Anti-Obesity Effect of Chlorin e6-Mediated Photodynamic Therapy on Mice with High-Fat-Diet-Induced Obesity
Abstract
:1. Introduction
2. Results
2.1. Bio Distribution of Ce6
2.2. ADME Evaluation
2.3. Preliminary Study of Ce6-PDT in an Obesity Mouse Model 1
2.4. Ce6 Anti-Obesity Efficacy Evaluation in Mouse Model 2
2.5. Morphological Changes in Hepatocytes and Epididymal Adipocytes
2.6. Evaluation of Organ Weights
2.7. Determination of Leptin and Adiponectin by ELISA
2.8. Serum Lipid Profile
3. Discussion
4. Materials and Methods
4.1. Ce6 and Its Sample Preparation
4.2. Preparation of Mouse Serum, Rat Serum, and Fat Mouse Serum
4.3. Sample Preparation for Microsomal Stability Assay
4.4. Sample Preparation for Ce6 Plasma Stability
4.5. Sample Preparation for Inhibition of Cytochrome P450 (CYP) Isoenzyme Activity by Ce6
4.6. LC–MS/MS Analysis
4.7. Mouse Model
Test Group | No. of Mice | Feeding | Amount of Test Substance |
---|---|---|---|
Normal group (Nor) | 4 | Normal diet | N.S. |
Vehicle-treated HFD | 4 | High-fat diet | N.S. |
HC2.5Hi | 4 | Ce6 2.5 mg/kg + High LED | |
HC5Lo | 4 | Ce6 5 mg/kg + Low LED | |
HC5Hi | 4 | Ce6 5 mg/kg + High LED |
4.8. Ce6 Anti-obesity Efficacy Evaluation
4.9. Determination of Leptin and Adiponectin by ELISA
4.10. Serum Biochemistry
4.11. Development of LED Mouse Chamber
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, P.C.; Dixon, J. Medical devices for the treatment of obesity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev. 2022, 23, e13349. [Google Scholar] [CrossRef] [PubMed]
- Salam, R.A.; Padhani, Z.A.; Das, J.K.; Shaikh, A.Y.; Hoodbhoy, Z.; Jeelani, S.M.; Lassi, Z.S.; Bhutta, Z.A. Effects of lifestyle modification interventions to prevent and manage child and adolescent obesity: A systematic review and meta-analysis. Nutrients 2020, 12, 2208. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Galaris, A.; Fanidis, D.; Stylianaki, E.-A.; Harokopos, V.; Kalantzi, A.-S.; Moulos, P.; Dimas, A.S.; Hatzis, P.; Aidinis, V. Obesity reshapes the microbial population structure along the gut-liver-lung axis in mice. Biomedicines 2022, 10, 494. [Google Scholar] [CrossRef]
- Frithioff-Bøjsøe, C.; Lund, M.A.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.L.; Hansen, T.; Holm, J.C. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr. Diabetes 2020, 21, 194–202. [Google Scholar] [CrossRef]
- Carbone, F.; La Rocca, C.; Matarese, G. Immunological functions of leptin and adiponectin. Biochimie 2012, 94, 2082–2088. [Google Scholar] [CrossRef]
- Al-Rawi, N.; Madkour, M.; Jahrami, H.; Salahat, D.; Alhasan, F.; BaHammam, A.; Al-Islam Faris, M.E. Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: A prospective observational study. PLoS ONE 2020, 15, e0237922. [Google Scholar] [CrossRef]
- Stefater, M.A.; Pérez–Tilve, D.; Chambers, A.P.; Wilson–Pérez, H.E.; Sandoval, D.A.; Berger, J.; Toure, M.; Tschöp, M.; Woods, S.C.; Seeley, R.J. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 2010, 138, 2426–2436. [Google Scholar] [CrossRef] [Green Version]
- Gil-Campos, M.; Cañete, R.; Gil, A. Adiponectin, the missing link in insulin resistance and obesity. Clin. Nutr. 2004, 23, 963–974. [Google Scholar] [CrossRef]
- Silva, F.M.; de Almeida, J.C.; Feoli, A.M. Effect of diet on adiponectin levels in blood. Nutr. Rev. 2011, 69, 599–612. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, P.; Sahakyan, K.R.; Davison, D.E.; Sert-Kuniyoshi, F.H.; Romero-Corral, A.; Swain, J.M.; Jensen, M.D.; Lopez-Jimenez, F.; Kara, T. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int. J. Obes. 2016, 40, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, R.; Sabzian, K.; Shishehbor, F.; Mansoori, A. Does turmeric/curcumin supplementation improve serum alanine aminotransferase and aspartate aminotransferase levels in patients with nonalcoholic fatty liver disease? A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2019, 33, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Xiang, Q.; Mao, B.; Tang, X.; Cui, S.; Li, X.; Zhao, J.; Zhang, H.; Chen, W. Protective effects of microbiome-derived inosine on lipopolysaccharide-induced acute liver damage and inflammation in mice via mediating the TLR4/NF-κB pathway. J. Agric. Food Chem. 2021, 69, 7619–7628. [Google Scholar] [CrossRef]
- Binukumar, B.; Bal, A.; Sunkaria, A.; Gill, K.D. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology 2010, 270, 77–84. [Google Scholar] [CrossRef]
- Stefanutti, C.; Morozzi, C.; Di Giacomo, S.; Sovrano, B.; Mesce, D.; Grossi, A. Management of homozygous familial hypercholesterolemia in real-world clinical practice: A report of 7 Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J. Clin. Lipidol. 2016, 10, 782–789. [Google Scholar] [CrossRef]
- Xi, Y.; Niu, L.; Cao, N.; Bao, H.; Xu, X.; Zhu, H.; Yan, T.; Zhang, N.; Qiao, L.; Han, K. Prevalence of dyslipidemia and associated risk factors among adults aged ≥ 35 years in northern China: A cross-sectional study. BMC Public Health 2020, 20, 1068. [Google Scholar] [CrossRef]
- Alamuddin, N.; Bakizada, Z.; Wadden, T.A. Management of obesity. J. Clin. Oncol. 2016, 34, 4295–4305. [Google Scholar] [CrossRef]
- Wolfe, B.M.; Kvach, E.; Eckel, R.H. Treatment of obesity: Weight loss and bariatric surgery. Circ. Res. 2016, 118, 1844–1855. [Google Scholar] [CrossRef]
- Thomas, J.; Bond, D.; Phelan, S.; Hill, J.; Wing, R. 10-year weight loss maintenance in the national weight control registry (NWCR). Am. J. Prev. Med. 2013, 46, 17–23. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.W.; Park, J.; Na, H.K.; Kim, D.H.; Noh, J.H.; Ryu, D.S.; Park, J.M.; Park, J.-H.; Jung, H.-Y. Photodynamic methylene blue-embedded intragastric satiety-inducing device to treat obesity. ACS Appl. Mater. Interfaces 2022, 14, 17621–17630. [Google Scholar] [CrossRef] [PubMed]
- Alresayes, S.; Al Deeb, M.; Mokeem, S.A.; Al-Hamoudi, N.; Ahmad, P.; Al-Aali, K.A.; Vohra, F.; Abduljabbar, T. Influence of body fat in patients with dental implant rehabilitation treated with adjunctive photodynamic therapy. Photodiagnosis Photodyn. Ther. 2020, 31, 101831. [Google Scholar] [CrossRef] [PubMed]
- Vohra, F.; Akram, Z.; Bukhari, I.A.; Sheikh, S.A.; Javed, F. Short-term effects of adjunctive antimicrobial photodynamic therapy in obese patients with chronic periodontitis: A randomized controlled clinical trial. Photodiagnosis Photodyn. Ther. 2018, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-H.; Ko, S.-H.; Kim, S.J.; Lee, W.-Y.; Park, J.H.; Lee, J.M. Induction of cell death by photodynamic therapy with a new synthetic photosensitizer DH-I-180-3 in undifferentiated and differentiated 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2005, 337, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.; Hans, O.R.; Stefan, E. Apoptotic pathways in adipose tissue. Apoptosis 2013, 18, 911–916. [Google Scholar] [CrossRef]
- Neuberger, W.; Albrecht, V. Removal of Fat Cells by PDT. U.S. Patent Application US11/321,105, 5 July 2007. [Google Scholar]
- Yanina, I.Y.; Orlova, T.G.; Tuchin, V.V.; Altshuler, G.B. The Morphology of Apoptosis and Necrosis of Fat Cells after Photodynamic Treatment at a Constant Temperature In Vitro. In Mechanisms for Low-Light Therapy VI; SPIE: Bellingham, WA, USA, 2011; pp. 169–175. [Google Scholar]
- Yanina, I.Y.; Tuchin, V.V.; Navolokin, N.A.; Matveeva, O.V.; Bucharskaya, A.B.; Maslyakova, G.N.; Altshuler, G.B. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo. J. Biomed. Opt. 2012, 17, 058002. [Google Scholar] [CrossRef]
- Wanner, M.; Mihm, M.C., Jr.; Farinelli, W.A.; Doukas, A.; Zurakowski, D.; Piris, A.; Avram, M.M.; Klein, J.A.; Anderson, R.R. Use of photodynamic therapy and sterile water to target adipose tissue. Dermatol. Surg. 2015, 41, 803–811. [Google Scholar] [CrossRef]
- Shrestha, R.; Lee, H.J.; Lim, J.; Gurung, P.; Thapa Magar, T.B.; Kim, Y.-T.; Lee, K.; Bae, S.; Kim, Y.-W. Effect of photodynamic therapy with chlorin e6 on canine tumors. Life 2022, 12, 2102. [Google Scholar] [CrossRef]
- Thapa Magar, T.B.; Shrestha, R.; Gurung, P.; Lim, J.; Kim, Y.-W. Improved pilot-plant-scale synthesis of chlorin e6 and its efficacy as a photosensitizer for photodynamic therapy and photoacoustic contrast agent. Processes 2022, 10, 2215. [Google Scholar] [CrossRef]
- Shrestha, R.; Mallik, S.K.; Lim, J.; Gurung, P.; Thapa Magar, T.B.; Kim, Y.-W. Efficient synthesis of chlorin e6 and its potential photodynamic immunotherapy in mouse melanoma by the abscopal effect. Int. J. Mol. Sci. 2023, 24, 3901. [Google Scholar] [CrossRef]
- Ryu, A.-R.; Kim, Y.-W.; Lee, M.-Y. Chlorin e6-mediated photodynamic therapy modulates adipocyte differentiation and lipogenesis in 3T3-L1 cells. Photodiagnosis Photodyn. Ther. 2020, 31, 101917. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Liang, W.; Menke, A.L.; Driessen, A.; Koek, G.H.; Lindeman, J.H.; Stoop, R.; Havekes, L.M.; Kleemann, R.; van den Hoek, A.M. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 2014, 9, e115922. [Google Scholar] [CrossRef] [Green Version]
- Shliakhtsin, S.; Trukhachova, T.; Isakau, H.; Istomin, Y. Pharmacokinetics and biodistribution of Photolon® (Fotolon®) in intact and tumor-bearing rats. Photodiagnosis Photodyn. Ther. 2009, 6, 97–104. [Google Scholar] [CrossRef]
- Chin, W.W.L.; Lau, W.K.O.; Heng, P.W.S.; Bhuvaneswari, R.; Olivo, M. Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6–polyvinylpyrrolidone. J. Photochem. Photobiol. B Biol. 2006, 84, 103–110. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H.; Gao, N.; Li, S.Q.; Huang, Y.; Bourassa, J.L.; Huryn, D.M. Experimental design on single-time-point high-throughput microsomal stability assay. J. Pharm. Sci. 2004, 93, 1537–1544. [Google Scholar] [CrossRef]
- Singh, S.S. Preclinical pharmacokinetics: An approach towards safer and efficacious drugs. Curr. Drug Metab. 2006, 7, 165–182. [Google Scholar] [CrossRef]
- Bushman, T.; Lin, T.-Y.; Chen, X. Depot-dependent impact of time-restricted feeding on adipose tissue metabolism in high fat diet-induced obese male mice. Nutrients 2023, 15, 238. [Google Scholar] [CrossRef]
- Speakman, J.R. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 2019, 43, 1491–1492. [Google Scholar] [CrossRef] [Green Version]
- Yuan, E.; Duan, X.; Xiang, L.; Ren, J.; Lai, X.; Li, Q.; Sun, L.; Sun, S. Aged oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway. Nutrients 2018, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Agostinis-Sobrinho, C.; Vicente, S.E.d.C.F.; Norkiene, S.; Rauckienė-Michaelsson, A.; Kievisienė, J.; Dubey, V.P.; Razbadauskas, A.; Lopes, L.; Santos, R. Is the leptin/adiponectin ratio a better diagnostic biomarker for insulin resistance than leptin or adiponectin alone in adolescents? Children 2022, 9, 1193. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Rai, U.; Kosuru, R.; Tiwari, V.; Singh, S. Amelioration of diet-induced metabolic syndrome and fatty liver with sitagliptin via regulation of adipose tissue inflammation and hepatic Adiponectin/AMPK levels in mice. Biochimie 2020, 168, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Kucukkurt, I.; Akkol, E.K.; Karabag, F.; Ince, S.; Süntar, I.; Eryavuz, A.; Sözbilir, N.B. Determination of the regulatory properties of Yucca schidigera extracts on the biochemical parameters and plasma hormone levels associated with obesity. Rev. Bras. Farmacogn. 2016, 26, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Gurung, P.; Lim, J.; Shrestha, R.; Kim, Y.-W. Chlorin e6-associated photodynamic therapy enhances abscopal antitumor effects via inhibition of PD-1/PD-L1 immune checkpoint. Sci. Rep. 2023, 13, 4647. [Google Scholar] [CrossRef]
- Di, L.; Edward, H.K. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
Observed Time (h) | Calculated Serum Ce6 Concentration (ng/mL) | ||
---|---|---|---|
Mouse | Rat | Fat Mouse | |
0 | ND | ND | ND |
0.25 | BQL | 2.0 | 6.8 |
0.5 | 16,685.4 | 2.2 | ND |
1 | 12.8 | 11.4 | 7.2 |
2 | BQL | 49.1 | 12.2 |
4 | 67.6 | 241.4 | 129.9 |
6 | ND | 29.8 | 29.3 |
8 | 51.2 | 162.6 | 28.7 |
Compounds | Dog (%) | Rat (%) |
---|---|---|
Ce6 | 85.4 | 99.6 |
Verapamil | - | 9.2 |
Compounds | Rat (% Remaining) | |
---|---|---|
30 min | 120 min | |
Ce6 | 42.0 | 45.3 |
Procaine | 76.2 | 45.1 |
Enalapril | 26.2 | <1 |
Compounds | CYP Inhibitory Activity (% of Control) | ||||
---|---|---|---|---|---|
CYP1A2 | CYP2C9 | CYP2C19 | CYP2D6 | CYP3A4 | |
Ce6 | 66.9 | 84.1 | 70.3 | 90.1 | 81.9 |
Ketoconazole | 89.1 | 91.1 | 95.4 | 97.7 | 24.4 |
Test Group | No. of Mice | Feeding | Amount of Test Substance |
---|---|---|---|
Normal group (Nor) | 8 | Normal diet | N.S. |
Control 1—Vehicle-treated HFD | 8 | High-fat diet | N.S. |
Control 2—HC2.5 | 8 | Ce6 2.5 mg/kg only | |
Control 3—HL | 8 | Low LED only | |
Low-dose group 1—HC2.5Lo | 8 | Ce6 2.5 mg/kg + Low LED | |
Low-dose group 2—HC2.5Hi | 8 | Ce6 2.5 mg/kg + High LED | |
High-dose group 1—HC5Lo | 8 | Ce6 5 mg/kg + Low LED | |
High-dose group 2—HC5Hi | 8 | Ce6 5 mg/kg + High LED |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, R.; Gurung, P.; Lim, J.; Thapa Magar, T.B.; Kim, C.-W.; Lee, H.Y.; Kim, Y.-W. Anti-Obesity Effect of Chlorin e6-Mediated Photodynamic Therapy on Mice with High-Fat-Diet-Induced Obesity. Pharmaceuticals 2023, 16, 1053. https://doi.org/10.3390/ph16071053
Shrestha R, Gurung P, Lim J, Thapa Magar TB, Kim C-W, Lee HY, Kim Y-W. Anti-Obesity Effect of Chlorin e6-Mediated Photodynamic Therapy on Mice with High-Fat-Diet-Induced Obesity. Pharmaceuticals. 2023; 16(7):1053. https://doi.org/10.3390/ph16071053
Chicago/Turabian StyleShrestha, Rajeev, Pallavi Gurung, Junmo Lim, Til Bahadur Thapa Magar, Cheong-Wun Kim, Hak Yong Lee, and Yong-Wan Kim. 2023. "Anti-Obesity Effect of Chlorin e6-Mediated Photodynamic Therapy on Mice with High-Fat-Diet-Induced Obesity" Pharmaceuticals 16, no. 7: 1053. https://doi.org/10.3390/ph16071053
APA StyleShrestha, R., Gurung, P., Lim, J., Thapa Magar, T. B., Kim, C. -W., Lee, H. Y., & Kim, Y. -W. (2023). Anti-Obesity Effect of Chlorin e6-Mediated Photodynamic Therapy on Mice with High-Fat-Diet-Induced Obesity. Pharmaceuticals, 16(7), 1053. https://doi.org/10.3390/ph16071053