the formation of 30 were described [82,86]. Epi-cubenol (31), a bicyclic cadinane sesquiterpenoid, was detected among terpenoids produced by Streptomyces sp. GWS-BW-H5 [53] and S. albolongus YIM 101047 [73]. Overexpression of sgr6065 (gecA) from S. griseus IFO13350 in S. lividans TK21 led to (+)-epi-cubenol (31), while the gecA-knockout mutants lost this ability [87]. In the deuterated growth medium of S. griseus NBRC102592, the unique [2H26]-1-epi-cubenol, firstly obtained by fermentation, was synthesized [88]. Streptomyces sp. JMRC:ST027706 and Streptomyces sp. HKI0595 were isolated from mangrove trees Bruguiera gymnorrhiza and Kandelia candel and produced novel 11-hydroxy- (32), 12-hydroxy- (33) derivatives of 31 and 5,11-epoxy-10-cadinanol (35) [89] and five novel eudesmene-type sesquiterpenoids kandenols A-E (3640) [90]. Kandenols A (36) and B (37) have a similar structure with plant eudesmenes, while kandenols C (38) and D (39) are unique due to the presence of hydroperoxide fragments. Kandenol E (40) is the first agarofurane isolated from bacteria. The strains S. sanglieri YIM 121209-2 [91], S. anulatus YIM 101882 [92], and Streptomyces sp. RM-14-6 [93] produced new 15-hydroxy-(+)-epi-cubenol (34), 5,11-epoxy-10-cadinanol (35), and isopterocarpolone (41), respectively.
Two new eudesmane-type sesquiterpenoids 1α,6β,11-eudesmanetriol (42) and 11-eudesmene-1α,6β-diol (43) were isolated from Streptomyces sp. YIM 56130 [94]. Along with 42 and 4β,5β,7β,10α-5,11-eudesmanediol (44), S. anulatus YIM 101882 produced new sesquiterpenoids 4547 and norsesquiterpenoids 4850 [92]. New norsesquiterpenoids 5157 were synthesized by Streptomyces sp. 0616208 [95], Streptomyces sp. XM17 [96], and S. albolongus YIM 101047 [73].
As a result of heterologous expression of sscg_02150 and sscg_03688 from S. clavuligerus ATCC 27074 in E. coli, TSs catalyzing the (−)-δ-cadinene (58) and (+)-T-muurolol (59) formation were isolated [97]. Along with (+)-T-muurolol (59) and 3α-hydroxy-T-muurolol (60), two new derivatives of 59, namely 15-hydroxy- (61) and 11,15-dihydroxy (62) derivatives, were obtained from Streptomyces sp. M491 [98].
Purified dauc-8-en-11-ol synthase from S. venezuelae ATCC 10712 was shown to accept non-natural analogues of FPP, such as 10-methyl-FPP, 13-desmethyl-FPP, with the formation of methylated daucenol (64), widdrenol (65); nor-widdrenol (66); tenuifola-2,10-diene (67); and tenuifola-2,11-diene (68). The site-directed mutagenesis of the dauc-8-en-11-ol synthase resulted in a four-fold increase in the biosynthesis efficiency of the target terpenoid 63 [99]. Terpene synthases from S. pristinaespiralis ATCC 25486 [100], S. clavuligerus ATCC 27064, and S. scabiei 8722 [101] catalyzed the formation of (+)-(2S,3S,9R)-pristinol (69), new (+)-intermedeol (70), and (-)-neomeranol B (71), respectively.
Pharmaceuticals 16 00872 i014Pharmaceuticals 16 00872 i015Pharmaceuticals 16 00872 i016Pharmaceuticals 16 00872 i017
14 R1=R2=H, R3=OH, R4=H
15 R1=R2=R3=H, R4=OH
16 R1=R3=H, R2=R4=OH
17 R1=OH, R2=R3=H, R4=OH
181920
Pharmaceuticals 16 00872 i018Pharmaceuticals 16 00872 i019Pharmaceuticals 16 00872 i020Pharmaceuticals 16 00872 i021
21222324
Pharmaceuticals 16 00872 i022Pharmaceuticals 16 00872 i023Pharmaceuticals 16 00872 i024Pharmaceuticals 16 00872 i025
25262728
Pharmaceuticals 16 00872 i026Pharmaceuticals 16 00872 i027Pharmaceuticals 16 00872 i028Pharmaceuticals 16 00872 i029
293031 R1=R2=R3=H
32 R1=OH, R2=R3=H
33 R1=R3=H, R2=OH
34 R1=R2=H, R3=OH
35
Pharmaceuticals 16 00872 i030Pharmaceuticals 16 00872 i031Pharmaceuticals 16 00872 i032Pharmaceuticals 16 00872 i033
36 R=H
37 R=OH
38 R=H
39 R=OH
4041
Pharmaceuticals 16 00872 i034Pharmaceuticals 16 00872 i035Pharmaceuticals 16 00872 i036
424344
Pharmaceuticals 16 00872 i037Pharmaceuticals 16 00872 i038Pharmaceuticals 16 00872 i039Pharmaceuticals 16 00872 i040
4546 R1=OH, R2=R3=H
47 R1=H, R2=R3=OH
48 R1=R2=H, R3=OH
49 R1=OH, R2=R3=H
50 R2=OH, R1=R3=H
51
Pharmaceuticals 16 00872 i041Pharmaceuticals 16 00872 i042Pharmaceuticals 16 00872 i043Pharmaceuticals 16 00872 i044
52535455 R1=OH, R2=R3=H
56 R1=OH, R2=H, R3=OH
57 R1=H, R2=OH, R3=H
Pharmaceuticals 16 00872 i045Pharmaceuticals 16 00872 i046Pharmaceuticals 16 00872 i047Pharmaceuticals 16 00872 i048
5859 R1=R2=R3=H
60 R1=OH, R2=R3=H
61 R1=R2=H, R3=OH
62 R2=R3=OH, R1=H
6364
Pharmaceuticals 16 00872 i049Pharmaceuticals 16 00872 i050Pharmaceuticals 16 00872 i051Pharmaceuticals 16 00872 i052
65666768
Pharmaceuticals 16 00872 i053Pharmaceuticals 16 00872 i054Pharmaceuticals 16 00872 i055
697071
Cheng et al. (2020) studied the ability of streptomycetes to synthesize different volatile terpene derivatives, among which mono-, bi-, and tricyclic sesquiterpenoids were found [66]. S. hygroscopicus NRRL 15879 produced bicyclic sesquiterpenoids β-eudesmol (72), β-vatirenene (73), calamene (74), compound 75, and tricyclic sesquiterpene β-cedrene (76). Additionally, the above strain catalyzed the formation of β-patchoulene (77), dehydro-β-agarofuran (78), and aromadendrene oxide-(2) (79). The monocyclic α-elemol (80), bicyclic sesquiterpene derivatives α-himachalene (81), β-eudesmol (72), α-muurolene (82), and a new 7β-hydroxy-7-epi-α-eudesmol (84) were derived from S. parvulus B1682, S. clavuligerus, S. exfoliatus SMF19, S. aureofaciens ATCC 12551 [66], and S. sanglieri YIM 121209-2 [91], respectively. Three new sesquiterpene synthases from S. chartreusis NRRL 3882 catalyzed the formation of germacradiene-11-ol (15), α-eudesmol (83), and α-amorphene (85) as major products and 10-epi-γ-eudesmol (86) as a minor product [102]. Incubation of recombinant TSs from S. viridochromogenes DSM 40736 with FPP yielded the products identified as 7-epi-α-eudesmol (83) and α-amorphene (85) [103].
Tricyclic humulane sesquiterpenoid (+)-isoafricanol (87) was identified among the volatile metabolites produced by S. violaceusniger Tü 4113. A recombinant (+)-isoafricanol synthase from S. malaysiensis DSM 4137 catalyzed the formation of 87 (95%) and trace amounts of african-1-ene (88) and african-2(6)-ene (89) [104]. Incubation of recombinant SAV_76 of S. avermitilis with FPP in the presence of Mg2+ resulted in avermitilol (90), a novel sesquiterpene alcohol, and viridiflorol (91). Transformants of S. avermitilis SUKA17 containing copies of the sav76 gene and the native rpsJp (sav4925) promoter afforded the new ketone avermitilone (92) along with previously obtained compounds [83].
Pharmaceuticals 16 00872 i056Pharmaceuticals 16 00872 i057Pharmaceuticals 16 00872 i058Pharmaceuticals 16 00872 i059
72737475
Pharmaceuticals 16 00872 i060Pharmaceuticals 16 00872 i061Pharmaceuticals 16 00872 i062Pharmaceuticals 16 00872 i063
76777879
Pharmaceuticals 16 00872 i064Pharmaceuticals 16 00872 i065Pharmaceuticals 16 00872 i066Pharmaceuticals 16 00872 i067
80818283 R=H
84 R=OH
Pharmaceuticals 16 00872 i068Pharmaceuticals 16 00872 i069Pharmaceuticals 16 00872 i070Pharmaceuticals 16 00872 i071
85868788
Pharmaceuticals 16 00872 i072Pharmaceuticals 16 00872 i073Pharmaceuticals 16 00872 i074Pharmaceuticals 16 00872 i075
89909192
Tricyclic sesquiterpene β-caryophyllene (93) was identified among the volatile organic compounds produced by S. yanglinensis 3-10 [62]. The formation of (+)-caryolan-1-ol (94), an oxidized derivative of β-caryophyllene (93), was observed during the cultivation of wild-type or genetically modified strains of streptomycetes [73,105,106,107] (WO2018062668). Along with known 9α-hydroxy- (95), 9β-hydroxy- (96), novel 7α-hydroxy- (97), 10-hydroxy- (micaryolane A) (98), and 15-hydroxy- (micaryolane B) (99) derivatives of 94 were isolated from Streptomyces sp. YIM 56130 [94], Streptomyces sp. AH25 [108], S. anulatus YIM 101882 [92], and S. albolongus YIM 101047 [73]. Bacaryolanes A-C (100102), enantioisomers of plant caryolans, were separated from the fermentation broth of Streptomyces sp. JMRC:ST027706 [109] and S. anulatus YIM 101882 [92].
Epi-isozizaene (103), tricyclic sesquiterpene, was generated by several Streptomyces species and initially sparked interest as a candidate jet fuel on account of having a specific energy similar to that of jet fuel A-1 [110,111]. Heterologous epi-isozizaene synthase from S. coelicolor A3(2) and pentalenene synthase from Streptomyces sp. UC5319 produced 103, pentalenene (107) and α-isocomene (108) [111]. Using the genetic engineering techniques increased the yields of 108, 103, and 107 in E. coli to 77.5 mg/L, 727.9 mg/L, and 780.3 mg/L, respectively, while the yield of 107 was improved to 344 mg/L in Saccharomyces cerevisiae (US20200239796).
Epi-isozizaene synthase (sco5222) of S. coelicolor A3(2) catalyzed multi-step cyclization of FPP to 103, which is oxidized by P450 (sco5223) to albaflavenone (109), a broad-spectrum antibiotic [112,113,114], detected in the culture medium of some species of streptomycetes [115,116,117]. Genome-wide analysis of S. spectabilis NRRL-2792 found the albaflavenone biosynthetic gene cluster [118]. S. avermitilis SUKA16 transformant, which expresses sav3032 (ortholog sco5222) and promoter rpsJp (sav4925) from the native strain S. avermitilis, accumulated 103, (4R)-albaflavenol (104), (4S)-albaflavenol (105), albaflavenone (109), and a new compound 4β,5β-epoxy-2-epi-zizaan-6β-ol (110) [119]. New sesquiterpenoids identified as albaflavenol B (106) and albaflavenoid (111) were isolated from Streptomyces sp. Lv-4-26 [120] and S. violascens YIM 100225 [121], respectively.
Twenty-six site-directed mutants of the S. coelicolor A3(2) epi-isozizaene synthase catalyzed the formation of acyclic (119121), mono- (122125), bi- (126130), and tricyclic (110, 83, 131135) sesquiterpenes, which makes this enzyme a universal platform for obtaining various terpene derivatives [110,122] (WO2015120431). New tricyclic sesquiterpenoids strepsesquitriol (136) and bungoene (137) were obtained from Streptomyces sp. SCSIO 10355 [123] and S. bungoensis DSM 41781 [124], respectively.
Pharmaceuticals 16 00872 i076Pharmaceuticals 16 00872 i077Pharmaceuticals 16 00872 i078Pharmaceuticals 16 00872 i079
9394 R=H
95 R1=H, R2=αOH
96 R1=H, R2=βOH
97 R1=αOH, R2=H
98 R1=OH, R2=H
99 R2=OH, R1=H
100
Pharmaceuticals 16 00872 i080Pharmaceuticals 16 00872 i081Pharmaceuticals 16 00872 i082Pharmaceuticals 16 00872 i083

101 R=αH
102 R=βH
103 R1=R2=H
104 R1=αOH, R2=H
105 R1=βOH, R2=H
106 R1=αOH, R2=OH
107108
Pharmaceuticals 16 00872 i084Pharmaceuticals 16 00872 i085Pharmaceuticals 16 00872 i086Pharmaceuticals 16 00872 i087
109110111112
Pharmaceuticals 16 00872 i088Pharmaceuticals 16 00872 i089Pharmaceuticals 16 00872 i090Pharmaceuticals 16 00872 i091
113114115116
Pharmaceuticals 16 00872 i092Pharmaceuticals 16 00872 i093Pharmaceuticals 16 00872 i094Pharmaceuticals 16 00872 i095
117118119120
Pharmaceuticals 16 00872 i096Pharmaceuticals 16 00872 i097Pharmaceuticals 16 00872 i098Pharmaceuticals 16 00872 i099
121122123124
Pharmaceuticals 16 00872 i100Pharmaceuticals 16 00872 i101Pharmaceuticals 16 00872 i102Pharmaceuticals 16 00872 i103
125126127128
Pharmaceuticals 16 00872 i104Pharmaceuticals 16 00872 i105Pharmaceuticals 16 00872 i106
129130131
Pentalenolactone (132) is a tricyclic sesquiterpenoid antibiotic, derived from pentalenene (107) and synthesized by more than 30 Streptomyces species. The resistance of streptomycetes to 132 was found to be determined by the gap1 gene (sav2990). Pentalenene synthase was first isolated from S. exfoliatus UC5319 in the 1990s. Exemplified by S. avermitilis, S. exfoliatus UC5319, and S. arenae TÜ469, the metabolic pathways of pentalenolactone synthesis were studied. The 13.4 kb BGC comprising 13 unidirectionally transcribed open reading frames (ORFs) (sav2990sav3002) was shown to be responsible for the pentalenolactone (132) synthesis. The cyclization of FPP to 107 is catalyzed by PtlA (sav2998) [125]. Its further oxidation involves PtlI (sav2999) with the formation of 1-deoxypentalen-13-ol (133), 1-deoxypentalen-13-al (134), and 1-deoxypentalenic acid (136) [126], while its oxidation with PtlH hydroxylase (sav2991), PtlF dehydrogenase (sav2993) and PenD, PntD, or PtlD resulted in the formation of (-)-11β-hydroxy-1-deoxypentalic acid (137) [127], 1-deoxy-11-oxopentalenic acid (138) [128], and pentalenolactones D (140), E (141) and F (142) [129], respectively. The penM and pntM genes were found to be responsible to final step in pentalenolactone biosynthesis [130]. Pentalenolactone biosynthesis in S. exfoliatus UC5319 and S. arenae TÜ469 is regulated by the orthologous proteins PenR and PntR [131]. Jiang et al. (2009) described a new direction of the pentalenolactone biosynthetic pathway involving the oxidation of 138 by PtlE (sav2994) to neopentalenolactone D (143), and its subsequent conversion to neopentalenolactone E (144), compound PL308 (145), hydroxyl derivatives (139) and (146), an oxidized lactone (147), and seco-acids 148 and 149 [132].
Pentalenic acid (135), a co-metabolite of 132 and 143, is formed due to the oxidation of 136 by cytochrome CYP105D7 (sav7469) [133]. Genome-wide analysis of Streptomyces sp. NRRL S-4 identified a biosynthetic cluster of pentalenolactone type terpenes: 1-deoxy-8α-hydroxypentalic acid (150) and 1-deoxy-9β-hydroxy-11-oxopentalenic acid (151) [134].
Pharmaceuticals 16 00872 i107Pharmaceuticals 16 00872 i108Pharmaceuticals 16 00872 i109Pharmaceuticals 16 00872 i110
132133 R1=H, R2=CH2OH
134 R1=H, R2=CHO
135 R1=OH, R2=COOH
136 R=H
137 R=OH
138 R=H
139 R=OH
Pharmaceuticals 16 00872 i111Pharmaceuticals 16 00872 i112Pharmaceuticals 16 00872 i113Pharmaceuticals 16 00872 i114
140141142143
Pharmaceuticals 16 00872 i115Pharmaceuticals 16 00872 i116Pharmaceuticals 16 00872 i117Pharmaceuticals 16 00872 i118
144145146147
Pharmaceuticals 16 00872 i119Pharmaceuticals 16 00872 i120Pharmaceuticals 16 00872 i121
148 R=H
149 R=OH
150151
The S. avermitilis SUKA22 transformant with sclav_p1407 afforded eight sesquiterpenes, with the tricyclic isohirsut-1-ene (cucumene, 152) being the main product. With that, slt18_1880 of S. lactacystinaeus OM-6159 was responsible for the formation of isohirsut-4-ene (153). Isohirsut-1-ene (152) and isohirsut-4-ene (153) are linear triquinane sesquiterpenes that have never been isolated from bacteria or any other source before [135] (WO2015022798). Using computer modeling, cucumene synthase B5GLM7, the first TS involved in the synthesis of linear triquinane, was identified in S. clavuligerus ATCC 27604 [136], and its crystal structure was later described [137]. The recombinant sesquiterpene synthase from S. lincolnensis NRRL 2936A produced a novel tetracyclic sesquiterpene isoishwarane (154) with a unique structure [138].
The recombinant SpS from S. xinghaiensis S187 converted 10,11-dehydro-FPP into sesquiterpenes isopentylkelsoene (157) and spat-13-ene (161). Moreover, it transformed GGPP into new diterpenes prenylkelsoene (155), spata-13,17-diene (158), cneorubin Y (159), and GFPP into new sesterterpenes geranylkelsoene (163) and prenylspata-13,17-diene (160). This reaction features of SpS proved that this TS exhibited sesqui-, di-, and sesterterpene synthase activity [84].
Pharmaceuticals 16 00872 i122Pharmaceuticals 16 00872 i123Pharmaceuticals 16 00872 i124Pharmaceuticals 16 00872 i125
152153154155 R=prenyl
156 R=geranyl
157 R=ipent
Pharmaceuticals 16 00872 i126Pharmaceuticals 16 00872 i127Pharmaceuticals 16 00872 i128
158159 R=prenyl160 m=0, n=2
161 m=1, n=0

2.1.2. Diterpenes and Their Derivatives

Two unique terpene cyclases DtcycA and DtcycB from Streptomyces sp. SANK 60404 were described as responsible for the formation of cembrene C (162), (R)-nephthenol (163), (R)-cembrene A (164), and a new compound identified as (4E,8E,12E)-2,2,5,9,13-pentamethylcyclopentadeca-4,8,12-trien-1-ol (165) [139].
Co-cultivation of S. cinnabarinus PK209 with Alteromonas sp. KNS-16 induced the formation of a diterpenoid lobocompactol (166) [140]. The ability of streptomycetes to synthesize new eunicellane-type diterpenoids was proved. Streptomyces sp. CL12-4 [141] and S. albogriseolus SY67903 [142] produced unique benditerpenoic acid (167) and microeunicellols A (168), B (169), respectively. Enzymatic and mechanistic characteristics of the benditerpenoic acid synthase from Streptomyces sp. CL12-4 were described in the article [143].
Pharmaceuticals 16 00872 i129Pharmaceuticals 16 00872 i130Pharmaceuticals 16 00872 i131Pharmaceuticals 16 00872 i132
162163164165
Pharmaceuticals 16 00872 i133Pharmaceuticals 16 00872 i134Pharmaceuticals 16 00872 i135Pharmaceuticals 16 00872 i136
166167168169
The transformants of S. avermitilis SUKA22 containing CldD/CldB, CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diterpene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius and S. avermitilis SUKA22 having the LRD cluster generated 170 [147]. Streptomyces sp. KIB 015 produced four new labdane-type diterpenoids, labdanmycins A–D (175178), while the labE gene deletion led to the formation of raimonol (171), their biogenetic precursor [148]. The formation of compound 171 was also observed upon insertion of the rmn cluster from S. anulatus GM95 to S. avermitilis SUKA22. The transformants S. avermitilis SUKA22 [149] and S. cyslabdanicus K04-0144Δcld [147] containing the cld or lrdABDC clusters produced (7S,8S,12E)-8,17-epoxy-7-hydroxylabda-12,14-diene (179).
The diterpene synthase Stt4548 from Streptomyces sp. PKU-TA00600 catalyzed the normal-copalyl diphosphate (CPP) cyclization to isopimara-8(9),15-diene (180) [150]. Both strains Streptomyces sp. KO-3988 [151] and Streptomyces sp. SN194 [152] synthesized diterpenoid 3-hydroxypimara-9(11),15-diene (viguiepinol, 181) via the formation of ent-CPP (183) and pimara-9(11),15-diene (182) as intermediates.
Pharmaceuticals 16 00872 i137Pharmaceuticals 16 00872 i138Pharmaceuticals 16 00872 i139Pharmaceuticals 16 00872 i140
170 R=H
171 R=OH
172173174
Pharmaceuticals 16 00872 i141Pharmaceuticals 16 00872 i142Pharmaceuticals 16 00872 i143Pharmaceuticals 16 00872 i144
175 R=H
176 R=OH
177 R1=H, R2=CH2OH
178 R1=OH, R2=CH3
179180
Pharmaceuticals 16 00872 i145Pharmaceuticals 16 00872 i146
181 R=OH
182 R=H
183
The biosynthetic cluster responsible for synthesis of tricyclic diterpenoid cyclooctatin (184) was found in S. melanosporofaciens MI614-43F2. This cluster consists of four genes, cotB1-cotB4, encoding GGDP synthase, CotB2 terpene cyclase, and two P450 cytochromes. The incubation of recombinant CotB2 with GGDP resulted in the formation of cyclooctat-9-en-7-ol (187) [153]. Later, the crystal structure and mechanistic characteristics of CotB2 were described [154,155,156,157]. A mutant of diterpene synthase CotB2 (W288G) was found to produce (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene (188), but not the native product 187 [158]. Recombinant E. coli carrying the CotB3 or CotB4 duet vector in combination with AfR-Afx gene cassettes from S. afghaniensis produced 184 with a 43-fold increase (up to 15 mg/L) compared with the native producer. Moreover, CotB3 was found to be able to hydroxylate (−)-casbene (189) to form sinularcasbane D (190) [159]. New 16,17-dihydroxy- (185) [160], 17-hydroxy- (186) [161,162] and 18-acetyl- (191), 5-dehydroxy- (192), and 5,18-dedihydroxy- (193) [163] derivatives of 184 were isolated from Streptomyces sp. LZ35, Streptomyces sp. MTE4a, Streptomyces sp. M56, and Streptomyces sp. ZZ820, respectively. Three new fusicoccane-type diterpenoids, 12α-hydroxy- (194), 12β-hydroxy- (195), and 14-hydroxycyclooctatin (196), were separated from the fermentation broth of S. violascens YIM 100212 isolated from the feces of Ailuropoda melanoleuca [164]. The formation of new tricyclic diterpene lydicene (197) was observed using the recombinant TS StlTC, with unique UbiA-type diterpene cyclases, from S. lydicus [165].
Pharmaceuticals 16 00872 i147Pharmaceuticals 16 00872 i148Pharmaceuticals 16 00872 i149Pharmaceuticals 16 00872 i150
184 R1=R2=CH3
185 R1=R2=CH2OH
186 R1=CH3, R2=CH2OH
187188189 R=H
190 R=βOH
Pharmaceuticals 16 00872 i151Pharmaceuticals 16 00872 i152Pharmaceuticals 16 00872 i153Pharmaceuticals 16 00872 i154
191 R1=OH, R2=COCH3
192 R1=R2=H
193194 R1=αOH, R2=H
195 R1=βOH, R2=H
196 R1=H, R2=αOH
197
Genome mining of S. venezuelae ATCC 15439 revealed ven, a silent biosynthetic cluster responsible for the synthesis of diterpenoids venezuelaenes A (198) and B (5-oxo-venezuelaene A) (199) with a unique 5-5-6-7 tetracyclic skeleton [166]. Rabe et al. (2017) performed a mechanistic study of two diterpene cyclases, spiroviolene synthase from S. violens NRRL ISP-5597 and tsukubadiene synthase from S. tsukubaensis NRRL 18488, which catalyze the formation of 200 and 201. Although the structures of 200 and 201 are significantly different, the cyclization mechanisms of both enzymes proceed through the same initial cyclization reactions, which proved their phylogenetic similarity [167,168]. The generation of a new tetracyclic diterpene cattleyene (202) was observed using the recombinant TS CyS from S. cattleya NRRL 8057 [169].
Pharmaceuticals 16 00872 i155Pharmaceuticals 16 00872 i156Pharmaceuticals 16 00872 i157
198199200
Pharmaceuticals 16 00872 i158Pharmaceuticals 16 00872 i159
201202
Based on the large-deletion mutant S. avermitilis SUKA22, the transformants catalyzing the formation of terpene derivatives with various structures were created. The expression of sclav_p1169 and sclav_p0765 from S. clavuligerus ATCC 26074 led to the formation of monocyclic prenyl-β-elemene (203), prenylgermacrene B (204), bicyclic clavulatriene A (205), clavulatriene B (206) or bicyclic isoelisabethatriene B (207), tetracyclic hydropyrene (208), and hydropyrenol (209). The transformant carrying slt18_1078 from S. lactacystinaeus OM-6159 catalyzed a tricyclic diterpene cyclooctat-7(8),10(14)-diene (210). The stsu_20912 gene from S. tsukubaensis NRRL 18488 was responsible for the synthesis of 201, while the transformant with nd90_0354 from Streptomyces sp. ND90 synthesized tricyclic odyverdienes A (211) and B (212). The derived diterpenoids are novel compounds with unique hydrocarbon skeletons [135] (WO2015022798). Under normal conditions, a hydropyrene synthase from S. clavuligerus ATCC 27064 produced hydropyrene (208, up to 52%) and hydropyrenol (209, up to 26%), and minor amounts of isoelisabethatrienes A (213) and B (207), biosynthetic precursors of pseudopterosins with pronounced anti-inflammatory activity. An increase in the yield of 213 and 207 to 41.91 ± 1.87 mg/L was achieved using a genetically modified hydropyrene synthase [170] (WO2022003167).
Pharmaceuticals 16 00872 i160Pharmaceuticals 16 00872 i161Pharmaceuticals 16 00872 i162
203204205
Pharmaceuticals 16 00872 i163Pharmaceuticals 16 00872 i164Pharmaceuticals 16 00872 i165Pharmaceuticals 16 00872 i166
206207208209
Pharmaceuticals 16 00872 i167Pharmaceuticals 16 00872 i168Pharmaceuticals 16 00872 i169Pharmaceuticals 16 00872 i170
210211212213

2.1.3. Sester-, Tri-, and Tetraterpenes and Their Derivatives

Unlike sesqui- and diterpenes, the formation of terpene derivatives with a chain length of more than 20 carbon atoms was observed only for individual strains of Streptomycetes. Sesterterpene cyclases were isolated from S. somaliensis ATCC 33201™ and S. mobaraensis NBRC 13819 (=NRRL B-3729) and generated new somaliensenes A (214) and B (215) [171], sestermobaraenes A–F (216221), and sestermobaraol (222) [172], respectively.
Pharmaceuticals 16 00872 i171Pharmaceuticals 16 00872 i172
214215
Pharmaceuticals 16 00872 i173Pharmaceuticals 16 00872 i174Pharmaceuticals 16 00872 i175
216217218
Pharmaceuticals 16 00872 i176Pharmaceuticals 16 00872 i177Pharmaceuticals 16 00872 i178
219220221
Pharmaceuticals 16 00872 i179
222
The heterologous expression of hopA and hopB (encoding squalene/phytoene synthases) and hopD (encoding farnesyl diphosphate synthase) from S. peucetius ATCC 27952 in E. coli provided an acyclic triterpene squalene (230) with a yield of 11.8 mg/L [173]. Another acyclic triterpene, botryococcene (231), was produced by activating the Fur22 regulator and simultaneous expression of the biosynthetic genes of S. reveromyceticus SN-593. The yield of the target product was 0.3 g/L, which is comparable to the levels of other microbial producers [174].
Hopanoids are unusual pentacyclic triterpenes present in bacterial species. Hop-22(29)-ene (290) was isolated from wild-type [175,176] and genetically modified strains of streptomycetes [72,177]. A genome-wide analysis of S. scabies 87–22 detected a hopanoid biosynthetic cluster responsible for the synthesis of 232 [178]. The squalene-hopene cyclase (spterp25) catalyzing the complex cyclization of 230 to the pentacyclic triterpene 232 was described for S. peucetius ATCC 27952 [179].
Pharmaceuticals 16 00872 i180Pharmaceuticals 16 00872 i181
223224
Pharmaceuticals 16 00872 i182
225

2.1.4. Hybrid Metabolites (Meroterpenoids)

Meroterpenoids are products of mixed biosynthetic origin that consist of terpenoid scaffold combined with polyketide, alkaloid, phenol, or amino acid. According to their different biosynthetic origins, meroterpenoids can be divided into two groups, polyketide and non-polyketide terpenoids. Meroterpenoids have attracted researchers’ attention due to their unusual chemical structures and a wide range of biological properties [180].
Naphthoquinone-based meroterpenoids are large chemically diverse group including napyradiomycins, merochlorins, marinones, furaquinocins, etc., some of which have a high therapeutic potential. Naphthoquinone-based meroterpenoids derived from streptomycetes are described in the review published in 2020 [181], so our review highlights the most active producers and the derivatives with promising biological activity, as well as compounds isolated after 2020.
Biosynthesis of naphthoquinone-based meroterpenoids includes regioselective addition of aromatic polyketide (1,3,6,8-tetrahydroxynaphthalene) to a terpene diphosphate catalyzed by ABBA prenyltransferase (PTase). After the initial prenylation, oxidation, halogenation and cyclisation steps occur. Genome mining of streptomycetes as producers of naphthoquinone-based meroterpenoids led to the discovery of unique prenyltransferase and vanadium-dependent haloperoxidase (VHPO) enzymes, which differ significantly from those previously described for algae and fungi [182,183]. For instance, the high-resolution crystal structures of two homologous members of the VHPO family associated with napiradiomycin biosynthesis, NapH1 and NapH3, were characterized [184].
Furaquinocins A (226) and B (227) were first isolated from the culture broth of Streptomyces sp. KO-3988 [185] and Streptomyces sp. strain CLl 90 (WO2006081537). Later, analogues of these compounds (228231, 234, 235) [186] and the fur cluster responsible for furaquinocin biosynthesis were determined [187]. Among secondary metabolites derived from Streptomyces sp. TBRC7642 new furaquinocin I (232), streptolactone (239) and previously identified furaquinocins B (227), D (229), and murayaquinone (240) were described [188]. Furaquinocins I (232), J (233), JBIR-136 (236), and furaquinocins K (237) and L (238) were obtained from genetically engineered S. reveromyceticus SN-593 [189], Streptomyces sp. 4963H2 [190], and Streptomyces sp. Je 1-369 [191].
Streptomyces sp. CNH-189 produced unique halogenated meroterpenoids, merochlorins A–J (241250) and meroindenon (251) [192,193,194], of which biosynthesis determined the presence of mcl gene cluster with VHPO genes [182]. Flaviogeranin A (252) is promising neuroprotective agent produced by Streptomyces sp. RAC226 [195]. Along with 252, six flaviogeranin congeners or intermediates (253258), including novel flaviogeranins B1 (255), B (253), containing an amino group, and flaviogeranin D (256), were derived from Streptomyces sp. B9173 [196].
Pharmaceuticals 16 00872 i183 R1R2R3
226OHCH3OH
227OHCH2OHH
228HCH3H
229OHCH3H
230HCH2OHH
231OHCH2OHOH
232OHCOOHH
233OHCONH2H
Pharmaceuticals 16 00872 i184Pharmaceuticals 16 00872 i185
234235
Pharmaceuticals 16 00872 i186Pharmaceuticals 16 00872 i187
236237
Pharmaceuticals 16 00872 i188Pharmaceuticals 16 00872 i189Pharmaceuticals 16 00872 i190
238239240
Pharmaceuticals 16 00872 i191Pharmaceuticals 16 00872 i192Pharmaceuticals 16 00872 i193
241242243
Pharmaceuticals 16 00872 i194Pharmaceuticals 16 00872 i195
244245
246
Pharmaceuticals 16 00872 i196Pharmaceuticals 16 00872 i197
247248 R=OH
249 R=Cl
Pharmaceuticals 16 00872 i198Pharmaceuticals 16 00872 i199
250251
Pharmaceuticals 16 00872 i200Pharmaceuticals 16 00872 i201
252253
Pharmaceuticals 16 00872 i202Pharmaceuticals 16 00872 i203Pharmaceuticals 16 00872 i204
254255256
Pharmaceuticals 16 00872 i205Pharmaceuticals 16 00872 i206
257258
Naphthoquinone-based meroterpenoids naphterpin (259) and related compounds (260263) were produced by Streptomyces sp. CNQ-509 and Streptomyces sp. CL190 (WO2006081537) and displayed pronounced antioxidant effect [197,198,199]. The napyradiomycins are a large group of unique meroterpenoids with different halogenation patterns and a monoterpenoid subunit attached to C10a. Napiradiomycins were first isolated from Chainia rubra in 1986 (later transferred to the genus Streptomyces), and more than 50 analogous compounds have been identified to date. They have been arranged into three main types according to their structural features: Type A with a linear terpene chain; Type B with the side chain cyclized to a cyclohexane ring; and Type C with monoterpenoid subunit cyclized between C7 and C10a of the naphthoquinone core to form a 14-membered ring.
Pharmaceuticals 16 00872 i207Pharmaceuticals 16 00872 i208Pharmaceuticals 16 00872 i209
259260 R=βOH
261 R=αOH
262 R=H
263 R=COCH3
Among napyradiomycins produced by Streptomyces sp. YP127 [200], Streptomyces sp. CA-271078 [201], S. antimycoticus NT17 [202,203], and Streptomyces sp. SCSIO 10428 [204], biologically active napyradiomycin A1 (264) and its Br-containing (266) derivative were isolated. Chemical analysis of a crude extract of Streptomyces sp. YP127 detected a series of napyradiomycins, in particular 16Z-19-hydroxynapyradiomycin A1 (265) possessed the high anti-inflammatory and antioxidant activities [205]. Along with 264, Streptomyces sp. CNQ-329, CNH-070 [206], and Streptomyces sp. SCSIO 10428 [204] produced napyradiomycins B type 273, 274, 275, 284, and the later strain also catalyzed the formation of bicyclic naphthomevalin (289). Napyradiomycins of A (265, 269) and B (275) types as well as SF2415B3 (269), A80915A (277) carrying additional methyl group at C7 and their 4-dehydro-4a-dechloro- (270, 276, 282) derivatives were isolated from S. aculeolatus PTM-029 and PTM-420 [207]. Streptomyces sp. CNQ-525 produced antibacterial or cytotoxic napyradiomycins 277, 280283 [208] and Br-containing 271 [209]. Napyradiomycins 7-demethyl SF2415A3 (272) and 7-demethyl A80915B (285) containing diazonium group as well as R-3-chloro-6-hydroxy-8-methoxy-α-lapachone (286) were derived from S. antimycoticus NT17 [202]. Napyradiomycin D1 (287) was derived from Streptomyces sp. CA-271078 [203] and displayed an unprecedented 14-membered cyclic ether ring between the prenyl side chain and the chromophore, thus representing the first member of a new type of napyradiomycins. The biosynthetic methods for obtaining of napyradiomycins A1 (264), B1 (273), A4 (267), A80915H (290), A80915G (291), naphthomevalin (289) by S. kebangsaanensis WS-68302 (CN114805278); A80915A (277), A80915B (278), A80915D (279), A80915G (291) by S. aculeolatus A80915 (NRRL 18422) (EP0376609); and 3-dechloro-3-bromonapyradiomycin A1 (266) by Streptomyces sp. SCSIO 10428 (CN105399721) were patented.
Four new sesquiterpene naphthoquinones, marfuraquinocins A–D (292295), were isolated from the fermentation broth of S. niveus SCSIO 3406 [210].
Teleocidin B (296) is a well-known naturally occurring tumor promoter. Since the isolation of 296 in the early 1960s [211], more than 44-related compounds have been isolated. In many cases, these compounds have a monoterpene moiety. Biosynthesis of the teleocidin-type indole alkaloids and enzymatic reactions of teleocidin B biosynthesis are summarized in the reviews [212,213,214]. More recent investigation of Streptomyces sp. CNQ766 led to the identification of an unusual meroterpenoid azamerone (297), which has an unprecedented chloropyranophthalazinone core with a 3-chloro-6-hydroxy-2,2,6-trimethylcyclohexylmethyl side chain [215]. Along with known bacterial metabolites WS-9659A14 (lavanducyanin, 304) and the C-2 chlorinated analog WS-9659B14 (305), marinocyanins A–F (298303) were isolated from Streptomyces sp. CNS-284 and CNY-960. Marinocyanins represent first bromo-phenazinones with an N-isoprenoid substituent in the skeleton [216].
Farnesides A (306) and B (307), new sesquiterpene nucleosides, were isolated from Streptomyces sp. CNT-372 [217]. Two new geranylated phenazines, phenaziterpenes A (308) and B (309), were isolated from the fermentation broth of S. niveus SCSIO 3406 [210]. Subsequent genome analysis of this strain revealed the presence of a BGC encoding enzymes necessary for the biosynthesis of 292295, 308, and 309 [218].
Pharmaceuticals 16 00872 i210Pharmaceuticals 16 00872 i211Pharmaceuticals 16 00872 i212
264265266
Pharmaceuticals 16 00872 i213Pharmaceuticals 16 00872 i214Pharmaceuticals 16 00872 i215
267268269
Pharmaceuticals 16 00872 i216Pharmaceuticals 16 00872 i217Pharmaceuticals 16 00872 i218
270271272
Pharmaceuticals 16 00872 i219Pharmaceuticals 16 00872 i220Pharmaceuticals 16 00872 i221
273 R=Cl
274 R=Br
275 R=Cl
276 R=Br
277
Pharmaceuticals 16 00872 i222Pharmaceuticals 16 00872 i223Pharmaceuticals 16 00872 i224
278279280
Pharmaceuticals 16 00872 i225Pharmaceuticals 16 00872 i226Pharmaceuticals 16 00872 i227
281282283
Pharmaceuticals 16 00872 i228Pharmaceuticals 16 00872 i229Pharmaceuticals 16 00872 i230
284285286
Pharmaceuticals 16 00872 i231Pharmaceuticals 16 00872 i232
287288
Pharmaceuticals 16 00872 i233Pharmaceuticals 16 00872 i234
289290 R1=OH, R2=CH2OH
291 R1=H, R2=CH3
Pharmaceuticals 16 00872 i235Pharmaceuticals 16 00872 i236Pharmaceuticals 16 00872 i237
292 R1=βCH3, R2=H
293 R1=αCH3, R2=H
294 R1=βCH3, R2=OH
295 R1=αCH3, R2=OH
296297
Pharmaceuticals 16 00872 i238Pharmaceuticals 16 00872 i239Pharmaceuticals 16 00872 i240
298 R1=R2=H, R3=H
299 R1=R2=H, R3=OH
300 R1=OH, R2=H, R3=H
301 R1=H, R2=OH, R3=H
302303
Pharmaceuticals 16 00872 i241Pharmaceuticals 16 00872 i242
304 R=H
305 R=Cl
306
Pharmaceuticals 16 00872 i243
307
Xiamycin A (310) and its methyl ester (311) were obtained from Streptomyces sp. GT2002/1503 and Streptomyces sp. SCSIO 02999 [219,220]. Xiamycin represents one of the first examples of indolosesquiterpenes isolated from prokaryotes [221]. BGC responsible for xiamycin biosynthesis (xia), key enzymes and intermediates preindosespene (314), indosespenol (315), 316, 317, indosespene (318) were determined and described in [219,222,223,224] (CN102732534). Xiamycins C–E (323, 324, 321) and xiamycin B (313), 318, and sespenine (319), along with 310, were isolated from the culture broth of a Streptomyces sp. HK18 [225] and Streptomyces sp. HKI0595 [226], respectively. New indolosesquiterpenes oridamycins A (326) and B (327) were identified from Streptomyces sp. KS84 [227]. Along with 310 and oxiamycin (320), Streptomyces sp. SCSIO 02999 catalyzed the formation of dixiamycins A (328), B (330), and chloroxiamycin (312). Compounds 328 and 330 represent the first examples of atropoisomerism of naturally occurring N-N-coupled atropo-diastereomers [220] (CN102757908). Genome mining of S. xinghaiensis NRRL B-24674T resulted in the discovery of nine xiamycin analogs, including three novel compounds 19-methoxy-xiamycin (325), 19-carbonyl-xiamycin (322), and 19-hydroxy-24-methyl ester-N-N-dixiamycin (329) [228]. Two new compounds 331 and 332, along with known dixiamycins (333337, 340), were derived from S. olivaceus OUCLQ19-3 [229]. Biocatalytic production of bixiamycins (333/334, 335/336, 337) and sulfonylbixiamycins (338340) using S. albus transformant with xia from Streptomyces sp. SCSIO 02999 was patented, wherein a key role of flavin-dependent enzyme (XiaH) in biosynthesis of sulfadixiamycins, unprecedented sulfonyl-bridged alkaloid dimers, was proved [230,231] (WO2014029498).
The strain Streptomyces sp. K04-0144, representing a novel species S. cyslabdanicus (=NBRC 110081T, DSM 42135T) [232], catalyzed the formation of the N,S-containing labdane diterpenoid cyslabdan A (341) and its 18-hydroxy- (cyslabdan B, 342) and 1’-methoxy- (cyslabdan C, 343) derivatives [233]. Genome-wide analysis of S. cyslabdanicus K04-0144 revealed the cld cluster consisting of the cldA, cldB, cldC, and cldD genes responsible for cyslabdan biosynthesis. The transformants of S. avermitilis SUKA22 containing the cld cluster produced 341 as well as its new 17-hydroxy- (344) and 2α-hydroxy- (345) derivatives, and (7S,8S,12E)-8,17-epoxy-7-hydroxylabda-12,14-diene (346). Insertion of the cld-like rmn cluster from S. anulatus GM95 in S. avermitilis SUKA22 resulted in raimonol (171) [149]. In addition, the heterologous expression of the lrdABDC cluster from S. thermocarboxydus K155 in the S. cyslabdanicus K04-0144Δcld mutant led to the formation of 341 and 346 [147].
Streptomyces sp. KO-3988 [234], S. griseus CB00830 [235], and Streptomyces sp. SN194 [152] synthesized novel oxaloterpins A–E (347351). Two new Cl-containing diterpenoids chloroxaloterpins A (352) and B (353) containing unique groups [(2-chlorophenyl)amino]carbonyl and 2-[(2-chlorophenyl)amino]-2-oxo-acetyl, respectively, were identified among the metabolites of Streptomyces sp. SN194 [152].
Pharmaceuticals 16 00872 i244Pharmaceuticals 16 00872 i245Pharmaceuticals 16 00872 i246
308 R=H
309 R=CH3
310 R1=R2=R3=H
311 R1=R2=H, R3=CH3
312 R1=H, R2=Cl, R3=H
313 R1=OH, R2=R3=H
314 R=H
315 R=CH2OH
316 R=CH(OH)2
317 R=CHO
318 R=COOH
Pharmaceuticals 16 00872 i247Pharmaceuticals 16 00872 i248Pharmaceuticals 16 00872 i249
319320321 R=CH3
322 R=H
Pharmaceuticals 16 00872 i250Pharmaceuticals 16 00872 i251
323 R1=H, R2=αOH, R3=H
324 R1=H, R2=αOH, R3=CH3
325 R1=H, R2=OCH3, R3=H
326 R=CH3
327 R=CH2OH
Pharmaceuticals 16 00872 i252Pharmaceuticals 16 00872 i253
328 R=H
329 R=CH3
330 dixiamycin B
Pharmaceuticals 16 00872 i254Pharmaceuticals 16 00872 i255
331332
Pharmaceuticals 16 00872 i256Pharmaceuticals 16 00872 i257
333334
Pharmaceuticals 16 00872 i258Pharmaceuticals 16 00872 i259
335336
Pharmaceuticals 16 00872 i260Pharmaceuticals 16 00872 i261
337338
Pharmaceuticals 16 00872 i262Pharmaceuticals 16 00872 i263
339340
Pharmaceuticals 16 00872 i264Pharmaceuticals 16 00872 i265
341 R1=R2=H, R3=CH3, R4=H
342 R1=R2=H, R3=CH2OH, R4=H
343 R1=R2=H, R3=R4=CH3
344 R1=H, R2=OH, R3=CH3, R4=H
345 R1=OH, R2=H, R3=CH3, R4=H
346
Pharmaceuticals 16 00872 i266Pharmaceuticals 16 00872 i267Pharmaceuticals 16 00872 i268Pharmaceuticals 16 00872 i269
347 R= 348 R=349 R=
Pharmaceuticals 16 00872 i270351 R=NH2Pharmaceuticals 16 00872 i271Pharmaceuticals 16 00872 i272
350 R= 352 R=353 R=
Streptomyces sp. Tü6071 produced phenalinolactones A–D (354357), tricyclic terpene glycosides, and their derivatives 359362, 365, and 366 [236,237]. The mutants of Streptomyces sp. Tü6071 with inactivated oxygenase genes (plaO2, plaO3, plaO5), dehydrogenase genes (plaU, plaZ) and putative acetyltransferase gene (plaV) yielded phenalinolactone derivatives PL HS2 (364), PL X1 (363) PL HS6 (367), and PL HS7 (368) [238]. Later, the intermediates of synthesis of phenalinolactones A (354) and D (357) were identified as PL IM1 (370) and PL IM2 (369), respectively [239]. Heterologous expression of the phenalinolactone BGC (35 genes) in S. coelicolor M512 resulted in the formation of the non-glycosylated derivative phenalinolactone E (358) [240].
Tiancilactones A–K (371381), close structural analogues of phenalinolactones, were discovered by genome mining of diterpene synthases in Streptomyces sp. CB03234 and Streptomyces sp. CB03238. Tiancilactones are characterized by a highly functionalized diterpene backbone, which comprises chloroanthranilate and γ-butyrolactone moieties, and exhibit antibacterial activity [241]. Two new terpenoids with unique a 6-6-6-fused ring system and an oxidized unsaturated γ-lactone, namely trinulactones A (382) and B (383), were isolated from Streptomyces sp. S006 [242].
Pharmaceuticals 16 00872 i273
R1R2R3R4
354OH-CO-CH3Pharmaceuticals 16 00872 i274CH3
355OH-CO-CH3Pharmaceuticals 16 00872 i275H
356OH-CO-CH3Pharmaceuticals 16 00872 i276-CH2-O-CH3
357H-CO-CH3Pharmaceuticals 16 00872 i277CH3
358H-CO-CH3OHCH3
359H-CO-CH3Pharmaceuticals 16 00872 i278CH3
360HHHCH3
361H-CO-CH3HCH3
362HHOHCH3
363HHPharmaceuticals 16 00872 i279CH3
364H-CO-CH3Pharmaceuticals 16 00872 i280-CH2-O-CH3
Pharmaceuticals 16 00872 i281Pharmaceuticals 16 00872 i282367 R=αOH
368 R=O
Pharmaceuticals 16 00872 i283
365 R=αOH
366 R=O
369 R
Pharmaceuticals 16 00872 i284Pharmaceuticals 16 00872 i285
370371 R1=Cl, R2=CH3, R3=OCH3
372 R1=H, R2=CH3, R3=OCH3
373 R1=Cl, R2=CH3, R3=OH
374 R1=Cl, R2=CH3, R3=oxo
375 R1=Cl, R2=H, R3=OCH3
Pharmaceuticals 16 00872 i286Pharmaceuticals 16 00872 i287
376377
Pharmaceuticals 16 00872 i288Pharmaceuticals 16 00872 i289
378379 R=H
380 R=CH3
Pharmaceuticals 16 00872 i290Pharmaceuticals 16 00872 i291
381 R=H
382 R=OH
383
Fusicomycin A (384), its isomer 385, and fusicomycin B (386) were separated from the fermentation broth of S. violascens YIM 100212 [164]. Two new non-cytotoxic diterpene streptooctatins A (387) and B (388) were obtained from Streptomyces sp. KCB17JA11 [243]. Actinoranone (389) is new meroterpenoid derived from Streptomyces sp. CNQ-027 consisting of an unprecedented dihydronaphthalenone polyketide linked to a bicyclic diterpenoid [244].
Pharmaceuticals 16 00872 i292Pharmaceuticals 16 00872 i293Pharmaceuticals 16 00872 i294Pharmaceuticals 16 00872 i295
384 R=385 R=386 R=
Pharmaceuticals 16 00872 i296Pharmaceuticals 16 00872 i297Pharmaceuticals 16 00872 i298
387388389
S. platensis MA7327 and S. platensis MA7339 were shown to synthesize platensimycin (390) and platencin (391), representatives of a new class of broad-spectrum antibiotics against Gram-positive bacteria, in particular S. aureus [245,246]. Further study proved the involvement of ent-kaurene and ent-atiserene synthases in biosynthesis of 390 and 391, representing a new biosynthetic pathway for diterpenoids [247,248,249]. The crystal structure of PtmT2, an ent-copalyl diphosphate synthase involved in the biosynthesis of 390 and 391 in S. platensis CB00739, was described. PtmT2 catalyzed the cyclization of GGPP to ent-CPP, which subsequently channeled into (16R)-ent-kauran-16-ol (392) or ent-atiserene (393) by two distinct type (canonical or UbiA-type) diterpene synthases specific for biosynthesis of 390 or 391, respectively [250]. The metabolically engineered strains S. platensis SB12002 and SB12600 produced 390 and 391 with yields of 323 ± 29 mg/L and 255 ± 30 mg/L, respectively, hundreds of times greater than those of wild-type strains [251,252] (US20090081673). S. platensis SB12600, in addition to 391, accumulated eight new congeners, platencins A2–A9 (394402) [253]. A method for obtaining 390 using the mixed culture of S. hygroscopicus HOK021 (NITE P-02560) and Tsukamurella pulmonis TP-B0596 was patented (JP2019149945). Exemplified by 390 and 391, a method of searching for novel natural compounds based on the analysis of biosynthetic genes was proposed (WO2015200501). Data on the biosynthesis features and biological activity of natural and synthetic analogues of platensimycin and platencin were summarized in the reviews [254,255].
The intermediates of hopanoids biosynthesis, N-containing aminobacteriohopanetriol (403), and adenosylhopane (405), as well as bacteriohopanetetrol (404) and ribosylhopane (406), were determined. Orf14 and orf18 of S. coelicolor A(3)2 responsible for the synthesis of 403 were identified [176].
Among the secondary metabolites of Streptomyces sp. YIM 56130, triterpene glycoside soyasaponin I (407) [94] with a wide spectrum of biological activities [256] was obtained. The tetraterpene glycoside KS-505a (longestin, 408) produced by S. argenteolus A-2 (FERM BP2065) has a unique structure consisting of a tetraterpene skeleton with 2-O-methylglucuronic acid and O-succinyl benzoate moieties [257].
Pharmaceuticals 16 00872 i299Pharmaceuticals 16 00872 i300Pharmaceuticals 16 00872 i301
390391392
Pharmaceuticals 16 00872 i302Pharmaceuticals 16 00872 i303
393394 R1=OH, R2=H
395 R1=H, R2=OH
Pharmaceuticals 16 00872 i304Pharmaceuticals 16 00872 i305
396 R1= R2=H
397 R1=OH, R2=H
398 R1=H, R2=OH
399 R=OH
Pharmaceuticals 16 00872 i306Pharmaceuticals 16 00872 i307
400401 R=SCH3
402 R=OCH3
Pharmaceuticals 16 00872 i308Pharmaceuticals 16 00872 i309Pharmaceuticals 16 00872 i310
403 R=NH2
404 R=OH
405
Pharmaceuticals 16 00872 i311Pharmaceuticals 16 00872 i312
406
407
Pharmaceuticals 16 00872 i313
408

2.2. Terpene Derivatives Produced by Others Actinomycetes and Their Enzymes

Although most of the found actinomycete terpene derivatives are synthesized by streptomycetes, there is an increasing number of publications on terpene biosynthesis by representatives of the genera Nocardiopsis, Amycolatopsis, Isoptericola, Saccharopolyspora, Salinispora, Kitasatosporia, Verrucosispora, etc. The compounds produced are represented mainly by sesqui- and diterpenes and their derivatives.

2.2.1. Mono- and Sesquiterpenes and Their Derivatives

Among the secondary metabolites of Nocardiopsis chromogenes YIM 90109, two new monocyclic germacradiene-type sesquiterpenoids germacradiene-9β,11-diol (409) and 11-hydroxy-germacradien-2-one (2-oxygermacradienol, 410) were identified along with the known geosmin-type sesquiterpenoid 46 [258]. The TSs from Kitasatospora setae KM-6054 [259] and Micromonospora marina DSM 45555 [260] catalyzed the formation of hedycaryol (411) and (−)-germacrene A (27), respectively. The ability to produce bicyclic 2-methylisoborneol (6) and geosmin (22) was described for Nocardia cummidelens and N. fluminea [59]. The transformant of S. avermitilis carrying the genes from Saccharopolyspora erythraea NRRL2338 yielded 2-methylisoborneol (6), while Micromonospora olivasterospora KY11048 synthesized 2-methyleneornane (412) [58].
Pharmaceuticals 16 00872 i314Pharmaceuticals 16 00872 i315Pharmaceuticals 16 00872 i316Pharmaceuticals 16 00872 i317
409410411412
Two new monocyclic sesquiterpenoids (413 and 414) were isolated from the culture medium of Amycolatopsis alba DSM 44262 [261]. Among the secondary metabolites of Isoptericola chiayiensis BCRC 16888, a new sesquiterpenoid isopterchiayione (415) was registered [262]. A new trichoacorenol sesquiterpene synthase from Amycolatopsis benzoatilytica DSM 43387 catalyzing the formation of a bicyclic sesquiterpenoid (416) was described [263]. Verrucosispora gifhornensis YM28-088 [264] and Verrucosispora sp. FIM06031 produced bicyclic sesquiterpenoid cyperusol C (417) and FW03104 (418) (CN101898936), respectively.
Terpene synthases from Streptosporangium roseum DSM 43021 and Kitasatosporia setae KM-6054 afforded tricyclic sesquiterpenoids epi-cubebol (419) [265] and new corvol ethers A (420) and B (421) [265,266], respectively. The terpene synthase from Saccharothrix espanaensis DSM 44229 [103] was incubated with FPP to yield a sesquiterpene (E)-β-caryophyllene (93).
Pharmaceuticals 16 00872 i318Pharmaceuticals 16 00872 i319Pharmaceuticals 16 00872 i320
413414415
Pharmaceuticals 16 00872 i321Pharmaceuticals 16 00872 i322Pharmaceuticals 16 00872 i323
416417418
Pharmaceuticals 16 00872 i324Pharmaceuticals 16 00872 i325Pharmaceuticals 16 00872 i326
419420421

2.2.2. Di- and Triterpenes and Their Derivatives

The TS from Micromonospora marina DSM 45555 was functionally characterized to produce micromonocyclol (422), a new diterpene alcohol with a rare 15-membered ring [267]. Mycobacterium tuberculosis H37Rvн synthesized unique bicyclic diterpenoids, which presumably block the formation of phagolysosomes in human macrophages. The Rv3377c and Rv3378c genes proved to be responsible for synthesis of tuberculosinol (5(6),13(14)-halimadiene-15-ol, 423), 13R- (424) and 13S-isotuberculosinol (5(6),14(15)-halimadiene-13-ol, 425), and nosyberkol (426) (previously identified as edaxadiene). The analogs of Rv3377c and Rv3378c were found in the virulent strains of M. tuberculosis CDC1551 and M. bovis subsp. bovis AF2122/97, but did not occur in non-pathogenic strains [268,269,270,271,272]. Later, the crystal structure of the Rv3377 diterpene synthase was described [273].
A bicyclic terpenoid terpentecin (427) was firstly separated from the fermentation broth of Kitasatosporia griseola MF730-N6 (syn. Streptomyces griseolosporeus MF730-N6) in 1985 [274]. A BGC responsible for the terpentecin biosynthesis includes seven ORFs (ORF8-ORF14). Expression of two cyclase genes ORF11 and ORF12 in S. lividans together with the GGDP synthase gene resulted in the formation of a new cyclic diterpene ent-clerod-3,13(16),14-triene (terpentetriene, 428) with a structure similar to 427 [275,276,277]. CYC2, which converted terpentedienyl phosphate (429) to 428, accepted labdane-type diterpene diphosphates (+)-CDP (430), syn-CDP (431), (−)-ent-CDP (432), as well as halimane-type diterpene diphosphate (TBPP, 433) and catalyzed the formation of corresponding derivatives (434437) [278].
Heterologous expression of the biosynthetic terp1 operon from Salinispora arenicola CNS-205 in E. coli led to the generation of isopimara-8,15-dien-19-ol (438). It should be noted that this terpenoid was not observed in pure cultures of S. arenicola CNS-205. Apparently, the terp1 operon was expressed under certain conditions, for example, in the presence of other marine organisms [279]. The terpene synthase Sat1646 from Salinispora sp. PKU-MA00418 accepted CPP and syn-CPP and produced syn-isopimaradiene/pimaradiene analogues (180, 439446). Compound 439 possess a unique and previously unreported 6-6-7 ring skeleton [150]. New hydroxylated derivatives of isopimaradiene, gifhornenolones A (447) and B (448), were isolated from the culture medium of Verrucosispora gifhornenensis YM28-088 [264]. Among secondary metabolites of Micromonospora haikouensis G039 [280] and Microbispora hainanensis CSR-4 [281], new diterpenoids isopimara-2-one-3-ol-8,15-diene (449) and 2α-hydroxy-8(14),15-pimaradien-17,18-dioic acid (450) were identified, respectively.
Actinomadura sp. SpB081030SC-15 [282] and Actinomadura sp. KC 191 [283] synthesized new JBIR-65 (451) and actinomadurol (452), rare bacterial C-19 norditerpenoids. A norditerpenoid k4610422 (453), originally discovered from a mesophilic rare actinomycete of the genus Streptosporangium, was isolated from the culture extract of a thermophilic actinomycete Actinomadura sp. AMW41E2 [284].
Pharmaceuticals 16 00872 i327Pharmaceuticals 16 00872 i328Pharmaceuticals 16 00872 i329Pharmaceuticals 16 00872 i330
422423424425
Pharmaceuticals 16 00872 i331Pharmaceuticals 16 00872 i332Pharmaceuticals 16 00872 i333Pharmaceuticals 16 00872 i334
426427428429
Pharmaceuticals 16 00872 i335Pharmaceuticals 16 00872 i336Pharmaceuticals 16 00872 i337Pharmaceuticals 16 00872 i338
430 R=αH
431 R=βH
432433434
Pharmaceuticals 16 00872 i339Pharmaceuticals 16 00872 i340Pharmaceuticals 16 00872 i341
435436437
Pharmaceuticals 16 00872 i342Pharmaceuticals 16 00872 i343Pharmaceuticals 16 00872 i344Pharmaceuticals 16 00872 i345
438439440441
Pharmaceuticals 16 00872 i346Pharmaceuticals 16 00872 i347Pharmaceuticals 16 00872 i348Pharmaceuticals 16 00872 i349
442443444445
Pharmaceuticals 16 00872 i350Pharmaceuticals 16 00872 i351Pharmaceuticals 16 00872 i352Pharmaceuticals 16 00872 i353
446447448449
Pharmaceuticals 16 00872 i354Pharmaceuticals 16 00872 i355Pharmaceuticals 16 00872 i356Pharmaceuticals 16 00872 i357
450451452453
Diterpene synthases from Catenulispora acidiphila DSM 44928 and Saccharopolyspora spinosa NRRL 18395 produced new di- and tricyclic catenul-14-en-6-ol (454), isocatenula-2,14-diene (455), isocatenula-2(6),14-diene (456) [285], and spinodienes A (457), B (458), and 2,7,18-dolabellatriene (459) [286], respectively. All obtained compounds are characterized by unique carbon skeletons.
Terpene synthases isolated from Nocardia testacea NBRC 100365 and N. rhamnosiphila NBRC 108938 accepted GGPP, but not GPP, FPP, or GFPP as a substrate, which was converted by both enzymes in a tetracyclic diterpene phomopsene (460) [169]. Allokutzneria albata DSM 44149 encoded four diterpene synthases that catalyze the formation of mono-, tri-, and tetracyclic compounds: new spiroalbatene (461), bonnadiene (462) and allokutznerene (463), and known compounds: cembrene A (164), thunbergol (464), phomopsene (460), and spiroviolene (200) [287,288].
Hopanoid lipids (465482) were found in the genus Frankia [289] with the highest level among all known organisms. Short stretches of DNA have been identified that are thought to contain squalene-hopene cyclase genes (shc) [290]. A new sesquarterpenoid identified as heptaprenylcycline B (483) was isolated from the cell walls of nonpathogenic mycobacteria [291,292].
Pharmaceuticals 16 00872 i358Pharmaceuticals 16 00872 i359Pharmaceuticals 16 00872 i360Pharmaceuticals 16 00872 i361
454455456457
Pharmaceuticals 16 00872 i362Pharmaceuticals 16 00872 i363Pharmaceuticals 16 00872 i364Pharmaceuticals 16 00872 i365
458459460461
Pharmaceuticals 16 00872 i366Pharmaceuticals 16 00872 i367Pharmaceuticals 16 00872 i368
462463464
Pharmaceuticals 16 00872 i369Pharmaceuticals 16 00872 i370
Pharmaceuticals 16 00872 i371Pharmaceuticals 16 00872 i372Pharmaceuticals 16 00872 i373Pharmaceuticals 16 00872 i374Pharmaceuticals 16 00872 i375Pharmaceuticals 16 00872 i376
465 R1466 R1467 R1472 R1473 R1474 R1
468 R1
Pharmaceuticals 16 00872 i377
475 R1
Pharmaceuticals 16 00872 i378
R1
Pharmaceuticals 16 00872 i379
469 R2=H
470 R2=-COCH2CH3
471 R2=-COCH2C6H5
R1
Pharmaceuticals 16 00872 i380
476 R2=H
477 R2=-COCH2CH3
478 R2=-COCH2C6H5
Pharmaceuticals 16 00872 i381Pharmaceuticals 16 00872 i382Pharmaceuticals 16 00872 i383
479480481
Pharmaceuticals 16 00872 i384Pharmaceuticals 16 00872 i385
482483

2.2.3. Hybrid Metabolites (Meroterpenoids)

Verrucosispora sp. FIM06031 synthesized bicyclic sesquiterpenoid FW03105 (484) (CN101921721). Saccharomonospora sp. CNQ-490 produced saccharoquinoline (485), meroterpenoid with drimane-type sesquiterpene unit [293]. Two new halimane-type diterpenoids, micromonohalimanes A (486) and B (487), were derived from Micromonospora sp. WMMC-218, a symbiont of marine ascidians Symplegma brakenhielmi [294]. Further research of Rv3378c from Mycobacterium tuberculosis H37Rvн revealed that this enzyme catalyzed the formation of 1-tuberculosinyladenosine (488) and its two isomers, one of which was identified as N6-tuberculosinyladenosine (489). Compounds 488 and 489 are specific diterpene nucleosides of pathogen of Mycobacterium tuberculosis and can serve as chemical markers of infection [295,296,297]. Heterologous expression of gene pair Rv3377c-Rv3378c from M. tuberculosis H37Rvн in M. kansasii led to the production of 1-tuberculosinyladenosine (488) [298].
The ability of Nocardia brasiliensis IFM 0406 (now N. terpenica) to synthesize diterpene glycoside brasilicardin A (490) was first described in 1999 [299]. Brasilicardin A (490) displays a unique structure consisting of a diterpene skeleton with L-rhamnose, N-acetylglucosamine, amino acid, and 3-hydroxybenzoate components [300]. Later, three new terpenoids were derived from N. terpenica IFM0406 and identified as brasilicardins B–D (491493) [301]. The heterologous expression of a biosynthetic cluster (bra0-12), responsible for the synthesis of 490, in Amycolatopsis japonicum (A. japonicum::bcaAB01) led to the formation of four brasilicardin congeners, namely BraC (492), BraD (493), BraC-agl (BraE, 494), and BraD-agl (BraF, 495) [302,303,304,305]. The use of the S. griseus::bcaAB01 (pRHAMO) transformant containing the biosynthetic cluster of brasilicardin A and a plasmid with a biosynthetic cassette for the generation of TDP-L-rhamnose resulted in increased yields of compounds 492 (1669 mg/L), 495 (926 mg/L), and a new metabolite (496) (15 mg/L). The target 490 was obtained through a five-step chemical modification of 494 [306].
Cloning and activation of the atolypene (ato) gene cluster from Amycolatopsis tolypomycina NRRL B-24205 in S. albus led to the characterization of two unprecedented tricyclic sesterterpenoids atolypenes A (497) and B (498) [307]. Terretonin N (499), a new highly oxygenated unique tetracyclic 6-hydroxymeroterpenoid, was derived from Nocardiopsis sp. LGO5 [308].
Pharmaceuticals 16 00872 i386Pharmaceuticals 16 00872 i387Pharmaceuticals 16 00872 i388Pharmaceuticals 16 00872 i389
484485486487
Pharmaceuticals 16 00872 i390Pharmaceuticals 16 00872 i391
488489
Pharmaceuticals 16 00872 i392490 R=OCH3
491 R=H
Pharmaceuticals 16 00872 i393Pharmaceuticals 16 00872 i394
492 R=OCH3
493 R=H
494 R=OCH3
495 R=H
Pharmaceuticals 16 00872 i395
496
Pharmaceuticals 16 00872 i396Pharmaceuticals 16 00872 i397Pharmaceuticals 16 00872 i398
499
497 R
Pharmaceuticals 16 00872 i399
498 R

3. Discussion

The present review demonstrates that actinomycetes synthesize a wide variety of terpene derivatives ranging from monocyclic monoterpenes to polycyclic tri- and tetraterpenes and their various derivatives. Most actinomycete terpene derivatives are produced by Streptomyces, however, terpene biosynthesis by Allokutzneria, Amycolatopsis, Frankia, Kitasatosporia, Nocardia, Salinispora, Verrucosispora, etc., have been recently reported (Figure 3). The total number of identified terpenes and their derivatives exceeds 500. Among terpenes and terpenoids, sesqui- and diterpenoids predominate. The ability of streptomycetes to synthesize a wide range of hybrid metabolites (meroterpenoids), the total number of which exceeds 190, was shown. More than 350 actinomycete-derived terpenoids and meroterpenoids are novel compounds and frequently with unique carbon skeletons (Figure 4).
An extensive development of genome-sequencing technologies and bioinformatics tools have allowed the discovery of BCGs (including silent ones) in the genome of actinomycetes. That terpenoids and meroterpenoids are predominantly found among Streptomyces strains is presumably due to plenty of available genetic information about this group of actinomycetes. As of 26 June 2022, 1784 scaffold-level and 745 complete-level genome sequences of Streptomyces strains were available in the NCBI database. Recent genetic studies have shown that the biosynthetic potential of these actinomycetes is enormous. A genome-wide analysis of 22 Streptomyces species revealed more than 900 biosynthetic clusters; for most of these, the products are still unidentified [309]. In addition, Streptomyces are preferred hosts for the heterologous expression of terpene biosynthetic clusters from other microorganisms [48,50,310]. Since 2015, high biosynthetic potential of actinomycete genera such as Saccharopolyspora [311], Nocardiopsis [312], Rhodococcus [313,314], Salinispora [315], Verrucosispora [316], and Actinomadura [317] have been demonstrated. For instance, a genome-wide analysis of terpentecin- or brasilicardin-producing strains K. griseola MF730-N6 [318] and N. terpenica IFM0406 [319] revealed 15 and 47 BGCs yielding unidentified natural products, respectively. One of the main problems in terpene biosynthesis is that most biosynthetic clusters are silent; therefore, searching for methods of their activation is an urgent research direction. Currently, great success has been achieved in this field due to methods of heterologous expression and/or genome editing of the native producer [320]. Genomic data of the described actinomycete species demonstrated that 90% of the biosynthetic potential of these microorganisms is untapped yet and the possibility of discovering novel terpenoids with potential therapeutic effects remains [15,52,310,321]. Microbial collections can serve as a “springboard” for the discovery and patenting of new producers of bioactive terpene derivatives, as they include identified and well-characterized pure microbial cultures. For instance, the Regional Specialized Collection of Alkanotrophic Microorganisms (acronym IEGM, Perm, Russia; World Federation for Culture Collections # 285; USU 73559; http://www.iegmcol.ru/strains, accessed on 25 March 2022) contains more than 3000 strains of actinomycetes with a wide range of metabolic capabilities, which are promising for biocatalytic production of terpene derivatives [322,323,324,325,326] (RU0002529365).
Unlike the biosynthesis of well-studied secondary metabolites, such as polyketides and nonribosomal peptides, the prediction of terpene structures requires detailed understanding of the cyclization mechanisms and the structural characteristics of bacterial TSs [321,327]. In this regard, a separate research area is isolation of individual actinomycete terpene synthases, and description of their structural and mechanistic characteristics, as well as the study of terpene cyclization mechanisms. The crystal structures of linalool/nerolidol, 2-methylisoborneol, germacradienol/germacrene D, selina-4(15),7(11)-diene, epi-zizaene, pentalenene, cucumene, (E)-biformene synthases, and other TSs isolated from streptomycetes were characterized. In turn, genome mining of streptomycetes as producers of naphthoquinone-based meroterpenoids led to the discovery of unique prenyltransferase (PTase) and vanadium-dependent haloperoxidase enzymes (VHPO) [182,183]. For instance, the high-resolution crystal structures of two homologous members of the VHPO family associated with napiradiomycin biosynthesis, NapH1 and NapH3, were characterized [184]. It has been found that bacterial TSs, PTases, and VHPOs differ significantly from the plant or fungi ones as well as from each other. Moreover, they are capable of producing dozens of different compounds, which distinguishes them from most bacterial biosynthetic enzymes [46]. By the example of an epi-zizaene synthase, the successful application of site-directed mutagenesis of the enzyme to control the range of the compounds produced was proved [110,122] (WO2015120431).
Actinomycetes produce terpenoids with various biological and pharmacological activities such as antimicrobial, anticancer, antioxidant, antiviral, anti-inflammatory, immunosuppressive, etc. (Table 2). However, the bioactivity for most of the new actinomycete-derived terpenoids has not yet been determined but may be discovered in the future. For instance, napyridymycins A1 and A80915 A, B, C, D were originally known as antimicrobial agents, but after 2010, their high antiviral and cytotoxic activity have been determined. Among the biologically active actinomycete terpenoids, compounds with pronounced antimicrobial activity predominate (Figure 5A). They seem to inhibit the growth of extraneous microflora and render actinomycetes competitive in the microbial community. This statement is confirmed by the fact that some actinomycetes begin to produce terpenoids in the presence of other microorganisms. Thus, S. cinnabarinus PK209 and S. hygroscopicus HOK021 (NITE P-02560) synthesize the diterpene lobocompactol and the antibiotic platensimycin in the presence of the Gram-negative Alteromonas sp. KNS-16 [140] and the Gram-positive Tsukamurella pulmonis TP-B0596 (JP2019149945), respectively. The effectiveness of actinomycete terpenoids and meroterpenoids, namely pentalenolactone, albaflavenone, platensimycin, platencin, terpentecin, lavanducyanin, marinocyanins A–C, furaquinocin L, 3-dechloro-3-bromonapyradiomycin A1, napyradiomycin A1, and merochlorin A, as promising antibiotics has been proven. This is true for cyslabdan, which enhances the action (1000-fold) of the antibiotic imipenem against MRSA. In addition to high antibacterial activity, many meroterpenoids, such as napyradiomycins B1, B3, B4, A80915A, B, C, furaquinocins A and B, murayaquinone, marinocyanin A–C, and saccharoquinoline, exhibit a high cytotoxic activity against different cancer cell lines (Figure 5B).
The high biological activity of meroterpenoids is probably associated with the addition of an isoprene fragment to the pharmacophore polyketide part that increases the affinity for biological membranes. The unique biological and structural properties of meroterpenoids contribute to the search for methods of their total and semi-synthetic synthesis [328,329,330].
Actinomycete-derived terpenoids participate in specific interactions with macroorganisms (plants and animals), regulate the bacterial life cycle, perform protective functions, or serve as taxonomic markers. Bacterial terpenoids are often optical isomers of plant terpenoids and may represent two chemical communication channels that do not overlap even if the same habitat is occupied by prokaryotic and eukaryotic organisms producing terpenes [103]. Soil-smelling terpenoids geosmin and 2-methylisoborneol were shown to play the role of signaling molecules for springtails (Collembola), which spread Streptomyces spores in the soil [331]. According to other reports, these terpenoids are aposematic signals used to indicate the unpleasant taste qualities of toxin-producing microbes, preventing predation by eukaryotes [332]. Čihák et al. (2017) pointed out that during germination of S. coelicolor M145 spores, they synthesize albaflavenone, which may coordinate the development of the producer (quorum sensing) and/or play a role in the competitive repression of microflora (quorum suppression) in the natural environment [117]. In the liquid culture, S. coelicolor A3(2) does not produce aminobacteriohopanetriol or produces this compound in negligible amounts. However, the triterpene generation increased sharply during the formation of an aerial mycelium and sporulation, which may be associated with structural changes in the membrane and protection against water loss [176]. In addition, some TSs and terpene derivatives are so unique that they can become a taxonomic trait and be used to identify different groups of actinomycetes. For instance, the bioinformatics analysis of all sequenced Micromonospora isolates revealed TS genes, which differ significantly from other groups of characterized bacterial TSs and may be useful as markers of the genus, while Mycobacterium tuberculosis H37Rvн produced specific diterpene nucleosides, 1- and N6-tuberculosinyladenosines, promising for development as specific diagnostic markers of tuberculosis.
Despite the significant (more than 300) number of publications on terpene biosynthesis by actinomycetes, the conducted patent analysis revealed only 26 patents in this research area (Table S1). Terpenoids such as linalool, geosmin, caryolan-1-ol, and pseudopterosin intermediates as well as meroterpenoids, namely napyradiomycins A4, A80915, bixiamycins, and sulfonylbixiamycins, were obtained from native or genetically modified streptomycetes, their genetic constructs, or individual terpene synthases. The relatively small number of active patents may be due to the initial stage of research in this area. In addition, wild-type strains are not suitable for commercial purposes, as they produce low quantities of target products.
Table 2. Biologically active terpene derivatives derived from actinomycetes.
Table 2. Biologically active terpene derivatives derived from actinomycetes.
CompoundPreviously Isolated from Other SourcesStrain/EnzymePatentBiological Activity
Mono- and sesquiterpenes
1,8-Cineole (1)Yes Streptomyces clavuligerus ATCC 27064[53,54,55]WO2018142109anti-inflammatory
antioxidant
[333]
Linalool (2)YesStreptomyces clavuligerus ATCC 27064[53,54,55]WO2020234307
WO2018142109
anticancer
antimicrobial
neuroprotective
anxiolytic
antidepressant
anti-stress
hepatoprotective
[334]
Streptomyces sp. GWS-BW-H5[53]
Nerolidol (3)YesStreptomyces clavuligerus ATCC 27064[53,54,55]WO2018142109
WO2020234307
antimicrobial
anti-biofilm
antioxidant
antiparasitic
skin-penetration enhancer
skin-repellent
antinociceptive
anti-inflammatory
anticancer
[335]
α-Pinene (7)
β-Pinene (8)
YesStreptomyces coelicolor A3(2)[63] antimicrobial[336]
Limonene (9)YesStreptomyces coelicolor A3(2)[63] antimicrobial
antioxidant
anti-inflammatory
antidiabetic
[337]
γ-Terpinene (10)
δ-Terpinene (11)
YesStreptomyces coelicolor A3(2)[63] antioxidant[338]
(1R)-(+)-Camphor (12)YesStreptomyces coelicolor A3(2)[65] insecticidal[339]
(-)-epi-α-Bisabolol (18)YesStreptomyces citricolor NBRC 13005[67] anti-inflammatory
analgesic
antibiotic
anticancer
[340]
Germacrene B (26)
Germacrene D (24)
YesTS from Streptomyces pristinaespiralis ATCC 25486[82] antileishmanial
antiproliferative
[341]
SAV76 from Streptomyces avermitilis[83]
SpS from Streptomyces xinghaiensis S187[84]
Streptomyces hygroscopicus NRRL 15879[66]
Bicyclogermacrene (28)YesSpS from Streptomyces xinghaiensis S187[84] antibacterial
antifungal
[342]
Isopterchiayione (415)No Isoptericola chiayiensis BCRC 16888[262] anti-inflammatory (IC50 24.72 ± 1.25 µM)[262]
Cyperusol C (417)Yes Verrucosispora gifhornensis YM28-088[264] antiviral (against hepatitis B virus, IC50 14.1 ± 1.1 µM)[343]
epi-Cubenol (31)YesStreptomyces sp. GWS-BW-H5[53] antifungal[344]
Transf. Streptomyces lividans TK21 gecA from Streptomyces griseus IFO13350[87]
Streptomyces albolongus YIM 101047[73]
Streptomyces griseus NBRC102592[88]
Streptomyces roseosporus NRRL 11379[5]
Streptomyces sp. SirexAA-E[5]
Streptomyces roseosporus NRRL15998[237]
Streptomyces flavogriseus ATCC33331[237]
Kandenol A (36)
Kandenol B (37)
Kandenol C (38)
Kandenol D (39)
Kandenol E (40)
No Streptomyces sp. HKI0595[90] antimicrobial (against Bacillus subtilis, Mycobacterium vaccae, MIC 12.5–50 µM)[90]
(2R,4S,8αR)-8,8α,1,2,3,4-Hexahydro-2-hydroxy-4,8α-dimethyl-2(2H)-naphthalenone (52)No Streptomyces sp. XM17[96] antiviral (against influenza A virus, IC50 5–49 nM)[96]
(1S,3S,4S,4αS,8αR)-4,8α-Dimethyloctahydronaphthalene-1,3,4α(3H)-triol (53)
(4S,4αS,8αS)-Octahydro-4α-hydroxy-4,8α-dimethyl-1(2H)-naphthalenone (54)
(1β,4β,4aβ,8aα)-4,8α-Dimethyloctahydronaphthalene-1,4a(2H)-diol (55)No Streptomyces albolongus YIM 101047[73] antifungal (against Candida parapsilosis, MIC 3.13 µg/mL)[73]
(-)-δ-Cadinene (58)YesSSCG_02150 from Streptomyces clavuligerus ATCC 27074[97] antimicrobial [345]
T-Muurolol (59)YesSSCG_03688 from Streptomyces clavuligerus ATCC 27074[97] antifungal [346]
Streptomyces sp. M491[98]
15-Hydroxy-T-muurolol (61)No Streptomyces sp. M491[98] antitumor (IC50 6.7 µg/mL)[98]
10-epi-δ-Eudesmol (86)YesStreptomyces chartreusis NRRL 3882[5] repellent (against Aedes aegypti and ticks)[102,347]
β-Eudesmol (72)YesStreptomyces exfoliatus SMF19[66] potential antitumor
potential antiangiogenic
antimicrobial
[348,349]
Streptomyces hygroscopicus NRRL 15879[66]
Aromadendrene oxide-(2) (79)YesStreptomyces hygroscopicus NRRL 15879[66] antibacterial
antitumor
[350]
(-)-β-Cedrene (126)
(+)-β-Cedrene (127)
YesStreptomyces hygroscopicus NRRL 15879[66]WO2015120431antibacterial[351]
epi-isozizaene synthase from
Streptomyces coelicolor A3(2)
[110,122]
β-Patchoulene (77)Yes Streptomyces hygroscopicus NRRL 15879[66] anti-inflammatory[352]
α-Elemol (80)YesStreptomyces parvulus B1682[66] insecticidal (against Ixodes scapularis, Amblyomma americanum)[353]
Streptomyces chartreusis NRRL 3882[102]
Caryophyllene (93)YesStreptomyces yanglinensis 3-10[62] anticancer
antioxidant
antimicrobial
[354,355]
Saccharothrix espanaensis DSM 44229[103]
Caryolan-1-ol (94)YesStreptomyces griseus[105] antifungal (against Botrytis cinerea, IC50 0.026 µM/mL)[107]
Transf. Streptomyces lividans with gcoA from S. griseus
Streptomyces globisporus TFH56[106]
Streptomyces griseus S4–7[107]WO2018062668
Streptomyces albolongus YIM 101047[73]
Albaflavenone (109)No Streptomyces coelicolor A3 (2)[112] antibacterial (against Bacillus subtilis, MIC 8–10 µg/mL)[356]
Transf. Streptomyces avermitilis SUKA16 with sav3032 and sav4925 from S. avermitilis[119]
Streptomyces cyaneogriseus subsp. noncyanogenus[5]
Streptomyces spectabilis NRRL-2792[118]
Streptomyces viridochromogenes DSM 40736[116]
Streptomyces griseoflavus Tu4000[116]
Streptomyces ghanaensis ATCC 14672[116]
Streptomyces albus ATCC 2396[116]
Streptomyces sp. CRB46[115]
Streptomyces coelicolor M145[117]
Streptomyces albidoflavus DSM 5415 WO1995007878
(Z)-α-Bisabolene (115)
(Z)-γ-Bisabolene (117)
Yes epi-isozizaene synthase
Streptomyces coelicolor A3(2)
[110,122]WO2015120431antioxidant[357]
Curcumene (116)Yesepi-isozizaene synthase
Streptomyces coelicolor A3(2)
[110,122] antifungal [358]
Sesquiphellandrene (118)Yesepi-isozizaene synthase
Streptomyces coelicolor A3(2)
[110,122] antiproliferative [359]
Strepsesquitriol (136)NoStreptomyces sp. SCSIO 10355[123] anti-inflammatory[123]
Pentalenolactone (132)NoStreptomyces exfoliatus UC5319
Streptomyces avermitilis
Streptomyces arenae TÜ469
[130] antimicrobial
antiviral
[125]
Streptomyces albus JA 3453-10 DD261608
1-Deoxy-8α-hydroxypentalenic acid (150)NoStreptomyces sp. NRRL S-4[134] antimicrobial (against Staphylococcus aureus, MIC 16 μg/mL; Escherichia coli, MIC 16–32 μg/mL)[134]
1-Deoxy-9β-hydroxy-11-oxopentalenic acid (151)
Dihydro-β-agarofuran (78)YesStreptomyces hygroscopicus NRRL 15879[66] insecticidal[360]
Caryolan-1,9β-diol (96)YesStreptomyces sp. AH25[108] anti-inflammatory (ED50 0.34 mg/ear)[361]
Streptomyces albolongus YIM 101047[73]
Viridiflorol (91)Yes SAV_76 from Streptomyces avermitilis [83] anti-inflammatory
antioxidant (against DPPH, IC50 74.7 µg/mL)
[362]
Di- and triterpenes and their derivatives
Lobocompactol (166)No Streptomyces cinnabarinus PK209[140] antifouling (against macroalga Ulva pertusa, EC50 0.18 µg/mL; diatom Navicula annexa; EC50 0.43 µg/mL)[140]
Microeunicellol A (168)No Streptomyces albogriseolus SY67903[142] antitumor (against MCF-7, IC50 5.3 μM; MDA-MB-231, IC50 8.6 μM)[142]
Terpentecin (427)No Kitasatosporia griseola MF730-N6[202] antibacterial (against Staphylococcus aureus, Bacillus subtilis, Corynebacterium bovis, Shigella dysenteriae, Aeromonas salmonicida, Vibrio anguillarum, MIC 0.05 µg/mL)[274]
Isopimara-8(9),15-diene (180)YesStreptomyces sp. PKU-TA00600[150] anti-inflammatory [363]
Sat1646 from Salinispora sp. PKU-MA00418
Isopimara-7(8),15-diene (445)
Isopimara-8(14),15-diene (446)
Syn-isopimara-7(8),15-diene (440)
8β-Isopimara-9(11),15-diene (441)
8β-Pimara-9(11),15-diene (442)
Syn-stemod-13(17)-ene (443)
Syn-pimara-7(8),15-diene (444)
No
2α-Hydroxy-8(14),15-pimaradien-17,18-dioic acid (450)No Microbispora hainanensis CSR-4[281] anti-Alzheimer
neuroprotective (1 ng/mL)
antitumor
antioxidant
[281]
Gifhornenolone A (447)No Verrucosispora gifhornensis YM28-088[264] antiandrogenic (IC50 2.8 µg/mL)[264]
Actinomadurol (452)No Actinomadura sp. KC 191[283] antibacterial (against Staphylococcus aureus, Kocuria rhizophila, Proteus hauseri, MIC 0.39–0.78 μg/mL)[283]
k4610422 (453)No Actinomadura sp. AMW41E2[284] cytotoxic (against P388, IC50 30 μM)[284]
Cyclooctatin (184)No Streptomyces melanosporofaciens MI614-43F2 anti-inflammatory[364]
Transf. E. coli with CotB3 or CotB4 from Streptomyces afghaniensis
Streptomyces sp. KCB17JA11
3,7,18-Dolabellatriene (188)Yes Mutant W288G of CotB2 from Streptomyces melanosporofaciens MI614-43F2[158] antimicrobial (against methicillin-resistant Staphylococcus aureus, MIC 16.0 µg/mL)[365]
2,7,18-Dolabellatriene (459)Saccharopolyspora spinosa NRRL 18395[286]
Thunbergol (464)Yes Allokutzneria albata DSM 44149[287] antimicrobial [366]
Meroterpenoids
Furaquinocin A (226)
Furaquinocin B (227)
No Streptomyces sp. KO-3988
Streptomyces sp. CLl90
[185]WO2006081537antitumor (against HeLa S3, IC50 1.6–3.1 μg/mL)[185]
Furaquinocin C (228)
Furaquinocin D (226)
Furaquinocin E (234)
Furaquinocin G (235)
Furaquinocin H (231)
No Streptomyces sp. KO-3988 cytotoxic (against B16, IC50 0.08–6.87 μg/mL; HeLa S3, IC50 0.22–5.05 μg/mL)
Furaquinocin L (238)No Streptomyces sp. Je 1-369[191] antibacterial (against Staphylococcus aureus, MIC 2.0 μg/mL)[191]
Murayaquinone (240)No Streptomyces sp. TBRC7642[188] antitubercular (MIC 3.13 μg/mL)[188]
cytotoxic (against MCF-7 IC50 6.0 μM; NCI–H187, IC500.85 μM; Vero, IC502.05 μM)
Merochlorin A (241)No Streptomyces sp. CNH-189[192] antibacterial (against MRSA, MIC 2.0–4.0 μg/mL; Clostridium difficile 0.3–0.15 μg/mL)[192]
Merochlorin I (249)No Streptomyces sp. CNH-189[194] antibacterial (against Bacillus subtilis, MIC 1.0 μg/mL; Kocuria rhizophila, MIC 2.0 μg/mL; Staphylococcus aureus, MIC 2.0 μg/mL)[194]
Merochlorin E (245)
Merochlorin F (246)
NoStreptomyces sp. CNH-189[193] antibacterial (against Bacillus subtilis, MIC 1.0 µg/mL, Kocuria rhizophila MIC 2.0 μg/mL, Staphylococcus aureus MIC 1.0–2.0 μg/mL)[193]
Flaviogeranin D (256)
Flaviogeranin C2 (258)
No Streptomyces sp. B9173[196] antibacterial (against Mycobacterium smegmatis, MIC 5.2 μg/mL)[196]
cytotoxic (against A549, IC50 0.6–0.9 μM; Hela, IC50 0.4–1.1 μM)
Flaviogeranin A (252) Streptomyces sp. RAC226[195] neuroprotective (EC50 8.6 nM)[195]
Naphterpin (259)No Streptomyces sp. CL190
Streptomyces sp. strain CLl90
[197]WO2006081537antioxidant (suppressed lipid peroxidation in rat homogenate system, IC50 5.3 μg/mL)[197]
Naphterpin B (260)
Naphterpin C (261)
NoStreptomyces sp. CL190[199] antioxidant (suppressed lipid peroxidation in rat homogenate system, IC50 6.0–6.5 μg/mL)[199]
Napyradiomycin CNQ-525.1 (226)NoStreptomyces sp. CNQ-525[208] antibacterial (against MRSA, MIC 1.95 μg/mL; Enterococcus faecium (VREF) MIC 1.9–3.9 μg/mL)[208]
Napyradiomycin CNQ-525.2 (281)
Napyradiomycin CNQ-525.3 (282)cytotoxic (against HCT, IC50 1.0–2.4 μg/mL)
Napyradiomycin CNQ-525.4 (283)
Napyradiomycin D1 (287)No Streptomyces sp. CA-271078[203] antibacterial (against MRSA, MIC 12.0–24.0 μg/mL; Mycobacterium tuberculosis, MIC 12.0–48.0 μg/mL)[203]
cytotoxic (HepG2, IC50 14.9 μM)
3-Dechloro-3-bromonapyradiomycin A1 (266)No Streptomyces sp. SCSIO 10428
Streptomyces kebangsaanensis WS-68302
Streptomyces sp. CA-271078
[201,204]CN105399721antibacterial (against Staphylococcus aureus, MIC 0.5–1.0 μg/mL; MRSA, MIC 4.0–8.0 μg/mL; Bacillus subtilis, MIC 1.0–2.0 μg/mL; Bacillus thuringiensis, MIC 0.5–2.0 μg/mL)
cytotoxic (against HCT-116, IC50 2.0–3.0 μM)
[201,204,209]
Napyradiomycin B1 (273)
Naphthomevalin (289)
Napyradiomycin A1 (264)No Streptomyces sp. CA-271078 [201] antibacterial (against MRSA, MIC 0.5–1.0 μg/mL)[201]
Streptomyces sp. YP127[200] antiangiogenic[200]
Streptomyces kebangsaanensis WS-68302 CN105399721antibacterial (against Staphylococcus aureus, MIC 0.078 µg/mL)
antiviral (against Pseudorabies virus, IC50 2.2 μg/mL)
Napyradiomycin B2 (275)No Streptomyces sp. CNQ-329
Streptomyces sp. CNH-070
[206] cytotoxic (against HCT-116, IC50 3.18 μg/mL)
antibacterial (against MRSA, MIC 3.0–6.0 μg/mL)
[206]
Streptomyces sp. CA-271078[203]
Napyradiomycin B3 (274)No Streptomyces sp. CNQ-329
Streptomyces sp. CNH-070
[206] cytotoxic (against HCT-116, IC50 0.2 μg/mL)
antibacterial (against MRSA, MIC 2.0 μg/mL; against Staphylococcus aureus, MIC 0.5 μg/mL; Bacillus subtilis, MIC 0.2 μg/mL; Bacillus thuringiensis, MIC 0.5 μg/mL)
[203,206]
Streptomyces sp. SCSIO 10428 [203]
Napyradiomycin B4 (284) Streptomyces strains CNQ-329 and CNH-070[206] cytotoxic (against HCT-116, IC50 1.41 μg/mL)[206]
NPM 1 (288) Streptomyces strains CNQ-329 and CNH-070[206] cytotoxic (against HCT-116, IC50 4.2–4.8 μg/mL)[206]
Napyradiomycin CNQ525.538 (271)No Streptomyces sp. CNQ-525[209] cytotoxic (against HCT-116, IC50 6.0 μg/mL)[209]
A80915A (277)
A80915B (278)
A80915D (279)
A80915G (291)
No Streptomyces aculeolatus A80915-EP0376609antibacterial (against Staphylococcus aureus, MIC 0.03–4.0 μg/mL; S. epidermidis, MIC 0.15–2.0 μg/mL; Streptococcus pyogenes, MIC 0.03–2.0 μg/mL; S. pneumonia, MIC 0.125–2.0 μg/mL; Enterococcus faecium, MIC 1.0–4.0 μg/mL; E. faecalis, MIC 1.0 μg/mL; Haemophilus influenzae, MIC 0.008 μg/mL; Clostridium difficile, MIC 2.0–4.0 μg/mL; C. perfringers, MIC 2.0–4.0 μg/mL; C. septicum, MIC 1.0–2.0 μg/mL; Eubacterium aerofaciens, MIC 0.5–2.0 μg/mL; Peptococcus asaccharolyticus, MIC 0.5–4.0 μg/mL; P. prevotii, MIC 1.0–2.0 μg/mL; P. intermediatus, MIC 1.0–2.0 μg/mL; Propionibacterium acnes, MIC 0.5–1.0 μg/mL; Bacteroides fragilis, MIC 2.0–4.0; B. melaninogenicus, MIC 0.5–2.0 μg/mL; B. corrodens, MIC 2.0–4.0 μg/mL; Fusobacterium symbiosum, MIC 0.5–4.0 μg/mL)-
A80915A (277)
A80915B (278)
A80915D (279)
No Streptomyces sp. CNQ-525[209] cytotoxic (against HCT-116, IC50 1.0–3.0 μg/mL)[209]
7-Demethyl SF2415A3 (272)
7-Demethyl A80915B (285)
No Streptomyces antimycoticus NT17[202] antibacterial (against Staphylococcus aureus, MIC 2.0–3.7 nM/mL; Bacillus subtilis, MIC 1.0–3.7 nM/mL)[202]
Napyradiomycin A4 (267)NoStreptomyces kebangsaanensis WS-68302 CN114805278antiviral (against Pseudorabies virus (PRV), IC50 2.056 μM)
16Z-19-Hydroxynapyradiomycin A1 (265)No Streptomyces sp. YP127[205] anti-inflammatory
antioxidant
[205]
(R)-3-Chloro-6-hydroxy-8-methoxy-alpha-lapachone (286)No Streptomyces sp. YP127
Streptomyces antimycoticus NT17
[202,205] anti-inflammatory[205]
Marfuraquinocin A (292)
Marfuraquinocin C (294)
Marfuraquinocin D (295)
NoStreptomyces niveus SCSIO 3406[210] cytotoxic (against NCI-H460, IC50 3.7; 4.4; 8.8 μM)
antibacterial (against Staphylococcus aureus ATCC 29213, methicillin-resistant Staphylococcus epidermidis, MIC 8.0 μg/mL)
[210]
FW03105 (484)No Verrucosispora sp. FIM06031 CN101921721antitumor (against HepG2, IC50 16.99 µM; EC109, IC50 25.33 µM; HeLA, IC50 34.64 µM)
Saccharoquinoline (492)No Saccharomonospora sp. CNQ-490[293] cytotoxic (against HCT-116, IC50 1.0 μM)[293]
Teleocidin B (314) No Streptomyces mediocidicus[211] tumor promoter[211]
Streptomyces sp. 680560[367]nematicidal[367]
Streptomyces blastmyceticus[214]
Lavanducyanin (304)No Streptomyces sp. CNS-284 and CNY-960
Streptomyces sp. CLl90
[216]WO2006081537cytotoxic (against HCT-116, IC50 2.41 μM)[216]
antimicrobial (against Staphylococcus aureus, MIC 2.92 μM; Candida albicans, MIC 5.96 μM)
Marinocyanin A (298)
Marinocyanin B (299)
Marinocyanin C (300)
No Streptomyces sp. CNS-284 и CNY-960[216]-cytotoxic (against HCT-116, IC50 0.029–0.049 μM)[216]
antimicrobial (against Staphylococcus aureus, MIC 2.37 μM; Candida albicans, MIC 0.95–3.90 μM)
Farneside A (306)NoStreptomyces sp. CNT-372[217] antimalarial (against Plasmodium falciparum)[217]
Xiamycin A (310) Streptomyces sp. SCSIO 02999[220]CN102757908
CN102732534
antiviral
anti-HIV
cytotoxic
[220]
Streptomyces sp. GT2002/1503[221] antiviral (against SARS-CoV-2)[368]
Streptomyces sp. HKI0595[226] antiviral (against HSV-1)[329]
Xiamycin methyl ester (311)No Streptomyces sp. SCSIO 02999[220]CN102757908antitumor (IC50 10.13 μM)
antiviral (against SARS-CoV-2)[368]
Dixiamycin A (328)
Dixiamycin B (330)
No Streptomyces sp. GT2002/1503[221] antibacterial (against E. coli, S. aureus, MIC 8–16 µg/mL; B. thuringiensis, MIC 4–8 µg/mL)[221]
Streptomyces xinghaiensis NRRL B-24674T[228]
Streptomyces sp. SCSIO 02999 CN102757908
Dixiamycin 6a/6b (333/334)No Transf. S. albus with xia from Streptomyces sp. SCSIO 02999[230]WO2014029498antibacterial (against MRSA, MIC 0.2 µg/mL)[230]
Dixiamycin 8 (337)antibacterial (against S. aureus, MRSA, MIC 1.56 µg/mL)
Dixiamycin 7a/7b (335/336)No Streptomyces olivaceus OUCLQ19-3[229] antibacterial (S. aureus, E. faecalis, E. faecium, M. luteus, P. aeruginosa, MIC 6.25–12.5 µg/mL)[229]
Dixiamycin 12a/12b (331/332)antibacterial (S. aureus, MIC 0.78–3.12 µg/mL; E. faecalis, E. faecium, M. luteus, MIC 3.12–6.25 µg/mL; P. aeruginosa, MIC 1.56 µg/mL)
Xiamycin B (313)
Indosespene (318)
No Streptomyces sp. HKI0595
Streptomyces sp. SCSIO 02999
[226]CN102732534antimicrobial (against MRSA; vancomycin-resistant Enterococcus faecalis)[226]
Sespenine (319)antiviral (against SARS-CoV-2)[368]
Xiamycin D (324)No Streptomyces sp. HK18[225] antiviral (against PEDV)[225]
Xiamycin C (323)antiviral (against SARS-CoV-2)[368]
Oridamycin A (326)No Streptomyces sp. KS84[227] antifungal (against Saprolegnia parasitica, MIC 3.0 µg/mL) [227]
Sulfonylbixiamycin A (338)No Transf. S. albus with xiamycin BGC from Streptomyces sp. [231]WO2014029498antibacterial (against Bacillus subtilis, MIC 6.25 µg/mL; Staphylococcus aureus, MIC 3.12 µg/mL; MRSA, MIC 6.25 µg/mL)[231]
Cyslabdan A (341)NoStreptomyces cyslabdanicus K04-0144[233] enhance (1000-fold) the antibiotic imipenem action (against MRSA) [369]
Oxaloterpin A (347)No Streptomyces sp. KO-3988[151] antibacterial (against Bacillus subtilis ATCC 43223, IC50 1.9 µM/mL; Staphylococcus aureus ATCC29213; EC50 3.7)[151]
Streptomyces griseus CB00830[235]
Streptomyces sp. SN194[152]
Chloroxaloterpin A (352)
Chloroxaloterpin B (353)
NoStreptomyces sp. SN194[152] antifungal (against Botrytis cinerea, EC50 4.40–4.96 µg/mL)[152]
Fusicomycin A (384)
Fusicomycin (385)
Fusicomycin B (386)
NoStreptomyces violascens YIM 100212[164] cytotoxicity (against BGC-823 H460, HCT116, HeLa, SMMC7721 8.9, IC50 from 3.5 ± 0.7 to 14.1 ± 0.8 µM)[164]
Streptooctatin A (387)
Streptooctatin B (388)
No Streptomyces sp. KCB17JA11 [243] autophagic (against HeLa)[243]
Actinoranone (389) Streptomyces sp. CNQ-027[244] cytotoxic (against HCT-116, LD50 2.0 μg/mL)[244]
Brasilicardin A (490)NoNocardia brasiliensis IFM 0406 (now N. terpenica)[299] immunosuppressive[300]
antiproliferative (against LN229, IC50 0.13 μM)[306]
Platensimycin (390)
Platencin (391)
Streptomyces platensis MA7327
Streptomyces platensis MA7339
Streptomyces platensis MA7237
[245,246]US20090081673antibacterial (against S. aureus (MRSA), Enterococcus faecalis, Enterococcus faecium, MIC 0.1–1.0 μg/mL)[245,246]
Atolypene A (497)
Atolypene B (498)
NoTransf. Streptomyces albus with ato gene cluster from Amycolatopsis tolypomycina NRRL B-24205 [307] cytotoxic (against HL-60, Jurkat, HEK293, HeLa, A549, IC50 12.0–36.7 μM)[307]
Terretonin N (499)No Nocardiopsis sp. LGO5[308] antibacterial (against Staphylococcus warneri)[308]
Soyasaponin I (407)YesStreptomyces sp. YIM 56130[94] anti-inflammatory
antimutagenic
anticarcinogenic
antimicrobial
[256]
Longestin (408)NoStreptomyces argenteolus A-2[257] antiamnesic (IC50 0.065 µM)[370]

4. Conclusions

Thus, the synthesis of terpenes and terpenoids is an important pathway in the secondary metabolism of actinomycetes. The compounds produced may be promising therapeutic agents for the treatment of viral, inflammatory, cancerous, and other diseases in the future. Terpenoids and meroterpenoids synthesized by actinomycetes and possessing high antibacterial activity against drug-resistant pathogenic microorganisms may be useful for the development of new antibiotics. Further study of actinomycetes, accumulation of genetic information about this group of microorganisms, and employment of modern and development of novel tools of synthetic biology and genetic engineering will open prospects for creation of ideal “cell factories” using actinomycetes.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ph16060872/s1. Table S1: Patents on the biosynthesis of terpene derivatives using actinomycetes.

Author Contributions

All authors have read and agreed to the published version of the manuscript.

Funding

The work was carried out as part of State Assignments AAAA-A19-119112290008-4 and FSNF-2023-0004 and supported by the Ministry of Science and Higher Education of the Russian Federation (grant agreement 075-15-2021-1051).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Caputi, L.; Aprea, E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat. Food Nutr. Agric. 2011, 3, 9–16. [Google Scholar] [CrossRef]
  2. Duttaroy, A.K. Health effects of terpenoids. In Evidence-Based Nutrition and Clinical Evidence of Bioactive Foods in Human Health and Disease; Ball, M.R., Ed.; Academic Press: London, UK, 2021; pp. 413–424. ISBN 978-0-12-822405-2. [Google Scholar] [CrossRef]
  3. Fordjour, E.; Mensah, E.O.; Hao, Y.; Yang, Y.; Liu, X.; Li, Y.; Liu, C.-L.; Bai, Z. Toward improved terpenoids biosynthesis: Strategies to enhance the capabilities of cell factories. Bioresour. Bioprocess. 2022, 9, 6. [Google Scholar] [CrossRef]
  4. Zhu, K.; Kong, J.; Zhao, B.; Rong, L.; Liu, S.; Lu, Z.; Zhang, C.; Xiao, D.; Pushpanathan, K.; Foo, J.L.; et al. Metabolic engineering of microbes for monoterpenoid production. Biotechnol. Adv. 2021, 53, 107837. [Google Scholar] [CrossRef] [PubMed]
  5. Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Dickschat, J.S. Bacterial terpene cyclases. Nat. Prod. Rep. 2016, 33, 87–110. [Google Scholar] [CrossRef]
  7. Smanski, M.J.; Peterson, R.M.; Huang, S.X.; Shen, B. Bacterial diterpene synthases: New opportunities for mechanistic enzymology and engineered biosynthesis. Curr. Opin. Chem. Biol. 2012, 16, 132–141. [Google Scholar] [CrossRef] [Green Version]
  8. Lewin, G.R.; Carlos, C.; Chevrette, M.G.; Horn, H.A.; McDonald, B.R.; Stankey, R.J.; Fox, B.G.; Currie, C.R. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 2016, 70, 235–254. [Google Scholar] [CrossRef] [Green Version]
  9. Salwan, R.; Sharma, V. Bioactive compounds of Streptomyces: Biosynthesis to applications. Stud. Nat. Prod. Chem. 2020, 64, 467–491. [Google Scholar] [CrossRef]
  10. Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 126708. [Google Scholar] [CrossRef]
  11. Gong, R.; Yu, L.; Qin, Y.; Price, N.P.J.; He, X.; Deng, Z.; Chen, W. Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol. Adv. 2021, 46, 107673. [Google Scholar] [CrossRef]
  12. Patzer, S.I.; Braun, V. Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J. Bacteriol. 2010, 192, 426–435. [Google Scholar] [CrossRef] [Green Version]
  13. Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An Introduction to Actinobacteria. In Basics and Biotechnological Applications; Dhanasekaran, D., Jiang, Y., Eds.; OpenIntech: London, UK, 2016; pp. 3–38. [Google Scholar]
  14. Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Salwan, R.; Sharma, V. The role of Actinobacteria in the production of industrial enzymes. In New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications; Singh, B.P., Gupta, V.K., Passari, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 165–177. ISBN 9780444639950. [Google Scholar]
  16. Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine Actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef] [PubMed]
  17. Arulprakasam, K.R.; Dharumadurai, D. Genome mining of biosynthetic gene clusters intended for secondary metabolites conservation in actinobacteria. Microb. Pathog. 2021, 161, 105252. [Google Scholar] [CrossRef]
  18. Kuyukina, M.S.; Ivshina, I.B. Rhodococcus biosurfactants: Biosynthesis, properties, and potential applications. In Biology of Rhodococcus; Alvarez, H.M., Ed.; Springer: Berlin, Germany, 2010; pp. 291–313. ISBN 9783642129377. [Google Scholar]
  19. Kuyukina, M.S.; Ivshina, I.B. Production of trehalolipid biosurfactants by Rhodococcus. In Biology of Rhodococcus; Alvarez, H., Ed.; Springer: Cham, Switzerland, 2019; pp. 271–298. [Google Scholar]
  20. Shi, L.; Wu, Z.; Zhang, Y.; Zhang, Z.; Fang, W.; Wang, Y.; Wan, Z.; Wang, K.; Ke, S. Herbicidal secondary metabolites from Actinomycetes: Structure diversity, modes of action, and their roles in the development of herbicides. J. Agric. Food Chem. 2020, 68, 17–32. [Google Scholar] [CrossRef]
  21. Silva, L.J.; Crevelin, E.J.; Souza, D.T.; Lacerda-Júnior, G.V.; de Oliveira, V.M.; Ruiz, A.L.T.G.; Rosa, L.H.; Moraes, L.A.B.; Melo, I.S. Actinobacteria from Antarctica as a source for anticancer discovery. Sci. Rep. 2020, 10, 13870. [Google Scholar] [CrossRef]
  22. Wang, Z.; Yu, Z.; Zhao, J.; Zhuang, X.; Cao, P.; Guo, X.; Liu, C.; Xiang, W. Community composition, antifungal activity and chemical analyses of ant-derived Actinobacteria. Front. Microbiol. 2020, 11, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Kuyukina, M.S.; Ivshina, I.B.; Gein, S.V.; Baeva, T.A.; Chereshnev, V.A. In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull. Exp. Biol. Med. 2007, 144, 326–330. [Google Scholar] [CrossRef] [PubMed]
  24. Gein, S.V.; Kuyukina, M.S.; Ivshina, I.B.; Baeva, T.A.; Chereshnev, V.A. In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: Role of monocyte adhesion. Cytotechnology 2011, 63, 559–566. [Google Scholar] [CrossRef] [Green Version]
  25. Gein, S.V.; Kochina, O.A.; Kuyukina, M.S.; Ivshina, I.B. Effects of glycolipid Rhodococcus biosurfactant on innate and adaptive immunity parameters in vivo. Bull. Exp. Biol. Med. 2018, 165, 368–372. [Google Scholar] [CrossRef]
  26. Mast, Y.; Stegmann, E. Actinomycetes: The antibiotics producers. Antibiotics 2019, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Hamedi, J.; Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. 2015, 42, 157–171. [Google Scholar] [CrossRef] [PubMed]
  28. Betancur, L.A.; Naranjo-Gaybor, S.J.; Vinchira-Villarraga, D.M.; Moreno-Sarmiento, N.C.; Maldonado, L.A.; Suarez-Moreno, Z.R.; Acosta-González, A.; Padilla-Gonzalez, G.F.; Puyana, M.; Castellanos, L.; et al. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS ONE 2017, 12, e0170148. [Google Scholar] [CrossRef] [Green Version]
  29. Hariprasad, K.V. Recent advancement in the development of biopesticides by Actinomycetes for the control of insect pests. In Plant Growth Promoting Actinobacteria; Subramaniam, G., Arumugam, S., Rajendran, V., Eds.; Springer: Singapore; Gateway: Singapore, 2016; pp. 47–62. [Google Scholar]
  30. Paulraj, M.G.; Kumar, P.S.; Ignacimuthu, S.; Sukumaran, D. Natural insecticides from Actinomycetes and other microbes for vector mosquito control. In Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization; Veer, V., Gopalakrishnan, R., Eds.; Springer: New Delhi, India, 2016; pp. 85–99. [Google Scholar]
  31. Jose, P.A.; Jha, B. New dimensions of research on Actinomycetes: Quest for next generation antibiotics. Front. Microbiol. 2016, 7, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. De Simeis, D.; Serra, S. Actinomycetes: A never-ending source of bioactive compounds—An overview on antibiotics production. Antibiotics 2021, 10, 483. [Google Scholar] [CrossRef]
  33. Raja, A.; Prabakaran, P. Actinomycetes and drug–An overview. Am. J. Drug Discov. Dev. 2011, 1, 75–84. [Google Scholar] [CrossRef] [Green Version]
  34. Ding, T.; Yang, L.-J.; Zhang, W.-D.; Shen, Y.-H. The secondary metabolites of rare Actinomycetes: Chemistry and bioactivity. RSC Adv. 2019, 9, 21964–21988. [Google Scholar] [CrossRef] [Green Version]
  35. El-Shahidy, S.; Mansour, S.R.; Al-Bassiony, A.D. Exploring the Bioactive Compounds from Actinobacteria: Inhabiting Different Habitats (Natural Products, the Future Approach for Drug Discovery); LAP LAMBERT Academic Publishing: London, UK, 2014; ISBN 3659627976. [Google Scholar]
  36. Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of Actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19, 72. [Google Scholar] [CrossRef]
  37. Al-shaibani, M.M.; Radin Mohamed, R.M.S.; Sidik, N.M.; El Enshasy, H.A.; Al-Gheethi, A.; Noman, E.; Al-Mekhlafi, N.A.; Zin, N.M. Biodiversity of secondary metabolites compounds isolated from phylum Actinobacteria and its therapeutic applications. Molecules 2021, 26, 4504. [Google Scholar] [CrossRef]
  38. Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef]
  39. Chen, J.; Chen, X.; Ho, C.L. Recent development of probiotic Bifidobacteria for treating human diseases. Front. Bioeng. Biotechnol. 2021, 9, 770248. [Google Scholar] [CrossRef] [PubMed]
  40. Kügler, J.H.; Le Roes-Hill, M.; Syldatk, C.; Hausmann, R. Surfactants tailored by the class Actinobacteria. Front. Microbiol. 2015, 6, 212. [Google Scholar] [CrossRef] [Green Version]
  41. Gong, K.; Yong, D.; Fu, J.; Li, A.; Zhang, Y.; Li, R. Diterpenoids from Streptomyces: Structures, biosyntheses and bioactivities. ChemBioChem 2022, 23, e202200231. [Google Scholar] [CrossRef]
  42. Dickschat, J.S. Bacterial diterpene biosynthesis. Angew. Chem. Int. Ed. 2019, 58, 15964–15976. [Google Scholar] [CrossRef] [PubMed]
  43. Rudolf, J.D.; Alsup, T.A.; Xu, B.; Li, Z. Bacterial terpenome. Nat. Prod. Rep. 2021, 38, 905–980. [Google Scholar] [CrossRef]
  44. Avalos, M.; Garbeva, P.; Vader, L.; Van Wezel, G.P.; Dickschat, J.S.; Ulanova, D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat. Prod. Rep. 2022, 39, 249–272. [Google Scholar] [CrossRef]
  45. Christianson, D.W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 2017, 117, 11570–11648. [Google Scholar] [CrossRef] [Green Version]
  46. Helfrich, E.J.N.; Lin, G.-M.; Voigt, C.A.; Clardy, J. Bacterial terpene biosynthesis: Challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 2019, 15, 2889–2906. [Google Scholar] [CrossRef] [PubMed]
  47. Cane, D.E.; Ikeda, H. Exploration and mining of the bacterial terpenome. Acc. Chem. Res. 2012, 45, 463–472. [Google Scholar] [CrossRef] [Green Version]
  48. Komatsu, M.; Uchiyama, T.; Ōmura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef] [Green Version]
  49. Ahmed, Y.; Rebets, Y.; Estévez, M.R.; Zapp, J.; Myronovskyi, M.; Luzhetskyy, A. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Microb. Cell Fact. 2020, 19, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Nah, H.-J.; Pyeon, H.-R.; Kang, S.-H.; Choi, S.-S.; Kim, E.-S. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces species. Front. Microbiol. 2017, 8, 394. [Google Scholar] [CrossRef] [Green Version]
  51. Baltz, R.H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind. Microbiol. Biotechnol. 2010, 37, 759–772. [Google Scholar] [CrossRef] [PubMed]
  52. Palazzotto, E.; Weber, T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr. Opin. Microbiol. 2018, 45, 109–116. [Google Scholar] [CrossRef]
  53. Dickschat, J.S.; Martens, T.; Brinkhoff, T.; Simon, M.; Schulz, S. Volatiles released by a Streptomyces species isolated from the North sea. Chem. Biodivers. 2005, 2, 837–865. [Google Scholar] [CrossRef] [PubMed]
  54. Nakano, C.; Kim, H.-K.; Ohnishi, Y. Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes the direct conversion of geranyl diphosphate. ChemBioChem 2011, 12, 1988–1991. [Google Scholar] [CrossRef] [PubMed]
  55. Karuppiah, V.; Ranaghan, K.E.; Leferink, N.G.H.; Johannissen, L.O.; Shanmugam, M.; Ní Cheallaigh, A.; Bennett, N.J.; Kearsey, L.J.; Takano, E.; Gardiner, J.M.; et al. Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole synthase. ACS Catal. 2017, 7, 6268–6282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Ferraz, C.A.; Leferink, N.G.H.; Kosov, I.; Scrutton, N.S. Isopentenol utilization pathway for the production of linalool in Escherichia coli using an improved bacterial linalool/nerolidol synthase. ChemBioChem 2021, 22, 2325–2334. [Google Scholar] [CrossRef]
  57. Li, L.; Liu, R.; Han, L.; Jiang, Y.; Liu, J.; Li, Y.; Yuan, C.; Huang, X. Structure determination of two new nerolidol-type sesquiterpenoids from the soil actinomycete Streptomyces scopuliridis. Magn. Reson. Chem. 2016, 54, 606–609. [Google Scholar] [CrossRef]
  58. Komatsu, M.; Tsuda, M.; Omura, S.; Oikawa, H.; Ikeda, H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc. Natl. Acad. Sci. USA 2008, 105, 7422–7427. [Google Scholar] [CrossRef] [Green Version]
  59. Schrader, K.K.; Harries, M.D.; Page, P.N. Temperature effects on biomass, geosmin, and 2-methylisoborneol production and cellular activity by Nocardia spp. and Streptomyces spp. isolated from rainbow trout recirculating aquaculture systems. J. Ind. Microbiol. Biotechnol. 2015, 42, 759–767. [Google Scholar] [CrossRef] [PubMed]
  60. Wang, C.; Wang, Z.; Qiao, X.; Li, Z.; Li, F.; Chen, M.; Wang, Y.; Huang, Y.; Cui, H. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol. Lett. 2013, 341, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Saadoun, I. Production of 2-methylisoborneol by Streptomyces violaceusniger and its transformation by selected species ofPseudomonas. J. Basic Microbiol. 2005, 45, 236–242. [Google Scholar] [CrossRef] [PubMed]
  62. Lyu, A.; Yang, L.; Wu, M.; Zhang, J.; Li, G. High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in suppression of Aspergillus contamination on peanut kernels. Front. Microbiol. 2020, 11, 142. [Google Scholar] [CrossRef] [Green Version]
  63. Wang, C.-M.; Cane, D.E. Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in Streptomyces coelicolor biosynthesis of methylisoborneol scheme 2. Cyclization of GPP by SCO7700. J. Am. Chem. Soc 2008, 130, 8908–8909. [Google Scholar] [CrossRef] [PubMed]
  64. Köksal, M.; Chou, W.K.W.; Cane, D.E.; Christianson, D.W. Structure of 2-methylisoborneol synthase from Streptomyces coelicolor and implications for the cyclization of a noncanonical C -methylated monoterpenoid substrate. Biochemistry 2012, 51, 3011–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Köksal, M.; Chou, W.K.W.; Cane, D.E.; Christianson, D.W. Unexpected reactivity of 2-fluorolinalyl diphosphate in the active site of crystalline 2-methylisoborneol synthase. Biochemistry 2013, 52, 5247–5255. [Google Scholar] [CrossRef] [Green Version]
  66. Cheng, Z.; McCann, S.; Faraone, N.; Clarke, J.-A.; Hudson, E.A.; Cloonan, K.; Hillier, N.K.; Tahlan, K. Production of plant-associated volatiles by select model and industrially important Streptomyces spp. Microorganisms 2020, 8, 1767. [Google Scholar] [CrossRef] [PubMed]
  67. Nakano, C.; Kudo, F.; Eguchi, T.; Ohnishi, Y. Genome mining reveals two novel bacterial sesquiterpene cyclases: (−)-germacradien-4-ol and (−)-epi-α-bisabolol synthases from Streptomyces citricolor. ChemBioChem 2011, 12, 2271–2275. [Google Scholar] [CrossRef] [PubMed]
  68. Grundy, D.J.; Chen, M.; González, V.; Leoni, S.; Miller, D.J.; Christianson, D.W.; Allemann, R.K. Mechanism of germacradien-4-ol synthase-controlled water capture. Biochemistry 2016, 55, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
  69. Rabe, P.; Barra, L.; Rinkel, J.; Riclea, R.; Citron, C.A.; Klapschinski, T.A.; Janusko, A.; Dickschat, J.S. Conformational analysis, thermal rearrangement, and EI-MS fragmentation mechanism of (1(10)e,4e,6s,7r)-germacradien-6-ol by 13C-labeling experiments. Angew. Chem. Int. Ed. 2015, 54, 13448–13451. [Google Scholar] [CrossRef] [PubMed]
  70. Srivastava, P.L.; Escorcia, A.M.; Huynh, F.; Miller, D.J.; Allemann, R.K.; Van Der Kamp, M.W. Redesigning the molecular choreography to prevent hydroxylation in germacradien-11-ol synthase catalysis. ACS Catal. 2021, 11, 1033–1041. [Google Scholar] [CrossRef]
  71. Guan, S.; Grabley, S.; Groth, I.; Lin, W.; Christner, A.; Guo, D.; Sattler, I. Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn. Reson. Chem. 2005, 43, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
  72. Deng, L.; Wang, R.; Wang, G.; Liu, M.; Liao, Z.; Liao, G.; Chen, M. Roseosporol A, the first isolation of a novel sesquiterpenoid from Streptomyces roseosporus. Nat. Prod. Res. 2018, 33, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
  73. Ding, N.; Jiang, Y.; Han, L.; Chen, X.; Ma, J.; Qu, X.; Mu, Y.; Liu, J.; Li, L.; Jiang, C.; et al. Bafilomycins and odoriferous sesquiterpenoids from Streptomyces albolongus isolated from Elephas maximus feces. J. Nat. Prod. 2016, 79, 799–805. [Google Scholar] [CrossRef]
  74. Cane, D.E.; He, X.; Kobayashi, S.; Ōmura, S.; Ikeda, H. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J. Antibiot. 2006, 59, 471–479. [Google Scholar] [CrossRef]
  75. Cane, D.E.; Watt, R.M. Expression and mechanistic analysis of a germacradienol synthase from Streptomyces coelicolor implicated in geosmin biosynthesis. Proc. Natl. Acad. Sci. USA 2003, 100, 1547–1551. [Google Scholar] [CrossRef] [Green Version]
  76. Schrader, K.K.; Blevins, W.T. Effects of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii. J. Ind. Microbiol. Biotechnol. 2001, 26, 241–247. [Google Scholar] [CrossRef]
  77. Jiang, J.; He, X.; Cane, D.E. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene d synthase converts farnesyl diphosphate to geosmin. J. Am. Chem. Soc. 2006, 128, 8128–8129. [Google Scholar] [CrossRef]
  78. Jiang, J.; He, X.; Cane, D.E. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nat. Chem. Biol. 2007, 3, 711–715. [Google Scholar] [CrossRef] [Green Version]
  79. Nawrath, T.; Dickschat, J.S.; Müller, R.; Jiang, J.; Cane, D.E.; Schulz, S. Identification of (8S,9S,10S)-8,10-dimethyl-1-octalin, a key intermediate in the biosynthesis of geosmin in bacteria. J. Am. Chem. Soc. 2008, 130, 430–431. [Google Scholar] [CrossRef] [Green Version]
  80. Harris, G.G.; Lombardi, P.M.; Pemberton, T.A.; Matsui, T.; Weiss, T.M.; Cole, K.E.; Köksal, M.; Murphy, F.V.; Vedula, L.S.; Chou, W.K.W.; et al. Structural studies of geosmin synthase, a bifunctional sesquiterpene synthase with αα domain architecture that catalyzes a unique cyclization-fragmentation reaction sequence. Biochemistry 2015, 54, 7142–7155. [Google Scholar] [CrossRef] [Green Version]
  81. Singh, B.; Tae, O.J.; Sohng, K.J. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster. J. Ind. Microbiol. Biotechnol. 2009, 36, 1257–1265. [Google Scholar] [CrossRef]
  82. Baer, P.; Rabe, P.; Fischer, K.; Citron, C.A.; Klapschinski, T.A.; Groll, M.; Dickschat, J.S. Induced-fit mechanism in class i terpene cyclases. Angew. Chem. Int. Ed. 2014, 53, 7652–7656. [Google Scholar] [CrossRef]
  83. Chou, W.K.W.; Fanizza, I.; Uchiyama, T.; Komatsu, M.; Ikeda, H.; Cane, D.E. Genome mining in Streptomyces avermitilis: Cloning and characterization of sav-76, the synthase for a new sesquiterpene, avermitilol. J. Am. Chem. Soc. 2010, 132, 8850–8851. [Google Scholar] [CrossRef] [Green Version]
  84. Rinkel, J.; Lauterbach, L.; Dickschat, J.S. Spata-13,17-diene synthase-an enzyme with sesqui-, di-, and sesterterpene synthase activity from Streptomyces xinghaiensis. Angew. Chem. Int. Ed. 2017, 56, 16385–16389. [Google Scholar] [CrossRef] [PubMed]
  85. Wu, S.J.; Fotso, S.; Li, F.; Qin, S.; Kelter, G.; Fiebig, H.H.; Laatsch, H. N-Carboxamido-staurosporine and selina-4(14),7(11)-diene-8,9-diol, new metabolites from a marine Streptomyces sp. J. Antibiot. 2006, 59, 331–337. [Google Scholar] [CrossRef] [PubMed]
  86. Wang, Y.-H.; Xu, H.; Zou, J.; Chen, X.-B.; Zhuang, Y.-Q.; Liu, W.-L.; Celik, E.; Chen, G.-D.; Hu, D.; Gao, H.; et al. Catalytic role of carbonyl oxygens and water in selinadiene synthase. Nat. Catal. 2022, 5, 128–135. [Google Scholar] [CrossRef]
  87. Nakano, C.; Tezuka, T.; Horinouchi, S.; Ohnishi, Y. Identification of the SGR6065 gene product as a sesquiterpene cyclase involved in (+)-epicubenol biosynthesis in Streptomyces griseus. J. Antibiot. 2012, 65, 551–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Citron, C.A.; Dickschat, J.S. [2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus. Beilstein J. Org. Chem. 2013, 9, 2841–2845. [Google Scholar] [CrossRef] [Green Version]
  89. Ding, L.; Görls, H.; Hertweck, C. Plant-like cadinane sesquiterpenes from an actinobacterial mangrove endophyte. Magn. Reson. Chem. 2021, 59, 34–42. [Google Scholar] [CrossRef] [PubMed]
  90. Ding, L.; Maier, A.; Fiebig, H.-H.; Lin, W.-H.; Peschel, G.; Hertweck, C. Kandenols A–E, Eudesmenes from an endophytic streptomyces sp. of the mangrove tree Kandelia candel. J. Nat. Prod. 2012, 75, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
  91. Ding, N.; Jiang, Y.; Liu, J.; Li, Q.; Wang, X.; Mu, Y.; Han, L.; Huang, X. Structure determination of two new sesquiterpenoids from Streptomyces sanglieri. Magn. Reson. Chem. 2016, 54, 930–932. [Google Scholar] [CrossRef] [PubMed]
  92. Ding, N.; Han, L.; Jiang, Y.; Li, G.; Liu, J.; Mu, Y.; Huang, X. Sesquiterpenoids from Streptomyces anulatus isolated from Giraffa camelopardalis feces. Magn. Reson. Chem. 2018, 56, 352–359. [Google Scholar] [CrossRef] [PubMed]
  93. Shaaban, K.A.; Singh, S.; Elshahawi, S.I.; Wang, X.; Ponomareva, L.V.; Sunkara, M.; Copley, G.C.; Hower, J.C.; Morris, A.J.; Kharel, M.K.; et al. The native production of the sesquiterpene isopterocarpolone by Streptomyces sp. RM-14-6. Nat. Prod. Res. 2014, 28, 337–339. [Google Scholar] [CrossRef] [Green Version]
  94. Yang, Z.; Yang, Y.; Yang, X.; Zhang, Y.; Zhao, L.; Xu, L.; Ding, Z. Sesquiterpenes from the secondary metabolites of Streptomyces sp. (YIM 56130). Chem. Pharm. Bull. 2011, 59, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
  95. Xie, X.; Mei, W.; Zhao, Y.-X.; Hong, K.; Dai, H. A new degraded sesquiterpene from marine actinomycete Streptomyces sp. 0616208. Chinese Chem. Lett. 2006, 17, 1463–1465. [Google Scholar]
  96. Lu, S.; Xie, X.; Hu, J.; Lin, H.; Li, F.; Zhou, R.; Guo, J.; Wu, S.; He, J. New anti-influenza A viral norsesquiterpenoids isolated from feces-residing Streptomyces sp. Fitoterapia 2022, 157, 105107. [Google Scholar] [CrossRef]
  97. Hu, Y.; Chou, W.K.W.; Hopson, R.; Cane, D.E. Genome mining in Streptomyces clavuligerus: Expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem. Biol. 2011, 18, 32–37. [Google Scholar] [CrossRef] [Green Version]
  98. Ding, L.; Pfoh, R.; Rühl, S.; Qin, S.; Laatsch, H. T-Muurolol sesquiterpenes from the marine Streptomyces sp. M491 and revision of the configuration of previously reported amorphanes. J. Nat. Prod. 2009, 72, 99–101. [Google Scholar] [CrossRef]
  99. Lauterbach, L.; Hou, A.; Dickschat, J.S. Rerouting and improving dauc-8-en-11-ol synthase from Streptomyces venezuelae to a high yielding biocatalyst. Chem. Eur. J. 2021, 27, 7923–7929. [Google Scholar] [CrossRef] [PubMed]
  100. Klapschinski, T.A.; Rabe, P.; Dickschat, J.S. Pristinol, a sesquiterpene alcohol with an unusual skeleton from Streptomyces pristinaespiralis. Angew. Chem. Int. Ed. 2016, 55, 10141–10144. [Google Scholar] [CrossRef] [PubMed]
  101. Rabe, P.; Rinkel, J.; Klapschinski, T.A.; Barra, L.; Dickschat, J.S. A method for investigating the stereochemical course of terpene cyclisations. Org. Biomol. Chem. 2016, 14, 158–164. [Google Scholar] [CrossRef] [PubMed]
  102. Kracht, O.N.; Correia Cordeiro, R.S.; Håkansson, M.; Stockmann, J.; Sander, D.; Bandow, J.; Senges, C.H.R.; Logan, D.T.; Kourist, R. Discovery of three novel sesquiterpene synthases from Streptomyces chartreusis NRRL 3882 and crystal structure of an α-eudesmol synthase. J. Biotechnol. 2019, 297, 71–77. [Google Scholar] [CrossRef] [PubMed]
  103. Rabe, P.; Schmitz, T.; Dickschat, J.S. Mechanistic investigations on six bacterial terpene cyclases. Beilstein J. Org. Chem. 2016, 12, 1839–1850. [Google Scholar] [CrossRef] [Green Version]
  104. Rabe, P.; Samborskyy, M.; Leadlay, P.F.; Dickschat, J.S. Isoafricanol synthase from Streptomyces malaysiensis. Org. Biomol. Chem. 2017, 15, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
  105. Nakano, C.; Horinouchi, S.; Ohnishi, Y. Characterization of a novel sesquiterpene cyclase involved in (+)-caryolan-1-ol biosynthesis in Streptomyces griseus. J. Biol. Chem. 2011, 286, 27980–27987. [Google Scholar] [CrossRef] [Green Version]
  106. Cho, G.; Kwak, Y.S. Evolution of antibiotic synthesis gene clusters in the Streptomyces globisporus TFH56, isolated from tomato flower. G3 Genes Genomes Genet. 2019, 9, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
  107. Cho, G.; Kim, J.; Park, C.G.; Nislow, C.; Weller, D.M.; Kwak, Y.-S. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi. Open Biol. 2017, 7, 170075. [Google Scholar] [CrossRef] [Green Version]
  108. Wu, J.; Zhu, Y.; Zhang, M.; Li, H.; Sun, P. Micaryolanes A and B, two new caryolane-type sesquiterpenoids from marine Streptomyces sp. AH25. Chem. Biodivers. 2020, 17, e2000769. [Google Scholar] [CrossRef]
  109. Ding, L.; Goerls, H.; Dornblut, K.; Lin, W.; Maier, A.; Fiebig, H.-H.; Hertweck, C. Bacaryolanes A–C, rare bacterial caryolanes from a mangrove endophyte. J. Nat. Prod. 2015, 78, 2963–2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Aaron, J.A.; Lin, X.; Cane, D.E.; Christianson, D.W. Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry 2010, 49, 1787–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Liu, C.L.; Tian, T.; Alonso-Gutierrez, J.; Garabedian, B.; Wang, S.; Baidoo, E.E.K.; Benites, V.; Chen, Y.; Petzold, C.J.; Adams, P.D.; et al. Renewable production of high density jet fuel precursor sesquiterpenes from Escherichia coli. Biotechnol. Biofuels 2018, 11, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Lin, X.; Hopson, R.; Cane, D.E. Genome mining in Streptomyces coelicolor:  Molecular cloning and characterization of a new sesquiterpene synthase. J. Am. Chem. Soc. 2006, 128, 6022–6023. [Google Scholar] [CrossRef] [Green Version]
  113. Zhao, B.; Lin, X.; Lei, L.; Lamb, D.C.; Kelly, S.L.; Waterman, M.R.; Cane, D.E. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J. Biol. Chem. 2008, 283, 8183–8189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Lin, X.; Cane, D.E. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor. Mechanism and stereochemistry of the enzymatic formation of epi-isozizaene. J. Am. Chem. Soc. 2009, 131, 6332–6333. [Google Scholar] [CrossRef] [Green Version]
  115. Ambarwati, A.; Wahyuono, S.; Moeljopawiro, S.; Yuwono, T. Antimicrobial activity of ethyl acetate extracts of Streptomyces sp. CRB46 and the prediction of their bioactive compounds chemical structure. Biodiversitas 2020, 21, 3380–3390. [Google Scholar] [CrossRef]
  116. Moody, S.C.; Zhao, B.; Lei, L.; Nelson, D.R.; Mullins, J.G.L.; Waterman, M.R.; Kelly, S.L.; Lamb, D.C. Investigating conservation of the albaflavenone biosynthetic pathway and CYP170 bifunctionality in Streptomycetes. FEBS J. 2012, 279, 1640–1649. [Google Scholar] [CrossRef]
  117. Čihák, M.; Kameník, Z.; Šmídová, K.; Bergman, N.; Benada, O.; Kofroňová, O.; Petříčková, K.; Bobek, J. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol. 2017, 8, 2495. [Google Scholar] [CrossRef] [Green Version]
  118. Sinha, A.; Phillips-Salemka, S.; Niraula, T.-A.; Short, K.A.; Niraula, N.P. The complete genomic sequence of Streptomyces spectabilis NRRL-2792 and identification of secondary metabolite biosynthetic gene clusters. J. Ind. Microbiol. Biotechnol. 2019, 46, 1217–1223. [Google Scholar] [CrossRef]
  119. Takamatsu, S.; Lin, X.; Nara, A.; Komatsu, M.; Cane, D.E.; Ikeda, H. Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi-isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi-isozizaene metabolite. Microb. Biotechnol. 2011, 4, 184–191. [Google Scholar] [CrossRef] [PubMed]
  120. Raju, R.; Gromyko, O.; Fedorenko, V.; Luzketskyy, A.; Müller, R. Albaflavenol B, a new sesquiterpene isolated from the terrestrial actinomycete, Streptomyces sp. J. Antibiot. 2015, 68, 286–288. [Google Scholar] [CrossRef] [PubMed]
  121. Zheng, D.; Ding, N.; Jiang, Y.; Zhang, J.; Ma, J.; Chen, X.; Liu, J.; Han, L.; Huang, X. Albaflavenoid, a new tricyclic sesquiterpenoid from Streptomyces violascens. J. Antibiot. 2016, 69, 773–775. [Google Scholar] [CrossRef] [PubMed]
  122. Li, R.; Chou, W.K.W.; Himmelberger, J.A.; Litwin, K.M.; Harris, G.G.; Cane, D.E.; Christianson, D.W. Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi -isozizaene synthase. Biochemistry 2014, 53, 1155–1168. [Google Scholar] [CrossRef]
  123. Yang, X.-W.; Peng, K.; Liu, Z.; Zhang, G.-Y.; Li, J.; Wang, N.; Steinmetz, A.; Liu, Y. Strepsesquitriol, a rearranged zizaane-type sesquiterpenoid from the deep-sea-derived actinomycete Streptomyces sp. SCSIO 10355. J. Nat. Prod. 2013, 76, 2360–2363. [Google Scholar] [CrossRef] [PubMed]
  124. Lauterbach, L.; Dickschat, J.S. Sesquiterpene synthases for bungoene, pentalenene and epi-isozizaene from Streptomyces bungoensis. Org. Biomol. Chem. 2020, 18, 4547–4550. [Google Scholar] [CrossRef]
  125. Tetzlaff, C.N.; You, Z.; Cane, D.E.; Takamatsu, S.; Omura, S.; Ikeda, H. A gene cluster for biosynthesis of the sesquiterpenoid antibiotic pentalenolactone in Streptomyces avermitilis. Biochemistry 2006, 45, 6179–6186. [Google Scholar] [CrossRef] [Green Version]
  126. Quaderer, R.; Omura, S.; Ikeda, H.; Cane, D.E. Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlI, a cytochrome P450 of Streptomyces avermitilis. J. Am. Chem. Soc. 2006, 128, 13036–13037. [Google Scholar] [CrossRef] [Green Version]
  127. You, Z.; Omura, S.; Ikeda, H.; Cane, D.E.; Jogl, G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J. Biol. Chem. 2007, 282, 36552–36560. [Google Scholar] [CrossRef] [Green Version]
  128. You, Z.; Omura, S.; Ikeda, H.; Cane, D.E. Pentalenolactone biosynthesis: Molecular cloning and assignment of biochemical function to PtlF, a short-chain dehydrogenase from Streptomyces avermitilis, and identification of a new biosynthetic intermediate. Arch. Biochem. Biophys. 2007, 459, 233–240. [Google Scholar] [CrossRef] [Green Version]
  129. Seo, M.J.; Zhu, D.; Endo, S.; Ikeda, H.; Cane, D.E. Genome mining in streptomyces. elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopentalenolactone. Biochemistry 2011, 50, 1739–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Zhu, D.; Seo, M.J.; Ikeda, H.; Cane, D.E. Genome mining in Streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J. Am. Chem. Soc. 2011, 133, 2128–2131. [Google Scholar] [CrossRef] [Green Version]
  131. Zhu, D.; Wang, Y.; Zhang, M.; Ikeda, H.; Deng, Z.; Cane, D.E. Product-mediated regulation of pentalenolactone biosynthesis in Streptomyces species by the MarR/SlyA aamily Activators PenR and PntR. J. Bacteriol. 2013, 195, 1255–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Jiang, J.; Tetzlaff, C.N.; Takamatsu, S.; Iwatsuki, M.; Komatsu, M.; Ikeda, H.; Cane, D.E. Genome mining in Streptomyces avermitilis: A biochemical Baeyer-Villiger reaction and discovery of a new branch of the pentalenolactone family tree. Biochemistry 2009, 48, 6431–6440. [Google Scholar] [CrossRef] [Green Version]
  133. Takamatsu, S.; Xu, L.H.; Fushinobu, S.; Shoun, H.; Komatsu, M.; Cane, D.E.; Ikeda, H. Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: Hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 (SAV-7469) of Streptomyces avermitilis. J. Antibiot. 2011, 64, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Li, H.; Li, H.; Chen, S.; Wu, W.; Sun, P. Isolation and identification of pentalenolactone analogs from Streptomyces sp. NRRL S-4. Molecules 2021, 26, 7377. [Google Scholar] [CrossRef]
  135. Yamada, Y.; Arima, S.; Nagamitsu, T.; Johmoto, K.; Uekusa, H.; Eguchi, T.; Shin-Ya, K.; Cane, D.E.; Ikeda, H. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host. J. Antibiot. 2015, 68, 385–394. [Google Scholar] [CrossRef] [Green Version]
  136. Chow, J.-Y.; Tian, B.-X.; Ramamoorthy, G.; Hillerich, B.S.; Seidel, R.D.; Almo, S.C.; Jacobson, M.P.; Poulter, C.D. Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus. Proc. Natl. Acad. Sci. USA 2015, 112, 5661–5666. [Google Scholar] [CrossRef] [Green Version]
  137. Blank, P.N.; Pemberton, T.A.; Chow, J.-Y.; Poulter, C.D.; Christianson, D.W. Crystal structure of cucumene synthase, a terpenoid cyclase that generates a linear triquinane sesquiterpene. Biochemistry 2018, 57, 6326–6335. [Google Scholar] [CrossRef]
  138. Xu, H.; Rinkel, J.; Dickschat, J.S. Isoishwarane synthase from Streptomyces lincolnensis. Org. Chem. Front. 2021, 8, 1177–1184. [Google Scholar] [CrossRef]
  139. Meguro, A.; Tomita, T.; Nishiyama, M.; Kuzuyama, T. Identification and characterization of bacterial diterpene cyclases that synthesize the cembrane skeleton. ChemBioChem 2013, 14, 316–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  140. CHO, J.Y.; KIM, M.S. Induction of antifouling diterpene production by Streptomyces cinnabarinus PK209 in co-culture with marine-derived Alteromonas sp. KNS-16. Biosci. Biotechnol. Biochem. 2012, 76, 1849–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Zhu, C.; Xu, B.; Adpressa, D.A.; Rudolf, J.D.; Loesgen, S. Discovery and biosynthesis of a structurally dynamic antibacterial diterpenoid. Angew. Chem. Int. Ed. 2021, 60, 14163–14170. [Google Scholar] [CrossRef] [PubMed]
  142. Ma, L.-F.; Chen, M.-J.; Liang, D.-E.; Shi, L.-M.; Ying, Y.-M.; Shan, W.-G.; Li, G.-Q.; Zhan, Z.-J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod. 2020, 83, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
  143. Xu, B.; Tantillo, D.J.; Rudolf, J.D. Mechanistic insights into the formation of the 6,10-bicyclic eunicellane skeleton by the bacterial diterpene synthase Bnd4. Angew. Chem. Int. Ed. 2021, 60, 23159–23163. [Google Scholar] [CrossRef] [PubMed]
  144. Yamada, Y.; Komatsu, M.; Ikeda, H. Chemical diversity of labdane-type bicyclic diterpene biosynthesis in Actinomycetales microorganisms. J. Antibiot. 2016, 69, 515–523. [Google Scholar] [CrossRef]
  145. Serrano-Posada, H.; Centeno-Leija, S.; Rojas-Trejo, S.; Stojanoff, V.; Rodríguez-Sanoja, R.; Rudiño-Piñera, E.; Sánchez, S. Crystallization and X-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
  146. Centeno-Leija, S.; Tapia-Cabrera, S.; Guzmán-Trampe, S.; Esquivel, B.; Esturau-Escofet, N.; Tierrafría, V.H.; Rodríguez-Sanoja, R.; Zárate-Romero, A.; Stojanoff, V.; Rudiño-Piñera, E.; et al. The structure of (E)-biformene synthase provides insights into the biosynthesis of bacterial bicyclic labdane-related diterpenoids. J. Struct. Biol. 2019, 207, 29–39. [Google Scholar] [CrossRef]
  147. Guzmán-Trampe, S.M.; Ikeda, H.; Vinuesa, P.; Macías-Rubalcava, M.L.; Esquivel, B.; Centeno-Leija, S.; Tapia-Cabrera, S.M.; Mora-Herrera, S.I.; Ruiz-Villafán, B.; Rodríguez-Sanoja, R.; et al. Production of distinct labdane-type diterpenoids using a novel cryptic labdane-like cluster from Streptomyces thermocarboxydus K155. Appl. Microbiol. Biotechnol. 2020, 104, 741–750. [Google Scholar] [CrossRef] [PubMed]
  148. Xiong, Z.-J.; Huang, J.; Yan, Y.; Wang, L.; Wang, Z.; Yang, J.; Luo, J.; Li, J.; Huang, S.-X. Isolation and biosynthesis of labdanmycins: Four new labdane diterpenes from endophytic Streptomyces. Org. Chem. Front. 2018, 5, 1272–1279. [Google Scholar] [CrossRef]
  149. Ikeda, H.; Shin-ya, K.; Nagamitsu, T.; Tomoda, H. Biosynthesis of mercapturic acid derivative of the labdane-type diterpene, cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus: Cyslabdan is generated by mycothiol-mediated xenobiotic detoxification. J. Ind. Microbiol. Biotechnol. 2016, 43, 325–342. [Google Scholar] [CrossRef]
  150. Xing, B.; Yu, J.; Chi, C.; Ma, X.; Xu, Q.; Li, A.; Ge, Y.; Wang, Z.; Liu, T.; Jia, H.; et al. Functional characterization and structural bases of two class I diterpene synthases in pimarane-type diterpene biosynthesis. Commun. Chem. 2021, 4, 140. [Google Scholar] [CrossRef] [PubMed]
  151. Ikeda, C.; Hayashi, Y.; Itoh, N.; Seto, H.; Dairi, T. Functional analysis of eubacterial ent-copalyl diphosphate synthase and pimara-9(11),15-diene synthase with unique primary sequences. J. Biochem. 2006, 141, 37–45. [Google Scholar] [CrossRef] [PubMed]
  152. Bi, Y.; Yu, Z. Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J. Agric. Food Chem. 2016, 64, 8525–8529. [Google Scholar] [CrossRef]
  153. Kim, S.Y.; Zhao, P.; Igarashi, M.; Sawa, R.; Tomita, T.; Nishiyama, M.; Kuzuyama, T. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afforda diterpene cyclase and two P450 hydroxylases. Chem. Biol. 2009, 16, 736–743. [Google Scholar] [CrossRef] [Green Version]
  154. Janke, R.; Görner, C.; Hirte, M.; Brück, T.; Loll, B. The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
  155. Driller, R.; Janke, S.; Fuchs, M.; Warner, E.; Mhashal, A.R.; Major, D.T.; Christmann, M.; Brück, T.; Loll, B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat. Commun. 2018, 9, 3971. [Google Scholar] [CrossRef] [Green Version]
  156. Driller, R.; Garbe, D.; Mehlmer, N.; Fuchs, M.; Raz, K.; Major, D.T.; Brück, T.; Loll, B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J. Org. Chem. 2019, 15, 2355–2368. [Google Scholar] [CrossRef]
  157. Tomita, T.; Kim, S.-Y.; Teramoto, K.; Meguro, A.; Ozaki, T.; Yoshida, A.; Motoyoshi, Y.; Mori, N.; Ishigami, K.; Watanabe, H.; et al. Structural insights into the CotB2-catalyzed cyclization of geranylgeranyl diphosphate to the diterpene cyclooctat-9-en-7-ol. ACS Chem. Biol. 2017, 12, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
  158. Görner, C.; Hirte, M.; Huber, S.; Schrepfer, P.; Brück, T. Stereoselective chemo-enzymatic oxidation routes for (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene. Front. Microbiol. 2015, 6, 1115. [Google Scholar] [CrossRef]
  159. Görner, C.; Schrepfer, P.; Redai, V.; Wallrapp, F.; Loll, B.; Eisenreich, W.; Haslbeck, M.; Brück, T. Identification, characterization and molecular adaptation of class I redox systems for the production of hydroxylated diterpenoids. Microb. Cell Fact. 2016, 15, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  160. Zhao, G.S.; Li, S.R.; Wang, Y.Y.; Hao, H.L.; Shen, Y.M.; Lu, C.H. 16,17-dihydroxycyclooctatin, a new diterpene from Streptomyces sp. LZ35. Drug Discov. Ther. 2013, 7, 185–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Kawamura, A.; Iacovidou, M.; Hirokawa, E.; Soll, C.E.; Trujillo, M. 17-Hydroxycyclooctatin, a fused 5−8−5 ring diterpene, from Streptomyces sp. MTE4a. J. Nat. Prod. 2011, 74, 492–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  162. Lee, S.R.; Lee, D.; Park, M.; Lee, J.C.; Park, H.-J.; Kang, K.S.; Kim, C.-E.; Beemelmanns, C.; Kim, K.H. Absolute configuration and corrected nmr assignment of 17-hydroxycyclooctatin, a fused 5–8–5 tricyclic diterpene. J. Nat. Prod. 2020, 83, 354–361. [Google Scholar] [CrossRef] [PubMed]
  163. Yi, W.; Li, Q.; Song, T.; Chen, L.; Li, X.-C.; Zhang, Z.; Lian, X.-Y. Isolation, structure elucidation, and antibacterial evaluation of the metabolites produced by the marine-sourced Streptomyces sp. ZZ820. Tetrahedron 2019, 75, 1186–1193. [Google Scholar] [CrossRef]
  164. Zheng, D.; Han, L.; Qu, X.; Chen, X.; Zhong, J.; Bi, X.; Liu, J.; Jiang, Y.; Jiang, C.; Huang, X. Cytotoxic fusicoccane-type diterpenoids from Streptomyces violascens isolated from Ailuropoda melanoleuca feces. J. Nat. Prod. 2017, 80, 837–844. [Google Scholar] [CrossRef]
  165. Yang, Y.; Zhang, S.; Ma, K.; Xu, Y.; Tao, Q.; Chen, Y.; Chen, J.; Guo, S.; Ren, J.; Wang, W.; et al. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew. Chem. Int. Ed. 2017, 56, 4749–4752. [Google Scholar] [CrossRef]
  166. Li, Z.; Jiang, Y.; Zhang, X.; Chang, Y.; Li, S.; Zhang, X.; Zheng, S.; Geng, C.; Men, P.; Ma, L.; et al. Fragrant venezuelaenes a and b with a 5–5–6–7 tetracyclic skeleton: Discovery, biosynthesis, and mechanisms of central catalysts. ACS Catal. 2020, 10, 5846–5851. [Google Scholar] [CrossRef]
  167. Rabe, P.; Rinkel, J.; Dolja, E.; Schmitz, T.; Nubbemeyer, B.; Luu, T.H.; Dickschat, J.S. Mechanistic investigations of two bacterial diterpene cyclases: Spiroviolene synthase and tsukubadiene synthase. Angew. Chem. Int. Ed. 2017, 56, 2776–2779. [Google Scholar] [CrossRef]
  168. Xu, H.; Dickschat, J.S. Revision of the cyclisation mechanism for the diterpene spiroviolene and investigations of its mass spectrometric fragmentation. ChemBioChem 2021, 22, 850–854. [Google Scholar] [CrossRef]
  169. Rinkel, J.; Steiner, S.T.; Dickschat, J.S. Diterpene biosynthesis in Actinomycetes: Studies on cattleyene synthase and phomopsene synthase. Angew. Chem. Int. Ed. 2019, 58, 9230–9233. [Google Scholar] [CrossRef] [PubMed]
  170. Ringel, M.; Reinbold, M.; Hirte, M.; Haack, M.; Huber, C.; Eisenreich, W.; Masri, M.A.; Schenk, G.; Guddat, L.W.; Loll, B.; et al. Towards a sustainable generation of pseudopterosin-type bioactives. Green Chem. 2020, 22, 6033–6046. [Google Scholar] [CrossRef]
  171. Yang, Y.; Zhang, Y.; Zhang, S.; Chen, Q.; Ma, K.; Bao, L.; Tao, Y.; Yin, W.; Wang, G.; Liu, H. Identification and characterization of a membrane-bound sesterterpene cyclase from Streptomyces somaliensis. J. Nat. Prod. 2018, 81, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
  172. Hou, A.; Dickschat, J.S. The biosynthetic gene cluster for sestermobaraenes—Discovery of a geranylfarnesyl diphosphate synthase and a multiproduct sesterterpene synthase from Streptomyces mobaraensis. Angew. Chem. Int. Ed. 2020, 59, 19961–19965. [Google Scholar] [CrossRef]
  173. Ghimire, G.P.; Lee, H.C.; Sohng, J.K. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 7291–7293. [Google Scholar] [CrossRef] [Green Version]
  174. Khalid, A.; Takagi, H.; Panthee, S.; Muroi, M.; Chappell, J.; Osada, H.; Takahashi, S. Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593. ACS Synth. Biol. 2017, 6, 2339–2349. [Google Scholar] [CrossRef]
  175. Poralla, K.; Muth, G.; Hartner, T. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). FEMS Microbiol. Lett. 2000, 189, 93–95. [Google Scholar] [CrossRef] [PubMed]
  176. Liu, W.; Sakr, E.; Schaeffer, P.; Talbot, H.M.; Donisi, J.; Härtner, T.; Kannenberg, E.; Takano, E.; Rohmer, M. Ribosylhopane, a novel bacterial hopanoid, as precursor of C35 bacteriohopanepolyols in Streptomyces coelicolor A3(2). ChemBioChem 2015, 16, 2156–2161. [Google Scholar] [CrossRef] [Green Version]
  177. Ghimire, G.P.; Koirala, N.; Sohng, J.K. Activation of cryptic hop genes from Streptomyces peucetius ATCC 27952 involved in hopanoid biosynthesis. J. Microbiol. Biotechnol. 2015, 25, 658–661. [Google Scholar] [CrossRef]
  178. Seipke, R.F.; Loria, R. Hopanoids are not essential for growth of Streptomyces scabies 87-22. J. Bacteriol. 2009, 191, 5216–5223. [Google Scholar] [CrossRef] [Green Version]
  179. Ghimire, G.P.; Oh, T.-J.; Lee, H.C.; Sohng, J.K. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: Sequence analysis, expression and functional characterization. Biotechnol. Lett. 2009, 31, 565–569. [Google Scholar] [CrossRef] [PubMed]
  180. Russo, D.; Milella, L. Analysis of meroterpenoids. In Recent Advances in Natural Products Analysis; Silva, A.S., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 477–501. [Google Scholar] [CrossRef]
  181. Murray, L.A.M.; McKinnie, S.M.K.; Moore, B.S.; George, J.H. Meroterpenoid natural products from Streptomyces bacteria—The evolution of chemoenzymatic syntheses. Nat. Prod. Rep. 2020, 37, 1334–1366. [Google Scholar] [CrossRef] [PubMed]
  182. Kaysser, L.; Bernhardt, P.; Nam, S.-J.; Loesgen, S.; Ruby, J.G.; Skewes-Cox, P.; Jensen, P.R.; Fenical, W.; Moore, B.S. Merochlorins A–D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J. Am. Chem. Soc. 2012, 134, 11988–11991. [Google Scholar] [CrossRef] [Green Version]
  183. Winter, J.M.; Moffitt, M.C.; Zazopoulos, E.; McAlpine, J.B.; Dorrestein, P.C.; Moore, B.S. Molecular Basis for Chloronium-mediated meroterpene cyclization. J. Biol. Chem. 2007, 282, 16362–16368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Chen, P.Y.-T.; Adak, S.; Chekan, J.R.; Liscombe, D.K.; Miyanaga, A.; Bernhardt, P.; Diethelm, S.; Fielding, E.N.; George, J.H.; Miles, Z.D.; et al. Structural basis of stereospecific vanadium-dependent haloperoxidase family enzymes in napyradiomycin biosynthesis. Biochemistry 2022, 61, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
  185. Komiyama, K.; Funayama, S.; Anraku, Y.; Ishibashi, M.; Takahashi, Y.; Omura, S. Novel antibiotics, furaquinocins A and B. Taxonomy, fermentation, isolation and physico-chemical and biological characteristics. J. Antibiot. 1990, 43, 247–252. [Google Scholar] [CrossRef] [Green Version]
  186. Ishibashi, M.; Funayama, S.; Anraku, Y.; Komiyama, K.; Omura, S. Novel antibiotics, furaquinocins C, D, E, F, G and H. J. Antibiot. 1991, 44, 390–395. [Google Scholar] [CrossRef]
  187. Kawasaki, T.; Hayashi, Y.; Kuzuyama, T.; Furihata, K.; Itoh, N.; Seto, H.; Dairi, T. Biosynthesis of a natural polyketide-isoprenoid hybrid compound, furaquinocin A: Identification and heterologous expression of the gene cluster. J. Bacteriol. 2006, 188, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
  188. Bunbamrung, N.; Intaraudom, C.; Dramae, A.; Thawai, C.; Tadtong, S.; Auncharoen, P.; Pittayakhajonwut, P. Antibacterial, antitubercular, antimalarial and cytotoxic substances from the endophytic Streptomyces sp. TBRC7642. Phytochemistry 2020, 172, 112275. [Google Scholar] [CrossRef]
  189. Panthee, S.; Takahashi, S.; Takagi, H.; Nogawa, T.; Oowada, E.; Uramoto, M.; Osada, H. Furaquinocins I and J: Novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J. Antibiot. 2011, 64, 509–513. [Google Scholar] [CrossRef]
  190. Kawahara, T.; Nagai, A.; Takagi, M.; Shin-ya, K. A new furaquinocin derivative, JBIR-136, from Streptomyces sp. 4963H2. J. Antibiot. 2012, 65, 579–581. [Google Scholar] [CrossRef] [Green Version]
  191. Tistechok, S.; Stierhof, M.; Myronovskyi, M.; Zapp, J.; Gromyko, O.; Luzhetskyy, A. Furaquinocins K and L: Novel naphthoquinone-based meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics 2022, 11, 1587. [Google Scholar] [CrossRef]
  192. Sakoulas, G.; Nam, S.-J.; Loesgen, S.; Fenical, W.; Jensen, P.R.; Nizet, V.; Hensler, M. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus. PLoS ONE 2012, 7, e29439. [Google Scholar] [CrossRef] [PubMed]
  193. Ryu, M.-J.; Hwang, S.; Kim, S.; Yang, I.; Oh, D.-C.; Nam, S.-J.; Fenical, W. Meroindenon and merochlorins E and F, antibacterial meroterpenoids from a marine-derived sediment bacterium of the genus Streptomyces. Org. Lett. 2019, 21, 5779–5783. [Google Scholar] [CrossRef] [PubMed]
  194. Ryu, M.-J.; Hillman, P.F.; Lee, J.; Hwang, S.; Lee, E.-Y.; Cha, S.-S.; Yang, I.; Oh, D.-C.; Nam, S.-J.; Fenical, W. Antibacterial meroterpenoids, merochlorins G–J from the marine bacterium Streptomyces sp. Mar. Drugs 2021, 19, 618. [Google Scholar] [CrossRef]
  195. Hayakawa, Y.; Yamazaki, Y.; Kurita, M.; Kawasaki, T.; Takagi, M.; Shin-ya, K. Flaviogeranin, a new neuroprotective compound from Streptomyces sp. J. Antibiot. 2010, 63, 379–380. [Google Scholar] [CrossRef] [Green Version]
  196. Shen, X.; Wang, X.; Huang, T.; Deng, Z.; Lin, S. Naphthoquinone-based meroterpenoids from marine-derived Streptomyces sp. B9173. Biomolecules 2020, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
  197. Shin-Ya, K.; Imai, S.; Furihata, K.; Hayakawa, Y.; Kato, Y.; Vanduyne, G.D.; Clardy, J.; Seto, H. Isolation and structural elucidation of an antioxidative agent, naphterpin. J. Antibiot. 1990, 43, 444–447. [Google Scholar] [CrossRef] [Green Version]
  198. Park, J.-S.; Kwon, H. New naphthoquinone terpenoids from marine actinobacterium, Streptomyces sp. CNQ-509. Mar. Drugs 2018, 16, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  199. Takagi, H.; Motohashi, K.; Miyamoto, T.; Shin-ya, K.; Furihata, K.; Seto, H. Studies on terpenoids produced by Actinomycetes. J. Antibiot. 2005, 58, 275–278. [Google Scholar] [CrossRef]
  200. Hwang, J.S.; Kim, G.J.; Choi, H.G.; Kim, M.C.; Hahn, D.; Nam, J.-W.; Nam, S.-J.; Kwon, H.C.; Chin, J.; Cho, S.J.; et al. Identification of antiangiogenic potential and cellular mechanisms of napyradiomycin A1 isolated from the marine-derived Streptomyces sp. YP127. J. Nat. Prod. 2017, 80, 2269–2275. [Google Scholar] [CrossRef] [PubMed]
  201. Lacret, R.; Pérez-Victoria, I.; Oves-Costales, D.; de la Cruz, M.; Domingo, E.; Martín, J.; Díaz, C.; Vicente, F.; Genilloud, O.; Reyes, F. MDN-0170, a new napyradiomycin from Streptomyces sp. strain CA-271078. Mar. Drugs 2016, 14, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  202. Motohashi, K.; Sue, M.; Furihata, K.; Ito, S.; Seto, H. Terpenoids produced by Actinomycetes: Napyradiomycins from Streptomyces antimycoticus NT17. J. Nat. Prod. 2008, 71, 595–601. [Google Scholar] [CrossRef] [PubMed]
  203. Carretero-Molina, D.; Ortiz-López, F.J.; Martín, J.; Oves-Costales, D.; Díaz, C.; de la Cruz, M.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. New napyradiomycin analogues from Streptomyces sp. strain CA-271078. Mar. Drugs 2019, 18, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Wu, Z.; Li, S.; Li, J.; Chen, Y.; Saurav, K.; Zhang, Q.; Zhang, H.; Zhang, W.; Zhang, W.; Zhang, S.; et al. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar. Drugs 2013, 11, 2113–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  205. Choi, J.W.; Kim, G.J.; Kim, H.J.; Nam, J.-W.; Kim, J.; Chin, J.; Park, J.-H.; Choi, H.; Park, K.D. Identification and evaluation of a napyradiomycin as a potent Nrf2 activator: Anti-oxidative and anti-inflammatory activities. Bioorg. Chem. 2020, 105, 104434. [Google Scholar] [CrossRef]
  206. Cheng, Y.-B.; Jensen, P.R.; Fenical, W. Cytotoxic and antimicrobial napyradiomycins from two marine-derived Streptomyces strains. Eur. J. Org. Chem. 2013, 2013, 3751–3757. [Google Scholar] [CrossRef] [Green Version]
  207. Pereira, F.; Almeida, J.R.; Paulino, M.; Grilo, I.R.; Macedo, H.; Cunha, I.; Sobral, R.G.; Vasconcelos, V.; Gaudêncio, S.P. Antifouling napyradiomycins from marine-derived actinomycetes Streptomyces aculeolatus. Mar. Drugs 2020, 18, 63. [Google Scholar] [CrossRef] [Green Version]
  208. Soria-Mercado, I.E.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J. Nat. Prod. 2005, 68, 904–910. [Google Scholar] [CrossRef]
  209. Farnaes, L.; Coufal, N.G.; Kauffman, C.A.; Rheingold, A.L.; DiPasquale, A.G.; Jensen, P.R.; Fenical, W. Napyradiomycin derivatives, produced by a marine-derived actinomycete, illustrate cytotoxicity by induction of apoptosis. J. Nat. Prod. 2014, 77, 15–21. [Google Scholar] [CrossRef] [Green Version]
  210. Song, Y.; Huang, H.; Chen, Y.; Ding, J.; Zhang, Y.; Sun, A.; Zhang, W.; Ju, J. Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J. Nat. Prod. 2013, 76, 2263–2268. [Google Scholar] [CrossRef]
  211. Takashima, M.; Sakai, H. A New toxic substance, teleocidin, produced by Streptomyces. Bull. Agric. Chem. Soc. Japan 1960, 24, 647–655. [Google Scholar] [CrossRef]
  212. Awakawa, T.; Abe, I. Biosynthesis of the teleocidin-type terpenoid indole alkaloids. Org. Biomol. Chem. 2018, 16, 4746–4752. [Google Scholar] [CrossRef] [PubMed]
  213. Awakawa, T. Enzymatic reactions in teleocidin B biosynthesis. J. Nat. Med. 2021, 75, 467–474. [Google Scholar] [CrossRef] [PubMed]
  214. Abe, I. Biosynthetic studies on teleocidins in Streptomyces. J. Antibiot. 2018, 71, 763–768. [Google Scholar] [CrossRef] [PubMed]
  215. Cho, J.Y.; Kwon, H.C.; Williams, P.G.; Jensen, P.R.; Fenical, W. Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Org. Lett. 2006, 8, 2471–2474. [Google Scholar] [CrossRef] [Green Version]
  216. Asolkar, R.N.; Singh, A.; Jensen, P.R.; Aalbersberg, W.; Carté, B.K.; Feussner, K.-D.; Subramani, R.; DiPasquale, A.; Rheingold, A.L.; Fenical, W. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 2017, 73, 2234–2241. [Google Scholar] [CrossRef] [Green Version]
  217. Zafrir Ilan, E.; Torres, M.R.; Prudhomme, J.; Le Roch, K.; Jensen, P.R.; Fenical, W. Farnesides A and B, sesquiterpenoid nucleoside ethers from a marine-derived Streptomyces sp., strain CNT-372 from Fiji. J. Nat. Prod. 2013, 76, 1815–1818. [Google Scholar] [CrossRef] [Green Version]
  218. Zhu, Q.; Cheng, W.; Song, Y.; He, Q.; Ju, J.; Li, Q. Complete genome sequence of the deep South China Sea-derived Streptomyces niveus SCSIO 3406, the producer of cytotoxic and antibacterial marfuraquinocins. PLoS ONE 2021, 16, e0248404. [Google Scholar] [CrossRef]
  219. Li, H.; Zhang, Q.; Li, S.; Zhu, Y.; Zhang, G.; Zhang, H.; Tian, X.; Zhang, S.; Ju, J.; Zhang, C. Identification and characterization of xiamycin A and oxiamycin gene cluster reveals an oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis. J. Am. Chem. Soc. 2012, 134, 8996–9005. [Google Scholar] [CrossRef]
  220. Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; et al. N-N-coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur. J. Org. Chem. 2012, 2012, 5256–5262. [Google Scholar] [CrossRef]
  221. Ding, L.; Münch, J.; Goerls, H.; Maier, A.; Fiebig, H.-H.; Lin, W.-H.; Hertweck, C. Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg. Med. Chem. Lett. 2010, 20, 6685–6687. [Google Scholar] [CrossRef] [PubMed]
  222. Li, H.; Sun, Y.; Zhang, Q.; Zhu, Y.; Li, S.-M.; Li, A.; Zhang, C. Elucidating the cyclization cascades in xiamycin biosynthesis by substrate synthesis and enzyme characterizations. Org. Lett. 2015, 17, 306–309. [Google Scholar] [CrossRef] [PubMed]
  223. Zhang, Q.; Li, H.; Li, S.; Zhu, Y.; Zhang, G.; Zhang, H.; Zhang, W.; Shi, R.; Zhang, C. Carboxyl formation from methyl via triple hydroxylations by XiaM in xiamycin A biosynthesis. Org. Lett. 2012, 14, 6142–6145. [Google Scholar] [CrossRef] [PubMed]
  224. Zhang, Q.; Li, H.; Yu, L.; Sun, Y.; Zhu, Y.; Zhu, H.; Zhang, L.; Li, S.-M.; Shen, Y.; Tian, C.; et al. Characterization of the flavoenzyme XiaK as an N-hydroxylase and implications in indolosesquiterpene diversification. Chem. Sci. 2017, 8, 5067–5077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Kim, S.-H.; Ha, T.-K.-Q.; Oh, W.K.; Shin, J.; Oh, D.-C. Antiviral indolosesquiterpenoid xiamycins C–E from a halophilic actinomycete. J. Nat. Prod. 2016, 79, 51–58. [Google Scholar] [CrossRef] [PubMed]
  226. Ding, L.; Maier, A.; Fiebig, H.-H.; Lin, W.-H.; Hertweck, C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org. Biomol. Chem. 2011, 9, 4029. [Google Scholar] [CrossRef]
  227. Takada, K.; Kajiwara, H.; Imamura, N. Oridamycins A and B, anti-Saprolegnia parasitica indolosesquiterpenes isolated from Streptomyces sp. KS84. J. Nat. Prod. 2010, 73, 698–701. [Google Scholar] [CrossRef]
  228. Chen, L.-Y.; Wang, X.-Q.; Wang, Y.-M.; Geng, X.; Xu, X.-N.; Su, C.; Yang, Y.-L.; Tang, Y.-J.; Bai, F.-W.; Zhao, X.-Q. Genome mining of Streptomyces xinghaiensis NRRL B-24674T for the discovery of the gene cluster involved in anticomplement activities and detection of novel xiamycin analogs. Appl. Microbiol. Biotechnol. 2018, 102, 9549–9562. [Google Scholar] [CrossRef]
  229. Jin, E.; Li, H.; Liu, Z.; Xiao, F.; Li, W. Antibiotic dixiamycins from a cold-seep-derived Streptomyces olivaceus. J. Nat. Prod. 2021, 84, 2606–2611. [Google Scholar] [CrossRef]
  230. Baunach, M.; Ding, L.; Bruhn, T.; Bringmann, G.; Hertweck, C. Regiodivergent N-C and N-N aryl coupling reactions of indoloterpenes and cycloether formation mediated by a single bacterial flavoenzyme. Angew. Chem. Int. Ed. 2013, 52, 9040–9043. [Google Scholar] [CrossRef]
  231. Baunach, M.; Ding, L.; Willing, K.; Hertweck, C. Bacterial synthesis of unusual sulfonamide and sulfone antibiotics by flavoenzyme-mediated sulfur dioxide capture. Angew. Chem. Int. Ed. 2015, 54, 13279–13283. [Google Scholar] [CrossRef] [PubMed]
  232. Také, A.; Matsumoto, A.; Ōmura, S.; Takahashi, Y. Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. J. Antibiot. 2015, 68, 322–327. [Google Scholar] [CrossRef] [PubMed]
  233. Koyama, N.; Tokura, Y.; Takahashi, Y.; Tomoda, H. New cyslabdans B and C, potentiators of imipenem activity against methicillin-resistant Staphylococcus aureus produced by Streptomyces sp. K04-0144. Acta Pharm. Sin. B 2011, 1, 236–239. [Google Scholar] [CrossRef] [Green Version]
  234. Motohashi, K.; Ueno, R.; Sue, M.; Furihata, K.; Matsumoto, T.; Dairi, T.; Omura, S.; Seto, H. Studies on terpenoids produced by Actinomycetes: Oxaloterpins A, B, C, D, and E, diterpenes from Streptomyces sp. KO-3988. J. Nat. Prod. 2007, 70, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
  235. Xie, P.; Ma, M.; Rateb, M.E.; Shaaban, K.A.; Yu, Z.; Huang, S.-X.; Zhao, L.-X.; Zhu, X.; Yan, Y.; Peterson, R.M.; et al. Biosynthetic potential-based strain prioritization for natural product discovery: A showcase for diterpenoid-producing Actinomycetes. J. Nat. Prod. 2014, 77, 377–387. [Google Scholar] [CrossRef]
  236. Dürr, C.; Schnell, H.J.; Luzhetskyy, A.; Murillo, R.; Weber, M.; Welzel, K.; Vente, A.; Bechthold, A. Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tü6071: Analysis of the gene cluster and generation of derivatives. Chem. Biol. 2006, 13, 365–377. [Google Scholar] [CrossRef] [Green Version]
  237. Gebhardt, K.; Meyer, S.W.; Schinko, J.; Bringmann, G.; Zeeck, A.; Fiedler, H.-P. Phenalinolactones A-D, terpenoglycoside antibiotics from Streptomyces sp. Tü 6071. J. Antibiot. 2011, 64, 229–232. [Google Scholar] [CrossRef]
  238. Daum , M.; Schnell , H.-J.; Herrmann, S.; Günther, A.; Murillo, R.; Müller, R.; Bisel, P.; Müller, M.; Bechthold, A. Functions of genes and enzymes involved in phenalinolactone biosynthesis. ChemBioChem 2010, 11, 1383–1391. [Google Scholar] [CrossRef]
  239. Kiske, C.; Erxleben, A.; Lucas, X.; Willmann, L.; Klementz, D.; Günther, S.; Römer, W.; Kammerer, B. Metabolic pathway monitoring of phenalinolactone biosynthesis from Streptomyces sp. Tü6071 by liquid chromatography/mass spectrometry coupling. Rapid Commun. Mass Spectrom. 2014, 28, 1459–1467. [Google Scholar] [CrossRef]
  240. Binz, T.M.; Wenzel, S.C.; Schnell, H.-J.; Bechthold, A.; Müller, R. Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using Red/ET recombineering. ChemBioChem 2008, 9, 447–454. [Google Scholar] [CrossRef]
  241. Dong, L.-B.; Rudolf, J.D.; Deng, M.-R.; Yan, X.; Shen, B. Discovery of the tiancilactone antibiotics by genome mining of atypical bacterial type II diterpene synthases. ChemBioChem 2018, 19, 1727–1733. [Google Scholar] [CrossRef]
  242. Wei, F.; Li, W.; Song, R.; Shen, Y. Trinulactones A-D, new dinorsesterterpenoids from Streptomyces sp. S006. Nat. Prod. Commun. 2018, 13, 1433–1436. [Google Scholar] [CrossRef] [Green Version]
  243. Jang, J.-P.; Jang, M.; Hwang, G.J.; Kim, M.H.; Ahn, J.S.; Ko, S.-K.; Jang, J.-H. Streptooctatins A and B, fusicoccane-type diterpenoids with autophagic activity from Streptomyces sp. KCB17JA11. Bioorg. Med. Chem. Lett. 2022, 57, 128504. [Google Scholar] [CrossRef]
  244. Nam, S.-J.; Kauffman, C.A.; Paul, L.A.; Jensen, P.R.; Fenical, W. Actinoranone, a cytotoxic meroterpenoid of unprecedented structure from a marine adapted Streptomyces sp. Org. Lett. 2013, 15, 5400–5403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.S.; Cummings, R.; et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006, 441, 358–361. [Google Scholar] [CrossRef] [PubMed]
  246. Wang, J.; Kodali, S.; Sang, H.L.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl. Acad. Sci. USA 2007, 104, 7612–7616. [Google Scholar] [CrossRef] [Green Version]
  247. Smanski, M.J.; Yu, Z.; Casper, J.; Lin, S.; Peterson, R.M.; Chen, Y.; Wendt-Pienkowski, E.; Rajski, S.R.; Shen, B. Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis. Proc. Natl. Acad. Sci. USA 2011, 108, 13498–13503. [Google Scholar] [CrossRef] [Green Version]
  248. Herath, K.B.; Attygalle, A.B.; Singh, S.B. Biosynthetic studies of platensimycin. J. Am. Chem. Soc. 2007, 129, 15422–15423. [Google Scholar] [CrossRef]
  249. Smanski, M.J.; Peterson, R.M.; Shen, B. Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol. 2012, 515, 163–186. [Google Scholar] [CrossRef]
  250. Rudolf, J.D.; Dong, L.B.; Cao, H.; Hatzos-Skintges, C.; Osipiuk, J.; Endres, M.; Chang, C.Y.; Ma, M.; Babnigg, G.; Joachimiak, A.; et al. Structure of the ent-copalyl diphosphate synthase PtmT2 from Streptomyces platensis CB00739, a bacterial type II diterpene synthase. J. Am. Chem. Soc. 2016, 138, 10905–10915. [Google Scholar] [CrossRef] [PubMed]
  251. Smanski, M.J.; Peterson, R.M.; Rajski, S.R.; Shen, B.; Doctoral, M.; Program, T. Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob. Agents Chemother. 2009, 53, 1299–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  252. Martens, E.; Demain, A.L. Platensimycin and platencin: Promising antibiotics for future application in human medicine. J. Antibiot. 2011, 64, 705–710. [Google Scholar] [CrossRef] [PubMed]
  253. Yu, Z.; Smanski, M.J.; Peterson, R.M.; Marchillo, K.; Andes, D.; Rajski, S.R.; Shen, B. Engineering of Streptomyces platensis MA7339 for overproduction of platencin and congeners. Org. Lett. 2010, 12, 1744–1747. [Google Scholar] [CrossRef] [Green Version]
  254. Rudolf, J.D.; Dong, L.-B.; Shen, B. Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine. Biochem. Pharmacol. 2017, 133, 139–151. [Google Scholar] [CrossRef]
  255. Das, M.; Sakha Ghosh, P.; Manna, K. A Review on platensimycin: A selective FabF inhibitor. Int. J. Med. Chem. 2016, 2016, 9706753. [Google Scholar] [CrossRef] [Green Version]
  256. Guang, C.; Chen, J.; Sang, S.; Cheng, S. Biological functionality of soyasaponins and soyasapogenols. J. Agric. Food Chem. 2014, 62, 8247–8255. [Google Scholar] [CrossRef]
  257. Hayashi, Y.; Onaka, H.; Itoh, N.; Seto, H.; Dairi, T. Cloning of the gene cluster responsible for biosynthesis of KS-505a (longestin), a unique tetraterpenoid. Biosci. Biotechnol. Biochem. 2007, 71, 3072–3081. [Google Scholar] [CrossRef]
  258. Sun, M.W.; Zhang, X.M.; Bi, H.L.; Li, W.J.; Lu, C.H. Two new sesquiterpenoids produced by halophilic Nocardiopsis chromatogenes YIM 90109. Nat. Prod. Res. 2017, 31, 77–83. [Google Scholar] [CrossRef]
  259. Baer, P.; Rabe, P.; Citron, C.A.; de Oliveira Mann, C.C.; Kaufmann, N.; Groll, M.; Dickschat, J.S. Hedycaryol synthase in complex with nerolidol reveals terpene cyclase mechanism. ChemBioChem 2014, 15, 213–216. [Google Scholar] [CrossRef]
  260. Rinkel, J.; Dickschat, J.S. Addressing the chemistry of germacrene A by isotope labeling experiments. Org. Lett. 2019, 21, 2426–2429. [Google Scholar] [CrossRef] [PubMed]
  261. Li, X.-M.; Li, X.-M.; Lu, C.-H. Abscisic acid-type sesquiterpenes and ansamycins from Amycolatopsis alba DSM 44262. J. Asian Nat. Prod. Res. 2017, 19, 946–953. [Google Scholar] [CrossRef] [PubMed]
  262. Su, Y.; Cheng, M.; Wu, M.; Chai, C.; Kwan, A.; Su, S.; Kuo, Y. Chemical constituents from a mangrove-derived actinobacteria Isoptericola chiayiensis BCRC 16888 and evaluation of their anti-NO activity. Chem. Biodivers. 2021, 18, e2100211. [Google Scholar] [CrossRef] [PubMed]
  263. Rinkel, J.; Dickschat, J.S. Mechanistic studies on trichoacorenol synthase from Amycolatopsis benzoatilytica. ChemBioChem 2020, 21, 807–810. [Google Scholar] [CrossRef] [Green Version]
  264. Shirai, M.; Okuda, M.; Motohashi, K.; Imoto, M.; Furihata, K.; Matsuo, Y.; Katsuta, A.; Shizuri, Y.; Seto, H. Terpenoids produced by Actinomycetes: Isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J. Antibiot. 2010, 63, 245–250. [Google Scholar] [CrossRef]
  265. Rabe, P.; Dickschat, J.S. The EIMS fragmentation mechanisms of the sesquiterpenes corvol ethers A and B, epi-cubebol and isodauc-8-en-11-ol. Beilstein J. Org. Chem. 2016, 12, 1380–1394. [Google Scholar] [CrossRef] [Green Version]
  266. Rabe, P.; Pahirulzaman, K.A.K.; Dickschat, J.S. Structures and biosynthesis of corvol ethers-sesquiterpenes from the actinomycete Kitasatospora setae. Angew. Chem. Int. Ed. 2015, 54, 6041–6045. [Google Scholar] [CrossRef]
  267. Rinkel, J.; Dickschat, J.S. Characterization of micromonocyclol synthase from the marine actinomycete Micromonospora marina. Org. Lett. 2019, 21, 9442–9445. [Google Scholar] [CrossRef]
  268. Nakano, C.; Okamura, T.; Sato, T.; Dairi, T.; Hoshino, T. Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem. Commun. 2005, 8, 1016–1018. [Google Scholar] [CrossRef]
  269. Nakano, C.; Hoshino, T. Characterization of the Rv3377c gene product, a type-B diterpene cyclase, from the Mycobacterium tuberculosis H37 genome. ChemBioChem 2009, 10, 2060–2071. [Google Scholar] [CrossRef]
  270. Mann, F.M.; Xu, M.; Chen, X.; Fulton, D.B.; Russell, D.G.; Peters, R.J. Edaxadiene: A new bioactive diterpene from Mycobacterium tuberculosis. J. Am. Chem. Soc. 2009, 131, 17526–17527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  271. Prach, L.; Kirby, J.; Keasling, J.D.; Alber, T. Diterpene production in Mycobacterium tuberculosis. FEBS J. 2010, 277, 3588–3595. [Google Scholar] [CrossRef] [PubMed]
  272. Nakano, C.; Ootsuka, T.; Takayama, K.; Mitsui, T.; Sato, T.; Hoshino, T. Characterization of the Rv3378c gene product, a new diterpene synthase for producing tuberculosinol and (13r,s)-isotuberculosinol (nosyberkol), from the Mycobacterium tuberculosis H37Rv genome. Biosci. Biotechnol. Biochem. 2011, 75, 75–81. [Google Scholar] [CrossRef]
  273. Zhang, Y.; Prach, L.M.; O’Brien, T.E.; DiMaio, F.; Prigozhin, D.M.; Corn, J.E.; Alber, T.; Siegel, J.B.; Tantillo, D.J. Crystal structure and mechanistic molecular modeling studies of Mycobacterium tuberculosis diterpene cyclase Rv3377c. Biochemistry 2020, 59, 4507–4515. [Google Scholar] [CrossRef]
  274. Tamamura, T.; Sawa, T.; Isshiki, K.; Masuda, T.; Homma, Y.; Iinuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T.; Umezawa, H. Isolation and characterization of terpentecin, a new antitumor antibiotic. J. Antibiot. 1985, 38, 1664–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  275. Dairi, T.; Hamano, Y.; Kuzuyama, T.; Itoh, N.; Furihata, K.; Seto, H. Eubacterial diterpene cyclase genes essential for production of the isoprenoid antibiotic terpentecin. J. Bacteriol. 2001, 183, 6085–6094. [Google Scholar] [CrossRef] [Green Version]
  276. Hamano, Y.; Dairi, T.; Yamamoto, M.; Kawasaki, T.; Kaneda, K.; Kuzuyama, T.; Itoh, N.; Seto, H. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain. Biosci. Biotechnol. Biochem. 2001, 65, 1627–1635. [Google Scholar] [CrossRef]
  277. Hamano, Y.; Kuzuyama, T.; Itoh, N.; Furihata, K.; Seto, H.; Dairi, T. Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, terpentecin. J. Biol. Chem. 2002, 277, 37098–37104. [Google Scholar] [CrossRef] [Green Version]
  278. Nakano, C.; Hoshino, T.; Sato, T.; Toyomasu, T.; Dairi, T.; Sassa, T. Substrate specificity of the CYC2 enzyme from Kitasatospora griseola: Production of sclarene, biformene, and novel bicyclic diterpenes by the enzymatic reactions of labdane- and halimane-type diterpene diphosphates. Tetrahedron Lett. 2010, 51, 125–128. [Google Scholar] [CrossRef]
  279. Xu, M.; Hillwig, M.L.; Lane, A.L.; Tiernan, M.S.; Moore, B.S.; Peters, R.J. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola. J. Nat. Prod. 2014, 77, 2144–2147. [Google Scholar] [CrossRef] [Green Version]
  280. Mullowney, M.; Ó hAinmhire, E.; Tanouye, U.; Burdette, J.; Pham, V.; Murphy, B. A Pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnam’s East sea. Mar. Drugs 2015, 13, 5815–5827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  281. Thawai, C.; Bunbamrung, N.; Pittayakhajonwut, P.; Chongruchiroj, S.; Pratuangdejkul, J.; He, Y.-W.; Tadtong, S.; Sareedenchai, V.; Prombutara, P.; Qian, Y. A novel diterpene agent isolated from Microbispora hainanensis strain CSR-4 and its in vitro and in silico inhibition effects on acetylcholine esterase enzyme. Sci. Rep. 2020, 10, 11058. [Google Scholar] [CrossRef] [PubMed]
  282. Takagi, M.; Motohashi, K.; Khan, S.T.; Hashimoto, J.; Shin-ya, K. JBIR-65, a new diterpene, isolated from a sponge-derived Actinomadura sp. SpB081030SC-15. J. Antibiot. 2010, 63, 401–403. [Google Scholar] [CrossRef] [Green Version]
  283. Shin, B.; Kim, B.-Y.; Cho, E.; Oh, K.-B.; Shin, J.; Goodfellow, M.; Oh, D.-C. Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191. J. Nat. Prod. 2016, 79, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
  284. Akiyama, H.; Oku, N.; Harunari, E.; Panbangred, W.; Igarashi, Y. Complete NMR assignment and absolute configuration of k4610422, a norditerpenoid inhibitor of testosterone-5α-reductase originally from Streptosporangium: Rediscovery from a thermophilic Actinomadura. J. Antibiot. 2020, 73, 60–65. [Google Scholar] [CrossRef]
  285. Li, G.; Guo, Y.W.; Dickschat, J.S. Diterpene biosynthesis in Catenulispora acidiphila: On the mechanism of catenul-14-en-6-ol synthase. Angew. Chem. Int. Ed. 2021, 60, 1488–1492. [Google Scholar] [CrossRef]
  286. Rinkel, J.; Lauterbach, L.; Dickschat, J.S. A Branched Diterpene cascade: The mechanism of spinodiene synthase from Saccharopolyspora spinosa. Angew. Chem. Int. Ed. 2019, 58, 452–455. [Google Scholar] [CrossRef]
  287. Rinkel, J.; Lauterbach, L.; Rabe, P.; Dickschat, J.S. Two Diterpene synthases for spiroalbatene and cembrene A from Allokutzneria albata. Angew. Chem. Int. Ed. 2018, 57, 3238–3241. [Google Scholar] [CrossRef]
  288. Lauterbach, L.; Rinkel, J.; Dickschat, J.S. Two bacterial diterpene synthases from Allokutzneria albata produce bonnadiene, phomopsene, and allokutznerene. Angew. Chem. Int. Ed. 2018, 57, 8280–8283. [Google Scholar] [CrossRef]
  289. Rosa-Putra, S.; Nalin, R.; Domenach, A.M.; Rohmer, M. Novel hopanoids from Frankia spp. and related soil bacteria: Squalene cyclization and significance of geological biomarkers revisited. Eur. J. Biochem. 2001, 268, 4300–4306. [Google Scholar] [CrossRef]
  290. Dobritsa, S.V.; Potter, D.; Gookin, T.E.; Berry, A.M. Hopanoid lipids in Frankia: Identification of squalene-hopene cyclase gene sequences. Can. J. Microbiol. 2001, 47, 535–540. [Google Scholar] [CrossRef] [PubMed]
  291. Sato, T.; Takagi, R.; Orito, Y.; Ono, E.; Hoshino, T. Novel Compounds of octahydroheptaprenyl mycolic acyl ester and monocyclic C 35-terpene, heptaprenylcycline B, from non-pathogenic Mycobacterium species. Biosci. Biotechnol. Biochem. 2010, 74, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  292. Sato, T.; Kigawa, A.; Takagi, R.; Adachi, T.; Hoshino, T. Biosynthesis of a novel cyclic C35-terpene via the cyclisation of a Z-type C35-polyprenyl diphosphate obtained from a nonpathogenic Mycobacterium species. Org. Biomol. Chem. 2008, 6, 3788. [Google Scholar] [CrossRef] [PubMed]
  293. Le, T.; Lee, E.; Lee, J.; Hong, A.; Yim, C.-Y.; Yang, I.; Choi, H.; Chin, J.; Cho, S.; Ko, J.; et al. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp. Mar. Drugs 2019, 17, 98. [Google Scholar] [CrossRef] [Green Version]
  294. Zhang, Y.; Adnani, N.; Braun, D.R.; Ellis, G.A.; Barns, K.J.; Parker-Nance, S.; Guzei, I.A.; Bugni, T.S. Micromonohalimanes A and B: Antibacterial halimane-type diterpenoids from a marine Micromonospora species. J. Nat. Prod. 2016, 79, 2968–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  295. Layre, E.; Lee, H.J.; Young, D.C.; Jezek Martinot, A.; Buter, J.; Minnaard, A.J.; Annand, J.W.; Fortune, S.M.; Snider, B.B.; Matsunaga, I.; et al. Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proc. Natl. Acad. Sci. USA 2014, 111, 2978–2983. [Google Scholar] [CrossRef] [Green Version]
  296. Pan, S.-J.; Tapley, A.; Adamson, J.; Little, T.; Urbanowski, M.; Cohen, K.; Pym, A.; Almeida, D.; Dorasamy, A.; Layre, E.; et al. Biomarkers for tuberculosis based on secreted, species-specific, bacterial small molecules. J. Infect. Dis. 2015, 212, 1827–1834. [Google Scholar] [CrossRef] [Green Version]
  297. Young, D.C.; Layre, E.; Pan, S.-J.; Tapley, A.; Adamson, J.; Seshadri, C.; Wu, Z.; Buter, J.; Minnaard, A.J.; Coscolla, M.; et al. In vivo biosynthesis of terpene nucleosides provides unique chemical markers of Mycobacterium tuberculosis infection. Chem. Biol. 2015, 22, 516–526. [Google Scholar] [CrossRef] [Green Version]
  298. Ghanem, M.; Dubé, J.-Y.; Wang, J.; McIntosh, F.; Houle, D.; Domenech, P.; Reed, M.B.; Raman, S.; Buter, J.; Minnaard, A.J.; et al. Heterologous production of 1-tuberculosinyladenosine in Mycobacterium kansasii models pathoevolution towards the transcellular lifestyle of Mycobacterium tuberculosis. mBio 2020, 11, e02645-20. [Google Scholar] [CrossRef]
  299. Komaki, H.; Nemoto, A.; Tanaka, Y.; Takagi, H.; Yazawa, K.; Mikami, Y.; Shigemori, H.; Kobayashi, J.; Ando, A.; Nagata, Y. Brasilicardin A, a new terpenoid antibiotic from pathogenic Nocardia brasiliensis: Fermentation, isolation and biological activity. J. Antibiot. 1999, 52, 13–19. [Google Scholar] [CrossRef] [Green Version]
  300. Komatsu, K.; Tsuda, M.; Tanaka, Y.; Mikami, Y.; Kobayashi, J. Absolute stereochemistry of immunosuppressive macrolide brasilinolide A and its new congener brasilinolide C. J. Org. Chem. 2004, 69, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
  301. Komatsu, K.; Tsuda, M.; Shiro, M.; Tanaka, Y.; Mikami, Y.; Kobayashi, J. Brasilicardins B-D, new tricyclic terpernoids from actinomycete Nocardia brasiliensis. Bioorganic Med. Chem. 2004, 12, 5545–5551. [Google Scholar] [CrossRef] [PubMed]
  302. Hayashi, Y.; Matsuura, N.; Toshima, H.; Itoh, N.; Ishikawa, J.; Mikami, Y.; Dairi, T. Cloning of the gene cluster responsible for the biosynthesis of brasilicardin A, a unique diterpenoid. J. Antibiot. 2008, 61, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  303. Schwarz, P.N.; Buchmann, A.; Roller, L.; Kulik, A.; Gross, H.; Wohlleben, W.; Stegmann, E. The immunosuppressant brasilicardin: Determination of the biosynthetic gene cluster in the heterologous host Amycolatopsis japonicum. Biotechnol. J. 2018, 13, 1700527. [Google Scholar] [CrossRef]
  304. Wolański, M.; Krawiec, M.; Schwarz, P.N.; Stegmann, E.; Wohlleben, W.; Buchmann, A.; Gross, H.; Eitel, M.; Koch, P.; Botas, A.; et al. A novel LysR-type regulator negatively affects biosynthesis of the immunosuppressant brasilicardin. Eng. Life Sci. 2021, 21, 4–18. [Google Scholar] [CrossRef]
  305. Schwarz, P.N.; Roller, L.; Kulik, A.; Wohlleben, W.; Stegmann, E. Engineering metabolic pathways in Amycolatopsis japonicum for the optimization of the precursor supply for heterologous brasilicardin congeners production. Synth. Syst. Biotechnol. 2018, 3, 56–63. [Google Scholar] [CrossRef]
  306. Botas, A.; Eitel, M.; Schwarz, P.N.; Buchmann, A.; Costales, P.; Núñez, L.E.; Cortés, J.; Morís, F.; Krawiec, M.; Wolański, M.; et al. Genetic engineering in combination with semi-synthesis leads to a new route for gram-scale production of the immunosuppressive natural product brasilicardin A. Angew. Chem. Int. Ed. 2021, 60, 13536–13541. [Google Scholar] [CrossRef]
  307. Kim, S.-H.; Lu, W.; Ahmadi, M.K.; Montiel, D.; Ternei, M.A.; Brady, S.F. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach. ACS Synth. Biol. 2019, 8, 109–118. [Google Scholar] [CrossRef]
  308. Hamed, A.; Abdel-Razek, A.; Frese, M.; Stammler, H.; El-Haddad, A.; Ibrahim, T.; Sewald, N.; Shaaban, M. Terretonin N: A new meroterpenoid from Nocardiopsis sp. Molecules 2018, 23, 299. [Google Scholar] [CrossRef] [Green Version]
  309. Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.-K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data 2020, 7, 55. [Google Scholar] [CrossRef] [Green Version]
  310. Lee, N.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.-K. Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J. Microbiol. Biotechnol. 2019, 29, 667–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  311. Sayed, A.M.; Abdel-Wahab, N.M.; Hassan, H.M.; Abdelmohsen, U.R. Saccharopolyspora: An underexplored source for bioactive natural products. J. Appl. Microbiol. 2020, 128, 314–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  312. Bennur, T.; Ravi Kumar, A.; Zinjarde, S.S.; Javdekar, V. Nocardiopsis species: A potential source of bioactive compounds. J. Appl. Microbiol. 2016, 120, 1–16. [Google Scholar] [CrossRef]
  313. Thompson, D.; Cognat, V.; Goodfellow, M.; Koechler, S.; Heintz, D.; Carapito, C.; Van Dorsselaer, A.; Mahmoud, H.; Sangal, V.; Ismail, W. Phylogenomic classification and biosynthetic potential of the fossil fuel-biodesulfurizing Rhodococcus strain IGTS8. Front. Microbiol. 2020, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
  314. Ivshina, I.; Bazhutin, G.; Tyumina, E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front. Microbiol. 2022, 13, 967127. [Google Scholar] [CrossRef]
  315. Jensen, P.R.; Moore, B.S.; Fenical, W. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat. Prod. Rep. 2015, 32, 738–751. [Google Scholar] [CrossRef] [Green Version]
  316. Kennedy, S.J.; Cella, E.; Jubair, M.; Azarian, T.; Baker, B.J.; Shaw, L.N. Draft genome sequence of Verrucosispora sp. strain CWR15, isolated from a Gulf of Mexico sponge. Microbiol. Resour. Announc. 2020, 9, e00176-20. [Google Scholar] [CrossRef] [Green Version]
  317. Kusserow, K.; Gulder, T.A.M. Complete genome sequence of Actinomadura parvosata subsp. kistnae, a rich source of novel natural product (bio-)chemistry. J. Genomics 2017, 5, 75–76. [Google Scholar] [CrossRef] [Green Version]
  318. Arens, J.C.; Haltli, B.; Kerr, R.G. Draft genome sequence of Kitasatospora griseola strain MF730-N6, a bafilomycin, terpentecin, and satosporin producer. Genome Announc. 2016, 3, e00208-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  319. Buchmann, A.; Eitel, M.; Koch, P.; Schwarz, P.N.; Stegmann, E.; Wohlleben, W.; Wolański, M.; Krawiec, M.; Zakrzewska-Czerwińska, J.; Méndez, C.; et al. High-quality draft genome sequence of the actinobacterium Nocardia terpenica IFM 0406, producer of the immunosuppressant brasilicardins, using illumina and PacBio technologies. Genome Announc. 2016, 4, e01391-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  320. Liu, Z.; Zhao, Y.; Huang, C.; Luo, Y. Recent advances in silent gene cluster activation in Streptomyces. Front. Bioeng. Biotechnol. 2021, 9, 632230. [Google Scholar] [CrossRef]
  321. Wu, M.C.; Law, B.; Wilkinson, B.; Micklefield, J. Bioengineering natural product biosynthetic pathways for therapeutic applications. Curr. Opin. Biotechnol. 2012, 23, 931–940. [Google Scholar] [CrossRef] [PubMed]
  322. Ivshina, I.B.; Kuyukina, M.S. Turning Russian specialized microbial culture collections into resource centers for biotechnology. Trends Biotechnol. 2013, 31, 609–611. [Google Scholar] [CrossRef]
  323. Grishko, V.V.; Tarasova, E.V.; Ivshina, I.B. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 2013, 48, 1640–1644. [Google Scholar] [CrossRef]
  324. Cheremnykh, K.M.; Luchnikova, N.A.; Grishko, V.V.; Ivshina, I.B. Bioconversion of ecotoxic dehydroabietic acid using Rhodococcus actinobacteria. J. Hazard. Mater. 2018, 346, 103–112. [Google Scholar] [CrossRef] [PubMed]
  325. Ivshina, I.B.; Luchnikova, N.A.; Maltseva, P.Y.; Ilyina, I.V.; Volcho, K.P.; Gatilov, Y.V.; Korchagina, D.V.; Kostrikina, N.A.; Sorokin, V.V.; Mulyukin, A.L.; et al. Biotransformation of (–)-Isopulegol by Rhodococcus rhodochrous. Pharmaceuticals 2022, 15, 964. [Google Scholar] [CrossRef] [PubMed]
  326. Luchnikova, N.A.; Grishko, V.V.; Kostrikina, N.A.; Sorokin, V.V.; Mulyukin, A.L.; Ivshina, I.B. Biotransformation of oleanolic acid using Rhodococcus rhodochrous IEGM 757. Catalysts 2022, 12, 1352. [Google Scholar] [CrossRef]
  327. Citron, C.A.; Gleitzmann, J.; Laurenzano, G.; Pukall, R.; Dickschat, J.S. Terpenoids are widespread in Actinomycetes: A correlation of secondary metabolism and genome data. ChemBioChem 2012, 13, 202–214. [Google Scholar] [CrossRef]
  328. Snyder, S.A.; Tang, Z.-Y.; Gupta, R. Enantioselective total synthesis of (−)-napyradiomycin A1 via asymmetric chlorination of an isolated olefin. J. Am. Chem. Soc. 2009, 131, 5744–5745. [Google Scholar] [CrossRef]
  329. Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D.J.; Zhong, J.; Li, A. Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families. Nat. Commun. 2015, 6, 6096. [Google Scholar] [CrossRef] [Green Version]
  330. Brandstätter, M.; Freis, M.; Huwyler, N.; Carreira, E.M. Total synthesis of (−)-merochlorin A. Angew. Chem. Int. Ed. 2019, 58, 2490–2494. [Google Scholar] [CrossRef] [PubMed]
  331. Becher, P.G.; Verschut, V.; Bibb, M.J.; Bush, M.J.; Molnár, B.P.; Barane, E.; Al-Bassam, M.M.; Chandra, G.; Song, L.; Challis, G.L.; et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 2020, 5, 821–829. [Google Scholar] [CrossRef] [PubMed]
  332. Zaroubi, L.; Ozugergin, I.; Mastronardi, K.; Imfeld, A.; Law, C.; Gélinas, Y.; Piekny, A.; Findlay, B.L. The ubiquitous soil terpene geosmin acts as a warning chemical. Appl. Environ. Microbiol. 2022, 88, e00093-22. [Google Scholar] [CrossRef] [PubMed]
  333. Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
  334. An, Q.; Ren, J.-N.; Li, X.; Fan, G.; Qu, S.-S.; Song, Y.; Li, Y.; Pan, S.-Y. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370–10389. [Google Scholar] [CrossRef]
  335. Chan, W.-K.; Tan, L.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [Green Version]
  336. da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of a-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  337. Anandakumar, P.; Kamaraj, S.; Vanitha, M.K. D-limonene: A multifunctional compound with potent therapeutic effects. J. Food Biochem. 2021, 45, e13566. [Google Scholar] [CrossRef]
  338. Li, G.-X.; Liu, Z.-Q. Unusual antioxidant behavior of α- and γ-terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 2009, 57, 3943–3948. [Google Scholar] [CrossRef]
  339. El-Minshawy, A.M.; Abdelgaleil, S.A.M.; Gadelhak, G.G.; AL-Eryan, M.A.; Rabab, R.A. Effects of monoterpenes on mortality, growth, fecundity, and ovarian development of Bactrocera zonata (Saunders) (Diptera: Tephritidae). Environ. Sci. Pollut. Res. 2018, 25, 15671–15679. [Google Scholar] [CrossRef]
  340. Kamatou, G.P.P.; Viljoen, A.M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc. 2010, 87, 1–7. [Google Scholar] [CrossRef]
  341. Siqueira, C.A.T.; Serain, A.F.; Pascoal, A.C.R.F.; Andreazza, N.L.; de Lourenço, C.C.; Góis Ruiz, A.L.T.; de Carvalho, J.E.; de Souza, A.C.O.; Tonini Mesquita, J.; Tempone, A.G.; et al. Bioactivity and chemical composition of the essential oil from the leaves of Guatteria australis A.St.-Hil. Nat. Prod. Res. 2015, 29, 1966–1969. [Google Scholar] [CrossRef]
  342. Cascaes, M.M.; dos Santos Carneiro, O.; do Nascimento, L.D.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; de Aguiar Andrade, E.H. Essential oils from Annonaceae Species from Brazil: A systematic review of their phytochemistry, and biological activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef] [PubMed]
  343. Xu, H.B.; Ma, Y.B.; Huang, X.Y.; Geng, C.A.; Wang, H.; Zhao, Y.; Yang, T.H.; Chen, X.L.; Yang, C.Y.; Zhang, X.M.; et al. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus. J. Ethnopharmacol. 2015, 171, 131–140. [Google Scholar] [CrossRef] [PubMed]
  344. Takao, Y.; Kuriyama, I.; Yamada, T.; Mizoguchi, H.; Yoshida, H.; Mizushina, Y. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol. Med. Rep. 2012, 5, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  345. Mulyaningsih, S.; Youns, M.; El-Readi, M.Z.; Ashour, M.L.; Nibret, E.; Sporer, F.; Herrmann, F.; Reichling, J.; Wink, M. Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. J. Pharm. Pharmacol. 2010, 62, 1037–1044. [Google Scholar] [CrossRef]
  346. Cheng, S.-S.; Wu, C.-L.; Chang, H.-T.; Kao, Y.-T.; Chang, S.-T. Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. J. Chem. Ecol. 2004, 30, 1957–1967. [Google Scholar] [CrossRef]
  347. Tabanca, N.; Wang, M.; Avonto, C.; Chittiboyina, A.G.; Parcher, J.F.; Carroll, J.F.; Kramer, M.; Khan, I.A. Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J. Agric. Food Chem. 2013, 61, 4101–4107. [Google Scholar] [CrossRef]
  348. Tshering, G.; Pimtong, W.; Plengsuriyakarn, T.; Na-Bangchang, K. Anti-angiogenic effects of β-eudesmol and atractylodin in developing zebrafish embryos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 243, 108980. [Google Scholar] [CrossRef]
  349. Acharya, B.; Chaijaroenkul, W.; Na-Bangchang, K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem. Biol. Drug Des. 2021, 97, 984–996. [Google Scholar] [CrossRef]
  350. Pavithra, P.S.; Mehta, A.; Verma, R.S. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sci. 2018, 197, 19–29. [Google Scholar] [CrossRef]
  351. Kim, M.-G.; Lee, H.-S. Growth-inhibiting effects and chemical composition of essential oils extracted from Platycladus orientalis leaves and stems toward human intestinal bacteria. Food Sci. Biotechnol. 2015, 24, 427–431. [Google Scholar] [CrossRef]
  352. Zhang, Z.; Chen, X.; Chen, H.; Wang, L.; Liang, J.; Luo, D.; Liu, Y.; Yang, H.; Li, Y.; Xie, J.; et al. Anti-inflammatory activity of β-patchoulene isolated from patchouli oil in mice. Eur. J. Pharmacol. 2016, 781, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  353. Carroll, J.F.; Paluch, G.; Coats, J.; Kramer, M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. Exp. Appl. Acarol. 2010, 51, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  354. Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [Green Version]
  355. Larionov, O.V.; Corey, E.J. An unconventional approach to the enantioselective synthesis of caryophylloids. J. Am. Chem. Soc. 2008, 130, 2954–2955. [Google Scholar] [CrossRef]
  356. Gūrtler, H.; Pedersen, R.; Anthoni, U.; Christophersen, C.; Nielsen, P.H.; Wellington, E.M.H.; Pedersen, C.; Bock, K. Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a streptomycete with a new rope morphology. J. Antibiot. 1994, 47, 434–439. [Google Scholar] [CrossRef] [Green Version]
  357. Kazemi, M.; Rostami, H. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Psammogeton canescens. Nat. Prod. Res. 2015, 29, 277–280. [Google Scholar] [CrossRef]
  358. Valarezo, E.; del Carmen Guamán, M.; Paguay, M.; Meneses, M.A. Chemical composition and biological activity of the essential oil from Gnaphalium elegans kunth from Loja, Ecuador. J. Essent. Oil Bear. Plants 2019, 22, 1372–1378. [Google Scholar] [CrossRef]
  359. Tyagi, A.K.; Prasad, S.; Yuan, W.; Li, S.; Aggarwal, B.B. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: Comparison with curcumin. Investig. New Drugs 2015, 33, 1175–1186. [Google Scholar] [CrossRef]
  360. Gao, J.-M.; Wu, W.-J.; Zhang, J.-W.; Konishi, Y. The dihydro-β-agarofuran sesquiterpenoids. Nat. Prod. Rep. 2007, 24, 1153. [Google Scholar] [CrossRef] [PubMed]
  361. Delgado, G.; Del Socorro Olivares, M.; Chávez, M.I.; Ramírez-Apan, T.; Linares, E.; Bye, R.; Espinosa-García, F.J. Antiinflammatory constituents from Heterotheca inuloides. J. Nat. Prod. 2001, 64, 861–864. [Google Scholar] [CrossRef] [PubMed]
  362. Trevizan, L.N.F.; do Nascimento, K.F.; Santos, J.A.; Kassuya, C.A.L.; Cardoso, C.A.L.; do Carmo Vieira, M.; Moreira, F.M.F.; Croda, J.; Formagio, A.S.N. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J. Ethnopharmacol. 2016, 192, 510–515. [Google Scholar] [CrossRef] [PubMed]
  363. Win, N.N.; Hardianti, B.; Ngwe, H.; Hayakawa, Y.; Morita, H. Anti-inflammatory activities of isopimara-8(9),15-diene diterpenoids and mode of action of kaempulchraols B–D from Kaempferia pulchra rhizomes. J. Nat. Med. 2020, 74, 487–494. [Google Scholar] [CrossRef]
  364. Aoyagi, T.; Aoyama, T.; Kojima, F.; Hattori, S.; Honma, Y.; Hamada, M.; Takeuchi, T. Cyclooctatin, a new inhibitor of lysophospholipase, produced by Streptomyces melanosporofaciens Mi614-43F2 taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiot. 1992, 45, 1587–1591. [Google Scholar] [CrossRef] [Green Version]
  365. Ioannou, E.; Quesada, A.; Rahman, M.M.; Gibbons, S.; Vagias, C.; Roussis, V. Dolabellanes with antibacterial activity from the brown alga Dilophus spiralis. J. Nat. Prod. 2011, 74, 213–222. [Google Scholar] [CrossRef]
  366. Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crop. Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
  367. Kang, M.; Kim, M.; Liu, M.; Jin, C.Z.; Park, S.H.; Lee, J.M.; Kim, J.; Park, D.; Park, H.; Kim, Y.H.; et al. Nematicidal activity of teleocidin B4 isolated from Streptomyces sp. against pine wood nematode, Bursaphelenchus xylophilus. Pest Manag. Sci. 2021, 77, 1607–1615. [Google Scholar] [CrossRef]
  368. Muhammad, S.; Qaisar, M.; Iqbal, J.; Khera, R.A.; Al-Sehemi, A.G.; Alarfaji, S.S.; Adnan, M. Exploring the inhibitory potential of novel bioactive compounds from mangrove Actinomycetes against nsp10 the major activator of SARS-CoV-2 replication. Chem. Pap. 2022, 76, 3051–3064. [Google Scholar] [CrossRef]
  369. Fukumoto, A.; Kim, Y.-P.; Hanaki, H.; Shiomi, K.; Tomoda, H.; Ōmura, S. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04-0144. J. Antibiot. 2008, 61, 7–10. [Google Scholar] [CrossRef] [Green Version]
  370. Nakanishi, S.; Osawa, K.; Saito, Y.; Kawamoto, I.; Kuroda, K.; Kase, H. Ks-505A, A novel inhibitor of bovine brain ca2+ and calmodulin-dependent cyclic-nucleotide phosphodiesterase from Streptomyces argenteolus. J. Antibiot. 1992, 45, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. The total number of issued patents using actinomycetes (data on patent search in https://patentscope.wipo.int/ (front page), accessed on 25 March 2022).
Figure 1. The total number of issued patents using actinomycetes (data on patent search in https://patentscope.wipo.int/ (front page), accessed on 25 March 2022).
Pharmaceuticals 16 00872 g001
Figure 2. Biosynthesis of different terpenes. OPP: pyrophosphate group.
Figure 2. Biosynthesis of different terpenes. OPP: pyrophosphate group.
Pharmaceuticals 16 00872 g002
Figure 3. The total number of identified terpene derivatives (mentioned in the review) produced by different genera of actinomycetes.
Figure 3. The total number of identified terpene derivatives (mentioned in the review) produced by different genera of actinomycetes.
Pharmaceuticals 16 00872 g003
Figure 4. Various groups of terpene derivatives synthesized by actinomycetes: (A) the genus Streptomyces, (B) other genera.
Figure 4. Various groups of terpene derivatives synthesized by actinomycetes: (A) the genus Streptomyces, (B) other genera.
Pharmaceuticals 16 00872 g004
Figure 5. Biological activity of actinomycete terpenoids (A) and meroterpenoids (B). (The x-axis indicates the number of compounds with a certain type of activity (for meroterpenoids isomers also were counted)).
Figure 5. Biological activity of actinomycete terpenoids (A) and meroterpenoids (B). (The x-axis indicates the number of compounds with a certain type of activity (for meroterpenoids isomers also were counted)).
Pharmaceuticals 16 00872 g005
Table 1. Potential applications of secondary metabolites produced by actinomycetes in various fields of human activities.
Table 1. Potential applications of secondary metabolites produced by actinomycetes in various fields of human activities.
Application AreaReview, Book Chapter
AgriculturePlant growth promoting[27]
Phytopathogen control[28]
Bioherbicides[20]
Biopesticides[29]
BioinsecticidesAgainst insects, mites[30]
MedicineAntibiotics[26,31,32]
Pharmaceuticals (antitumor, anti-inflammatory, antifungals, antihelminthics, etc.)[33,34,35,36,37]
Probiotics[38,39]
IndustryDetergents (Surfactants)[40]
Biofuel[8]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tarasova, E.V.; Luchnikova, N.A.; Grishko, V.V.; Ivshina, I.B. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals 2023, 16, 872. https://doi.org/10.3390/ph16060872

AMA Style

Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals. 2023; 16(6):872. https://doi.org/10.3390/ph16060872

Chicago/Turabian Style

Tarasova, Ekaterina V., Natalia A. Luchnikova, Victoria V. Grishko, and Irina B. Ivshina. 2023. "Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents" Pharmaceuticals 16, no. 6: 872. https://doi.org/10.3390/ph16060872

APA Style

Tarasova, E. V., Luchnikova, N. A., Grishko, V. V., & Ivshina, I. B. (2023). Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals, 16(6), 872. https://doi.org/10.3390/ph16060872

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop