A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Results
2.1. Filtration of CD8+ Epitopes
2.2. Population Coverage for CD8+ Epitopes
2.3. Murine MHC Binding for CD8+ Epitopes
2.4. Optimized Data for CD8+ Epitopes
2.5. Filtration of CD4+ Epitopes
2.6. Population Coverage for CD4+ Epitopes
2.7. Murine MHC Binding for CD4+ Epitopes
2.8. Optimized Data for CD4+ Epitopes
2.9. Population Coverage for Combined Class I and Class II Molecules
2.10. 3D Modeling for Peptide–MHC Complexes and TCR Interactions
2.11. 3D Modeling of Epitopes on KIT Gene
3. Discussion
Limitations of the Study
4. Materials and Methods
4.1. Finding Prevalent Point Mutations on the KIT Gene
4.2. Identifying Mutated Sequences
4.3. MHC Class I Binding Epitope Prediction
4.4. MHC Class II Binding Epitope Prediction
4.5. Obtaining Optimized Population Coverage with PCOptim-CD
4.6. Murine MHC Binding
4.7. Three-Dimensional (3D) Modeling of Peptide–MHC Complex and TCR Interactions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiNardo, C.D.; Cortes, J.E. Mutations in AML: Prognostic and therapeutic implications. Hematol. Am. Soc. Hematol. Educ. Program 2016, 1, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakiti, A.; Mewawalla, P. Acute Myeloid Leukemia. In StatPearls [Internet]; [Updated 17 August 2021]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Mayo Foundation for Medical Education and Research. Acute Myelogenous Leukemia. Mayo Clinic. 10 February 2021. Available online: https://www.mayoclinic.org/diseases-conditions/acute-myelogenous-leukemia/symptoms-causes/syc-20369109 (accessed on 21 July 2022).
- Hussain, S.R.; Raza, S.T.; Babu, S.G.; Singh, P.; Naqvi, H.; Mahdi, F. Screening of C-kit gene Mutation in Acute Myeloid Leukaemia in Northern India. Iran. J. Cancer Prev. 2012, 5, 27–32. [Google Scholar]
- Poklepovic, A.; Bose, P. Molecularly Targeted Therapy: Imatinib and Beyond Gastrointestinal stromal tumor. In Gastrointestinal Stromal Tumor; Lunevicius, R., Ed.; InTech: London, UK, 2012; Volume 49. [Google Scholar]
- Tabone-Eglinger, S.; Subra, F.; El Sayadi, H.; Alberti, L.; Tabone, E.; Michot, J.-P.; Théou-Anton, N.; Lemoine, A.; Blay, J.-Y.; Emile, J.-F. KIT Mutations Induce Intracellular Retention and Activation of an Immature Form of the KIT Protein in Gastrointestinal Stromal Tumors. Clin. Cancer Res. 2008, 14, 2285–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangle, N.A.; Perkins, S.L. Core-Binding Factor Acute Myeloid Leukemia. Arch. Pathol. Lab. Med. 2011, 135, 1504–1509. [Google Scholar] [CrossRef]
- Badr, P.; Elsayed, G.M.; Eldin, D.N.; Riad, B.Y.; Hamdy, N. Detection of KIT mutations in core binding factor acute myeloid leukemia. Leuk. Res. Rep. 2018, 10, 20–25. [Google Scholar] [CrossRef]
- Mast/Stem Cell Growth Factor Receptor Kit: AlphaFold Structure Prediction. AlphaFold Protein Structure Database. Updated 1 June 2022. Available online: https://alphafold.ebi.ac.uk/entry/P10721 (accessed on 31 July 2022).
- Shi, X.; Sousa, L.P.; Mandel-Bausch, E.M.; Tome, F.; Reshetnyak, A.V.; Hadari, Y.; Schlessinger, J.; Lax, I. Distinct cellular properties of oncogenic kit receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc. Natl. Acad. Sci. USA 2016, 113, E4784–E4793. [Google Scholar] [CrossRef] [Green Version]
- Treating Acute Myeloid Leukemia (AML). American Cancer Society. Available online: https://www.cancer.org/cancer/acute-myeloid-leukemia/treating.html (accessed on 21 July 2022).
- Paschka, P.; Konstanze, D. Core-binding factor acute myeloid leukemia: Can we improve on HiDAC consolidation? Hematol. Am. Soc. Hematol. Educ. Program 2013, 1, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Brownell, L. Solid Vaccine Eliminates Acute Myeloid Leukemia in Mice. Harvard Gazette. 14 January 2020. Available online: https://news.harvard.edu/gazette/story/2020/01/solid-vaccine-eliminates-acute-myeloid-leukemia-in-mice/ (accessed on 21 July 2022).
- Kim, K.H.; Kim, J.O.; Park, J.Y.; Seo, M.D.; Park, S.G. Antibody-drug conjugate targeting c-KIT for the treatment of small cell lung cancer. Int. J. Mol. Sci. 2022, 23, 2264. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Krishnamoorthy, N.; Oriss, T.B.; Ray, A. Signaling of c-kit in dendritic cells influences adaptive immunity. Ann. N. Y. Acad. Sci. 2010, 1183, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Dentelli, P.; Cavallo, F.; Brizzi, M.F. Membrane-bound KIT ligand-targeting DNA vaccination inhibits mammary tumor growth. Oncoimmunology 2014, 3, e27259. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Yu, C.S.; Wu, H.W.; Chang, Y.J.; Lin, C.P.; Lu, C.H. The structure-based cancer-related single amino acid variation prediction. Sci. Rep. 2021, 11, 13599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Baldin, A.V.; Isayev, O.; Werner, J.; Zamyatnin, A.A., Jr.; Bazhin, A.V. Cancer Vaccines: Antigen Selection Strategy. Vaccines 2021, 9, 85. [Google Scholar] [CrossRef]
- Liang, J.; Wu, Y.L.; Chen, B.J.; Zhang, W.; Tanaka, Y.; Sugiyama, H. The c-kit receptor-mediated signal transduction and tumor-related diseases. Int. J. Biol. Sci. 2013, 9, 435–443. [Google Scholar] [CrossRef]
- de Lartigue, J. The SCF/KIT Pathway’s Roles: Interest in Therapeutic Targets is Growing. OncLive. Updated 1 September 2011. Available online: https://www.onclive.com/view/the-scfkit-pathways-roles-interest-in-therapeutic-targets-is-growing (accessed on 31 July 2022).
- Feng, Z.C.; Riopel, M.; Popell, A.; Wang, R. A survival Kit for pancreatic beta cells: Stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia 2015, 58, 654–665. [Google Scholar] [CrossRef] [Green Version]
- Carlino, M.S.; Todd, J.R.; Rizos, H. Resistance to c-KIT inhibitors in melanoma: Insights for Future Therapies. Oncoscience 2014, 1, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Turner, R.; Baker, B.M.; Biddison, W.E. MHC Allele-Specific Molecular Features Determine Peptide/HLA-A2 Conformations That Are Recognized by HLA-A2-Restricted T Cell Receptors. J. Immunol. 2002, 169, 3146–3154. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Weisse, S.; Xu, B.; Dobritzsch, D.; Viljanen, J.; Kihlberg, J.; Do, N.-N.; Schneider, N.; Lanig, H.; Holmdahl, R.; et al. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann. Rheum. Dis. 2022, 81, 480–489. [Google Scholar] [CrossRef] [PubMed]
- RCSB PDB. Available online: https://www.rcsb.org/ (accessed on 21 July 2022).
- Barbullushi, K.; Rampi, N.; Serpenti, F.; Sciumè, M.; Fabris, S.; De Roberto, P.; Fracchiolla, N.S. Vaccination Therapy for Acute Myeloid Leukemia: Where Do We Stand? Cancers 2022, 14, 2994. [Google Scholar] [CrossRef]
- Combination of Nilotinib (AMN107) and RAD001 in Patients with Acute Myeloid Leukemia. ClinicalTrials.gov. Updated 8 August 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT00762632?term=KIT (accessed on 21 July 2022).
- Trial to Assess the Efficacy of Midostaurin (PKC412) in Patients with c-KIT or FLT3-ITD Mutated t(8;21) AML (MIDOKIT). ClinicalTrials.gov. Updated 6 August 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT01830361?term=KIT (accessed on 21 July 2022).
- Gross, S.; Lennerz, V.; Gallerani, E.; Mach, N.N.; Böhm, S.; Hess, D.; von Boehmer, L.; Knuth, A.; Ochsenbein, A.; Gnad-Vogt, U.S.; et al. Short Peptide Vaccine Induces CD4+ T Helper Cells in Patients with Different Solid Cancers. Cancer Immunol. Res. 2016, 4, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Galarza, F.F.; McCabe, A.; Melo dos Santos, E.J.; Jones, J.; Takeshita, L.; Ortega-Rivera, N.D.; Del Cid-Pavon, G.M.; Ramsbottom, K.; Ghattaoraya, G.; Alfirevic, A.; et al. Allele frequency net database (AFND) 2020 update: Gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2020, 48, D783–D788. [Google Scholar] [CrossRef]
- Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Song, Y.; Wu, K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: Estimates based on the global burden of disease study 2017. J. Hematol. Oncol. 2020, 13, 72. [Google Scholar] [CrossRef]
- Savsani, K.; Jabbour, G.; Dakshanamurthy, S. A New Epitope Selection Method: Application to Design a Multi-Valent Epitope Vaccine Targeting HRAS Oncogene in Squamous Cell Carcinoma. Vaccines 2022, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Dakshanamurthy, S. IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method. Vaccines 2022, 10, 1678. [Google Scholar] [CrossRef]
- Frumento, G.; Zuo, J.; Verma, K.; Croft, W.; Ramagiri, P.; Chen, F.E.; Moss, P. CD117 (c-kit) is expressed during CD8+ T cell priming and stratifies sensitivity to apoptosis according to strength of TCR Engagement. Front. Immunol. 2019, 10, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, O.; Barragán, E.; Bolufer, P.; Cervera, J.; Larráyoz, M.J.; Jiménez-Velasco, A.; Martínez-López, J.; Valencia, A.; Moscardó, F.; Sanz, M. Rapid detection of KIT mutations in core-binding factor acute myeloid leukemia using high-resolution melting analysis. J. Mol. Diagn. 2009, 11, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KIT Gene–Somatic Mutations in Cancer. COSMIC. Available online: https://cancer.sanger.ac.uk/cosmic/gene/analysis?all_data=&coords=AA%3AAA&dr=&end=977&gd=&hn=haematopoietic_neoplasm&id=258193&ln=KIT&seqlen=977&sh=acute_myeloid_leukaemia&sn=haematopoietic_and_lymphoid_tissue&ss=NS&start=1#ts (accessed on 8 August 2022).
- Catalogue of Somatic Mutations in Cancer. COSMIC. Updated 31 May 2022. Available online: https://cancer.sanger.ac.uk/cosmic (accessed on 24 July 2022).
- P10721: KIT_HUMAN. UniProt. Available online: https://www.uniprot.org/uniprotkb/P10721/entry#family_and_domains (accessed on 31 July 2022).
- Uniprot. UniProt. Available online: https://www.uniprot.org/ (accessed on 21 July 2022).
- MHC-I Binding Predictions. IEDB Analysis Resource. Available online: http://tools.iedb.org/mhci/ (accessed on 7 June 2022).
- MHC-I Binding Predictions–Tutorial. IEDB Analysis Resource. Available online: http://tools.iedb.org/mhci/help/ (accessed on 21 July 2022).
- Class I Immunogenicity. IEDB Analysis Resource. Available online: http://tools.iedb.org/immunogenicity/ (accessed on 13 June 2022).
- Calis, J.J.A.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Comput. Biol. 2013, 9, e1003266. [Google Scholar] [CrossRef] [Green Version]
- VaxiJen: Prediction of Protective Antigens and Subunit Vaccines. VaxiJen v2.0. Available online: http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html (accessed on 13 June 2022).
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ruan, P.; Wang, L.; Nie, X.; Ma, X.; Tan, Y. T and B Cell Epitope analysis of SARS-COV-2 S protein based on immunoinformatics and experimental research. J. Cell. Mol. Med. 2021, 25, 1274–1289. [Google Scholar] [CrossRef]
- Varshavsky, A. The N-end rule pathway of protein degradation. Genes Cells 2003, 2, 13–28. [Google Scholar] [CrossRef]
- Gonda, D.K.; Bachmair, A.; Wünning, I.; Tobias, J.W.; Lane, W.S.; Varshavsky, A. Universality and structure of the N-end rule. J. Biol. Chem. 1989, 264, 16700–16712. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [CrossRef] [PubMed]
- ProtParam Tool. Expasy. Available online: https://web.expasy.org/protparam/ (accessed on 14 June 2022).
- Smoluch, M.; Mielczarek, P.; Drabik, A.; Silberring, J. 5–Online and Offline Sample Fractionation. In Proteomic Profiling and Analytical Chemistry, 2nd ed.; Ciborowski, P., Silberring, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 63–99. [Google Scholar] [CrossRef]
- Virtual Scanning of Toxic Peptides. ToxinPred: Designing and Prediction of Toxic Peptides. Available online: https://webs.iiitd.edu.in/raghava/toxinpred/ (accessed on 14 June 2022).
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE. 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epitope Prediction. IFNepitope: A Server for Predicting and Designing Interferon-Gamma Inducing Epitopes. Available online: http://crdd.osdd.net/raghava/ifnepitope/ (accessed on 14 June 2022).
- Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct. 2013, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bioinformatics Tool for Allergenicity Prediction. AllerTop v. 2.0. Available online: https://www.ddg-pharmfac.net/AllerTOP/index.html (accessed on 14 June 2022).
- Dmitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2.0—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef]
- Population Coverage. IEDB Analysis Resource. Available online: http://tools.iedb.org/population/ (accessed on 21 June 2022).
- MHC-II Binding Predictions. IEDB Analysis Resource. Available online: http://tools.iedb.org/mhcii/ (accessed on 4 July 2022).
- CD4 T Cell Immunogenicity Prediction. IEDB Analysis Resource–Labs. Available online: http://tools.iedb.org/CD4episcore/ (accessed on 4 July 2022).
- Dhanda, S.K.; Karosiene, E.; Edwards, L.; Grifoni, A.; Paul, S.; Andreatta, M.; Weiskopf, D.; Sidney, J.; Nielsen, M.; Peters, B.; et al. Predicting HLA CD4 Immunogenicity in Human Populations. Front. Immunol. 2018, 9, 1369. [Google Scholar] [CrossRef] [Green Version]
- NetMHCpan–4.0: Pan-Specific Binding of Peptides to MHC Class I Alleles of Known Sequence. DTU Health Tech. Available online: https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.0 (accessed on 28 June 2022).
- NetMHCpan–5.0: Pan-Specific Binding of Peptides to MHC Class II Alleles of Known Sequence. DTU Health Tech. Available online: https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0 (accessed on 19 July 2022).
- MDockPeP Server. (n.d.). Updated 21 March 2019. Available online: https://zougrouptoolkit.missouri.edu/mdockpep/ (accessed on 21 July 2022).
- Xu, X.; Yan, C.; Zou, X. MDockPeP: An ab-initio protein-peptide docking server. J. Comput. Chem. 2018, 39, 2409–2413. [Google Scholar] [CrossRef]
- Yan, C.; Xu, X.; Zou, X. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Structure 2016, 24, 1842–1853. [Google Scholar] [CrossRef] [Green Version]
- CABS-Dock: Server for Flexible Protein-Peptide Docking. Available online: http://biocomp.chem.uw.edu.pl/CABSdock (accessed on 8 August 2022).
- TCR Model: Automated High Resolution Modeling of T Cell Receptors. Available online: https://tcrmodel.ibbr.umd.edu/rtcrex/TCRSDM6_180718_160348 (accessed on 31 July 2022).
- Almosailleakh, M.; Schwaller, J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci. 2019, 20, 453. [Google Scholar] [CrossRef] [Green Version]
Mutation | Epitope | HLA Alleles | Strong H2 Allele Restriction | Weak H2 Allele Restriction |
---|---|---|---|---|
I571L | INGNNYVYL | HLA-A*24:02, HLA-B*08:01, HLA-A*23:01, HLA-A*68:02 | H-2-Db, H-2-Dd, H-2-Kb | H-2-Ld |
K550N | NPMYEVQWK | HLA-A*68:01, HLA-B*35:01, HLA-A*33:01, HLA-B*53:01, HLA-A*11:01, HLA-A*03:01, HLA-B*07:02 | Not available | Not available |
R49H | GKSDLIVHV | HLA-A*02:06, HLA-A*02:03, HLA-A*68:02, HLA-A*02:01, HLA-B*40:01 HLA-A*30:01, HLA-B*44:03, HLA-B*51:01, HLA-B*44:02, HLA-A*30:02, HLA-A*26:01, HLA-B*15:01 | Not available | Not available |
R49H | KSDLIVHVG | HLA-B*58:01, HLA-B*57:01, HLA-A*01:01 | Not available | Not available |
R49H | VHVGDEIRL | HLA-A*23:01, HLA-B*40:01, HLA-A*24:02, HLA-B*44:03, HLA-B*35:01, HLA-B*44:02, HLA-B*53:01 | Not available | H-2-Kd |
V399I | SDINAAIAF | HLA-B*44:03, HLA-B*44:02, HLA-B*40:01, HLA-B*15:01, HLA-B*35:01, HLA-A*26:01, HLA-A*30:02, HLA-B*53:01, HLA-A*01:01, HLA-B*07:02, HLA-A*32:01, HLA-A*23:01, HLA-A*24:02, HLA-B*58:01 | H-2-Qa2 | H-2-Kk, H-2-Ld |
V399I | SNSDINAAI | HLA-A*68:02, HLA-B*51:01, HLA-A*02:06,HLA-B*40:01, HLA-A*30:02, HLA-A*02:03, HLA-A*26:01, HLA-B*07:02, HLA-B*58:01, HLA-A*32:01, HLA-B*44:02, HLA-B*44:03, HLA-A*01:01, HLA-B*53:01, HLA-B*35:01, HLA-A*23:01, HLA-A*24:02 | Not available | H-2-Kk |
V399I | NSDINAAIA | HLA-A*01:01, HLA-B*51:01, HLA-A*68:02, HLA-B*35:01 | Not available | H-2-Db |
D760V | AIMEDVELA | HLA-A*02:06, HLA-A*02:01, HLA-A*02:03, HLA-A*68:02, HLA-A*30:02, HLA-A*26:01, HLA-A*01:01, HLA-A*32:01, HLA-A*11:01 | Not available | Not available |
C809R | GRITKIRDF | HLA-B*08:01, HLA-A*30:02, HLA-B*15:01, HLA-A*23:01, HLA-A*26:01, HLA-B*44:03, HLA-A*32:01, HLA-A*24:02, HLA-B*44:02, HLA-B*40:01 | Not available | Not available |
C809R | ITKIRDFGL | HLA-B*08:01, HLA-B*57:01, HLA-A*30:01, HLA-B*58:01, HLA-A*68:02, HLA-A*32:01, HLA-A*02:06, HLA-B*07:02, HLA-A*30:02, HLA-B*51:01, HLA-A*02:03, HLA-A*31:01, HLA-B*15:01, HLA-A*33:01, HLA-A*24:02, HLA-A*23:01 | Not available | Not available |
C809R | THGRITKIR | HLA-A*33:01, HLA-A*31:01, HLA-A*68:01 | Not available | Not available |
Mutation | Length | Epitope | HLA Alleles | Strong H2 Allele Restriction | Weak H2 Allele Restriction |
---|---|---|---|---|---|
D816H | 18 | FGLARHIKNDSNYVVKGN | HLA-DRB1*13:02, HLA-DRB3*02:02, HLA-DRB3*01:01 | Not available | Not available |
D816H | 18 | GLARHIKNDSNYVVKGNA | HLA-DRB1*13:02, HLA-DRB3*02:02, HLA-DRB3*01:01 | Not available | Not available |
D816H | 18 | LARHIKNDSNYVVKGNAR | HLA-DRB1*13:02, HLA-DRB3*02:02, HLA-DRB3*01:01 | Not available | Not available |
D816V | 18 | VIKNDSNYVVKGNARLPV | HLA-DRB1*13:02, HLA-DRB3*02:02, HLA-DRB1*08:02, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 17 | DFGLARYIKNDSNYVVK | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 18 | DFGLARYIKNDSNYVVKG | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 16 | FGLARYIKNDSNYVVK | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*15:01, HLA-DRB1*04:01, HLA-DRB1*08:02 | H-2-IEd | Not available |
D816Y | 17 | FGLARYIKNDSNYVVKG | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | H-2-IEd | Not available |
D816Y | 18 | FGLARYIKNDSNYVVKGN | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 17 | GLARYIKNDSNYVVKGN | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | H-2-IEd | Not available |
D816Y | 18 | GLARYIKNDSNYVVKGNA | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 17 | LARYIKNDSNYVVKGNA | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
D816Y | 18 | LARYIKNDSNYVVKGNAR | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB3*01:01, HLA-DRB1*08:02, HLA-DRB1*04:01, HLA-DRB1*15:01 | Not available | H-2-IEd |
N822K | 15 | DSKYVVKGNARLPVK | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB5*01:01, HLA-DRB1*01:01, HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-DRB1*15:01 | H-2-IEd, H-2-IEk | Not available |
N822K | 16 | NDSKYVVKGNARLPVK | HLA-DRB3*02:02, HLA-DRB1*13:02, HLA-DRB5*01:01 | H-2-IEd | H-2-IEk |
K550N | 15 | TYKYLQNPMYEVQWK | HLA-DRB3*02:02 HLA-DRB1*04:05, HLA-DRB1*04:01, HLA-DPA1*01:03/DPB1*04:01 | Not available | Not available |
C809R | 18 | AARNILLTHGRITKIRDF | HLA-DRB1*07:01 | Not available | Not available |
C809R | 17 | ARNILLTHGRITKIRDF | HLA-DRB1*07:01 | Not available | Not available |
C809R | 18 | ARNILLTHGRITKIRDFG | HLA-DRB1*07:01 | Not available | Not available |
C809R | 18 | ILLTHGRITKIRDFGLAR | HLA-DRB1*07:01 | Not available | Not available |
T417D & Y418F | 18 | AAIAFNVYVNTKPEILDF | HLA-DRB1*07:01, HLA-DRB3*02:02 | Not available | Not available |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Savsani, K.; Dakshanamurthy, S. A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia. Pharmaceuticals 2023, 16, 932. https://doi.org/10.3390/ph16070932
Kim M, Savsani K, Dakshanamurthy S. A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia. Pharmaceuticals. 2023; 16(7):932. https://doi.org/10.3390/ph16070932
Chicago/Turabian StyleKim, Minji, Kush Savsani, and Sivanesan Dakshanamurthy. 2023. "A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia" Pharmaceuticals 16, no. 7: 932. https://doi.org/10.3390/ph16070932
APA StyleKim, M., Savsani, K., & Dakshanamurthy, S. (2023). A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia. Pharmaceuticals, 16(7), 932. https://doi.org/10.3390/ph16070932