Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Analysis
2.3. Cytotoxicity
2.4. Biodistribution
3. Materials and Methods
3.1. Materials
3.2. NMR Spectroscopy
3.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
3.4. Gel permeation Chromatography Coupled to Multiangle Laser Light Scattering Detector (GPC-MALLS)
3.5. Synthesis
3.5.1. GCPQ Polymers
General Procedure 1: Degradation and Palmitoylation of Glycol Chitosan
- Palmitoyl glycol chitosan (P7GC)
- 2.
- Palmitoyl glycol chitosan (P8GC)
- 3.
- Palmitoyl glycol chitosan (P21aGC)
- 4.
- Palmitoyl glycol chitosan (P21bGC)
- 5.
- Palmitoyl glycol chitosan (P22GC)
General Procedure 2: Quaternisation of Palmitoyl Glycol Chitosan
- Quaternary ammonium palmitoyl glycol chitosan GCP7Q7
- 2.
- Quaternary ammonium palmitoyl glycol chitosan GCP8Q10
- 3.
- Quaternary ammonium palmitoyl glycol chitosan GCP21Q12
- 4.
- Quaternary ammonium palmitoyl glycol chitosan GCP21Q27
- 5.
- Quaternary ammonium palmitoyl glycol chitosan GCP22Q33
3.5.2. Platinum(IV)–GCPQ Conjugates
General Procedure 3: Conjugation of Platinum(IV) Complexes to GCPQ
- Complex 1 coupled to GCP7Q7 (C1)
- 2.
- Complex 1 coupled to GCP21Q12 (C2)
- 3.
- Complex 1 coupled to GCP21Q27 (C3)
- 4.
- Complex 1 coupled to GCP22Q33 (C4)
- 5.
- Complex 2 coupled to GCP21Q12 (C5)
- 6.
- Complex 2 coupled to GCP21Q27 (C6)
- 7.
- Complex 2 coupled to GCP22Q33 (C7)
- 8.
- Complex 3 coupled to GCP7Q7 (C8)
- 9.
- Complex 3 coupled to GCP21Q12 (C9)
- 10.
- Complex 3 coupled to GCP21Q27 (C10)
- 11.
- Complex 3 coupled to GCP22Q33 (C11)
- 12.
- Complex 3 coupled to GC8P10 (V1)
3.6. Cytotoxicity Tests
3.7. Biodistribution Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Živković, M.D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D.D.; Nikodinovic-Runic, J.; Turel, I. A New Class of Platinum(II) Complexes with the Phosphine Ligand Pta Which Show Potent Anticancer Activity. Inorg. Chem. Front. 2018, 5, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Ramu, V.; Gill, M.R.; Jarman, P.J.; Turton, D.; Thomas, J.A.; Das, A.; Smythe, C. A Cytostatic Ruthenium(II)-Platinum(II) Bis(Terpyridyl) Anticancer Complex That Blocks Entry into S Phase by up-Regulating P27KIP1. Chem. A Eur. J. 2015, 21, 9185–9197. [Google Scholar] [CrossRef]
- Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645. [Google Scholar] [CrossRef]
- Deo, K.M.; Ang, D.L.; McGhie, B.; Rajamanickam, A.; Dhiman, A.; Khoury, A.; Holland, J.; Bjelosevic, A.; Pages, B.; Gordon, C.; et al. Platinum Coordination Compounds with Potent Anticancer Activity. Coord. Chem. Rev. 2018, 375, 148–163. [Google Scholar] [CrossRef]
- Gibson, D. Platinum(IV) Anticancer Agents; Are We En Route to the Holy Grail or to a Dead End? J. Inorg. Biochem. 2021, 217, 111353. [Google Scholar] [CrossRef]
- Marotta, C.; Giorgi, E.; Binacchi, F.; Cirri, D.; Gabbiani, C.; Pratesi, A. An Overview of Recent Advancements in Anticancer Pt(IV) Prodrugs: New Smart Drug Combinations, Activation and Delivery Strategies. Inorg. Chim. Acta 2023, 548, 121388. [Google Scholar] [CrossRef]
- Wexselblatt, E.; Gibson, D. What Do We Know about the Reduction of Pt(IV) pro-Drugs? J. Inorg. Biochem. 2012, 117, 220–229. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Deng, Z.; Zhu, G. Recent Advances in the Synthesis, Stability, and Activation of Platinum(IV) Anticancer Prodrugs. Coord. Chem. Rev. 2021, 442, 213991. [Google Scholar] [CrossRef]
- Gibson, D. Platinum(IV) Anticancer Prodrugs-Hypotheses and Facts. Dalton Trans. 2016, 45, 12983–12991. [Google Scholar] [CrossRef]
- Ritacco, I.; Mazzone, G.; Russo, N.; Sicilia, E. Investigation of the Inertness to Hydrolysis of Platinum(IV) Prodrugs. Inorg. Chem. 2016, 55, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Kenny, R.G.; Chuah, S.W.; Crawford, A.; Marmion, C.J. Platinum(IV) Prodrugs—A Step Closer to Ehrlich’s Vision? Eur. J. Inorg. Chem. 2017, 2017, 1596–1612. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.D.; Mellor, H.R.; Callaghan, R.; Hambley, T.W. Basis for Design and Development of Platinum(IV) Anticancer Complexes. J. Med. Chem. 2007, 50, 3403–3411. [Google Scholar] [CrossRef]
- Han, X.; Sun, J.; Wang, Y.; He, Z. Recent Advances in Platinum (IV) Complex-Based Delivery Systems to Improve Platinum (II) Anticancer Therapy. Med. Res. Rev. 2015, 35, 1268–1299. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Jia, C.; Zhang, X.; Liao, X.; Yang, B.; Cong, Y.; Pu, S.; Gao, C. Targeting Drug Delivery System for Platinum(IV)-Based Antitumor Complexes. Eur. J. Med. Chem. 2020, 194, 112229. [Google Scholar] [CrossRef]
- Jia, C.; Deacon, G.B.; Zhang, Y.; Gao, C. Platinum(IV) Antitumor Complexes and Their Nano-Drug Delivery. Coord. Chem. Rev. 2021, 429, 213640. [Google Scholar] [CrossRef]
- Subhan, M.A.; Yalamarty, S.S.K.; Filipczak, N.; Parveen, F.; Torchilin, V.P. Recent Advances in Tumor Targeting via Epr Effect for Cancer Treatment. J. Pers. Med. 2021, 11, 571. [Google Scholar] [CrossRef]
- Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy. Theranostics 2020, 10, 7921–7924. [Google Scholar] [CrossRef] [PubMed]
- Lerchbammer-Kreith, Y.; Sommerfeld, N.S.; Cseh, K.; Weng-Jiang, X.; Odunze, U.; Schätzlein, A.G.; Uchegbu, I.F.; Galanski, M.S.; Jakupec, M.A.; Keppler, B.K. Platinum(IV)-Loaded Degraded Glycol Chitosan as Efficient Platinum(IV) Drug Delivery Platform. Pharmaceutics 2023, 15, 1050. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-Based Nanomaterials: A State-of-the-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Martau, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapani, A.; Sitterberg, J.; Bakowsky, U.; Kissel, T. The Potential of Glycol Chitosan Nanoparticles as Carrier for Low Water Soluble Drugs. Int. J. Pharm. 2009, 375, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Yoon, H.Y.; Sun, I.C.; Kwon, I.C.; Kim, K. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity. Adv. Mater. 2020, 32, 2002197. [Google Scholar] [CrossRef] [PubMed]
- Uchegbu, I.F.; Sadiq, L.; Arastoo, M.; Gray, A.I.; Wang, W.; Waigh, R.D.; Schätzlein, A.G. Quaternary Ammonium Palmitoyl Glycol Chitosan-a New Polysoap for Drug Delivery. Int. J. Pharm. 2001, 224, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Odunze, U.; O’Brien, F.; Godfrey, L.; Schätzlein, A.; Uchegbu, I. Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles. Pharm. Nanotechnol. 2019, 7, 57–71. [Google Scholar] [CrossRef]
- Qu, X.; Khutoryanskiy, V.V.; Stewart, A.; Rahman, S.; Papahadjopoulos-Sternberg, B.; Dufes, C.; McCarthy, D.; Wilson, C.G.; Lyons, R.; Carter, K.C.; et al. Carbohydrate-Based Micelle Clusters Which Enhance Hydrophobic Drug Bioavailability by up to 1 Order of Magnitute. Biomacromolecules 2006, 7, 3452–3459. [Google Scholar] [CrossRef]
- Chong, W.M.; Kadir, E.A. A Brief Review on Hydrophobic Modifications of Glycol Chitosan into Amphiphilic Nanoparticles for Enhanced Drug Delivery. Sains Malays. 2021, 50, 3693–3703. [Google Scholar] [CrossRef]
- Kanwal, U.; Bukhari, N.I.; Raza, A.; Hussain, K.; Abbas, N. Quaternary Ammonium Palmitoyl Glycol Chitosan-Based Nano-Doxorubicin Delivery System: Potential Applications for Cancer Treatment and Theranostic; MedDocs Publishers LLC.: Reno, NV, USA, 2019. [Google Scholar]
- López-Dávila, V.; Magdeldin, T.; Welch, H.; Dwek, M.V.; Uchegbu, I.; Loizidou, M. Efficacy of DOPE/DC-Cholesterol Liposomes and GCPQ Micelles as AZD6244 Nanocarriers in a 3D Colorectal Cancer in Vitro Model. Nanomedicine 2016, 11, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; de la Fuente, M.; Uchegbu, I.F.; Schätzlein, A. Modified Glycol Chitosan Nanocarriers Carry Hydrophobic Materials into Tumours. Nanotechnology 2010, 3, 350–353. [Google Scholar]
- Kanwal, U.; Bukhari, N.I.; Rana, N.F.; Rehman, M.; Hussain, K.; Abbas, N.; Mehmood, A.; Raza, A. Doxorubicin-Loaded Quaternary Ammonium Palmitoyl Glycol Chitosan Polymeric Nanoformulation: Uptake by Cells and Organs. Int. J. Nanomed. 2019, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cseh, K.; Geisler, H.; Stanojkovska, K.; Westermayr, J.; Brunmayr, P.; Wenisch, D.; Gajic, N.; Hejl, M.; Schaier, M.; Koellensperger, G.; et al. Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies. Pharmaceutics 2022, 14, 2466. [Google Scholar] [CrossRef] [PubMed]
- Göschl, S.; Schreiber-Brynzak, E.; Pichler, V.; Cseh, K.; Heffeter, P.; Jungwirth, U.; Jakupec, M.A.; Berger, W.; Keppler, B.K. Comparative Studies of Oxaliplatin-Based Platinum(IV) Complexes in Different in Vitro and in Vivo Tumor Models. Metallomics 2017, 9, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalatsa, A.; Lee, V.; Malkinson, J.P.; Zloh, M.; Schätzlein, A.G.; Uchegbu, I.F. A Prodrug Nanoparticle Approach for the Oral Delivery of a Hydrophilic Peptide, Leucine5-Enkephalin, to the Brain. Mol. Pharm. 2012, 9, 1665–1680. [Google Scholar] [CrossRef] [PubMed]
- Zia, N.; Iqbal, Z.; Raza, A.; Zia, A.; Shafique, R.; Andleeb, S.; Walker, G.C. Glycol-Chitosan-Based Technetium-99m-Loaded Multifunctional Nanomicelles: Synthesis, Evaluation, and In Vivo Biodistribution. Nanomaterials 2022, 12, 2198. [Google Scholar] [CrossRef]
Sample | Mol % Palmitoylation | Mol % Quaternisation | QPR * | MW [kDa] |
---|---|---|---|---|
GCP7Q7 | 7 | 7 | 1.0 | 13.1 |
GCP8Q10 | 8 | 10 | 1.3 | 9.6 |
GCP21Q12 | 21 | 12 | 0.6 | 12.0 |
GCP21Q27 | 21 | 27 | 1.3 | 11.5 |
GCP22Q33 | 22 | 33 | 1.5 | 18.0 |
Sample | Pt(IV) | GCPQ | Pt(IV) Units Per GCPQ | MW [kDa] |
---|---|---|---|---|
C1 | 1 | GCP7Q7 | 3.9 | 14.9 |
C2 | 1 | GCP21Q12 | 2.5 | 13.1 |
C3 | 1 | GCP21Q27 | 2.3 | 12.6 |
C4 | 1 | GCP22Q33 | 5.3 | 20.5 |
C5 | 2 | GCP21Q12 | 4.6 | 14.4 |
C6 | 2 | GCP21Q27 | 1.6 | 12.4 |
C7 | 2 | GCP22Q33 | 7.5 | 22.0 |
C8 | 3 | GCP7Q7 | 1.7 | 14.0 |
C9 | 3 | GCP21Q12 | 11.0 | 18.1 |
C10 | 3 | GCP21Q27 | 7.3 | 15.6 |
C11 | 3 | GCP22Q33 | 11.0 | 24.1 |
V1 | 3 | GCP8Q10 | 1.5 | 10.4 |
Sample | Pt(IV) | GCPQ | Pt(IV) Units Per Polymer | IC50 [µM] A549 | IC50 [µM] CH1/PA-1 | IC50 [µM] SW480 |
---|---|---|---|---|---|---|
cisplatin [32] | - | - | - | 3.8 ± 1.0 | 0.073 ± 0.001 | 2.3 ± 0.2 |
carboplatin [32] | - | - | - | 38 ± 3 | 0.79 ± 0.11 | 42 ± 10 |
oxaliplatin [32] | - | - | - | 0.98 ± 0.21 | 0.18 ± 0.01 | 0.29 ± 0.05 |
1 [19] | 1 | - | - | 99 ± 17 | 1.2 ± 0.5 | 47 ± 10 |
2 [19] | 2 | - | - | >200 | 16 ± 6 | >200 |
3 [19] | 3 | - | - | 70 ± 29 | 4.1 ± 0.6 | 22 ± 8 |
GCP7Q7 | - | GCP7Q7 | - | >12.5 | 2.4 ± 0.4 | 5.0 ± 0.6 |
GCP21Q12 * | - | GCP21Q12 | - | - | - | - |
GCPQ21Q27 | - | GCPQ21Q27 | - | 2.2 ± 0.5 | 1.6 ± 0.1 | 1.1 ± 0.1 |
GCP22Q33 | - | GCP22Q33 | - | 1.8 ± 0.2 | 0.95 ± 0.13 | 0.83 ± 0.08 |
C1 ** | 1 | GCP7Q7 | 3.9 | - | - | - |
C2 | 1 | GCP21Q12 | 2.5 | 8.7 ± 2.0 | 0.015 ± 0.005 | 1.1 ± 0.2 |
C3 | 1 | GCP21Q27 | 2.3 | 1.3 ± 0.4 | 0.0046 ± 0.0015 | 0.12 ± 0.03 |
C4 | 1 | GCP22Q33 | 5.3 | 1.5 ± 0.4 | 0.0025 ± 0.0005 | 0.20 ± 0.04 |
C5 | 2 | GCP21Q12 | 4.6 | >12.5 | 0.25 ± 0.09 | 1.3 ± 0.1 |
C6 | 2 | GCP21Q27 | 1.6 | 2.3 ± 0.9 | 0.028 ± 0.007 | 1.3 ± 0.2 |
C7 | 2 | GCP22Q33 | 7.5 | 2.0 ± 0.3 | 0.018 ± 0.002 | 0.64 ± 0.13 |
C8 | 3 | GCP7Q7 | 1.7 | 2.0 ± 0.9 | 0.040 ± 0.012 | 0.21 ± 0.03 |
C9 | 3 | GCP21Q12 | 11.0 | 0.15 ± 0.07 | 0.0058 ± 0.0016 | 0.014 ± 0.004 |
C10 | 3 | GCP21Q27 | 7.3 | 0.10 ± 0.03 | 0.0036 ± 0.0014 | 0.011 ± 0.002 |
C11 | 3 | GCP22Q33 | 11.0 | 0.040 ± 0.011 | 0.0018 ± 0.0005 | 0.0070 ± 0.0013 |
Cytotoxicity Factors Compared to Pt(II) | Cytotoxicity Factors Compared to Pt(IV) | |||||
---|---|---|---|---|---|---|
Sample | A549 | CH1/PA-1 | SW480 | A549 | CH1/PA-1 | SW480 |
C2 | 0.17 | 1.9 | 0.81 | 4.5 | 32 | 17 |
C3 | 1.3 | 7.4 | 8.3 | 33 | 121 | 170 |
C4 | 0.48 | 6.0 | 2.2 | 13 | 98 | 44 |
C5 | - | 0.69 | 7.1 | - | 14 | 34 |
C6 | 11 | 18 | 20 | 55 | 357 | 97 |
C7 | 2.5 | 5.9 | 8.8 | 13 | 119 | 42 |
C8 | 0.29 | 2.6 | 0.81 | 29 | 60 | 62 |
C9 | 0.64 | 2.8 | 2.0 | 46 | 64 | 150 |
C10 | 1.3 | 6.8 | 3.5 | 96 | 156 | 265 |
C11 | 2.2 | 9.1 | 3.8 | 159 | 207 | 286 |
Sample | Pt(IV) | GCPQ | Pt(IV) Units Per GCPQ | IC50 [µM] 4T1 |
---|---|---|---|---|
V1 | 3 | GCP8Q10 | 1.51 | 0.82 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerchbammer-Kreith, Y.; Hejl, M.; Sommerfeld, N.S.; Weng-Jiang, X.; Odunze, U.; Mellor, R.D.; Workman, D.G.; Jakupec, M.A.; Schätzlein, A.G.; Uchegbu, I.F.; et al. Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy. Pharmaceuticals 2023, 16, 1027. https://doi.org/10.3390/ph16071027
Lerchbammer-Kreith Y, Hejl M, Sommerfeld NS, Weng-Jiang X, Odunze U, Mellor RD, Workman DG, Jakupec MA, Schätzlein AG, Uchegbu IF, et al. Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy. Pharmaceuticals. 2023; 16(7):1027. https://doi.org/10.3390/ph16071027
Chicago/Turabian StyleLerchbammer-Kreith, Yvonne, Michaela Hejl, Nadine S. Sommerfeld, Xian Weng-Jiang, Uchechukwu Odunze, Ryan D. Mellor, David G. Workman, Michael A. Jakupec, Andreas G. Schätzlein, Ijeoma F. Uchegbu, and et al. 2023. "Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy" Pharmaceuticals 16, no. 7: 1027. https://doi.org/10.3390/ph16071027
APA StyleLerchbammer-Kreith, Y., Hejl, M., Sommerfeld, N. S., Weng-Jiang, X., Odunze, U., Mellor, R. D., Workman, D. G., Jakupec, M. A., Schätzlein, A. G., Uchegbu, I. F., Galanski, M. S., & Keppler, B. K. (2023). Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy. Pharmaceuticals, 16(7), 1027. https://doi.org/10.3390/ph16071027