Medications Modulating the Acid Sphingomyelinase/Ceramide System and 28-Day Mortality among Patients with SARS-CoV-2: An Observational Study
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Cohort
2.2. Twenty-Eight-Day Mortality
3. Discussion
4. Materials and Methods
4.1. Setting and Cohort Assembly
4.2. Data Sources
4.3. Variables Assessed
4.4. FIASMA Medications
4.5. Study Baseline and Endpoint
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Full Population (N= 69,490) | Death (N= 4416) | No Death (N= 65,074) | Crude Analysis | Multivariable Analysis | ||
---|---|---|---|---|---|---|
Mean (SD)/ N (%) | Mean (SD)/ N (%) | Mean (SD)/ N (%) | HR (95%CI; p-Value) | AHR (95%CI; p-Value) | GVIF | |
Age | 1.21 | |||||
18–50 years | 32738 (47.1%) | 159 (0.49%) | 32579 (99.5%) | Ref. | Ref. | |
51–60 years | 9286 (13.4%) | 297 (3.20%) | 8989 (96.8%) | 6.67 (5.50–8.09; <0.001 *) | 4.33 (3.57–5.26; <0.001 *) | |
61–70 years | 8709 (12.5%) | 732 (8.41%) | 7977 (91.6%) | 18.05 (15.21–21.43; <0.001 *) | 9.69 (8.14–11.55; <0.001 *) | |
71–80 years | 8477 (12.2%) | 1174 (13.8%) | 7303 (86.2%) | 30.73 (26.04–36.27; <0.001 *) | 17 (14.35–20.15; <0.001 *) | |
81–90 years | 7164 (10.3%) | 1338 (18.7%) | 5826 (81.3%) | 42.94 (36.43–50.62; <0.001 *) | 27.72 (23.42–32.8; <0.001 *) | |
More than 90 years | 3116 (4.48%) | 716 (23.0%) | 2400 (77.0%) | 54.50 (45.89–64.72; <0.001 *) | 38.44 (32.21–45.87; <0.001 *) | |
Sex | 1.06 | |||||
Women | 36001 (51.8%) | 1782 (4.95%) | 34219 (95.1%) | Ref. | Ref. | |
Men | 33489 (48.2%) | 2634 (7.87%) | 30855 (92.1%) | 1.61 (1.52–1.71; <0.001 *) | 1.34 (1.26–1.42; <0.001 *) | |
Hospital | 1.08 | |||||
AP-HP Centre–Paris University, Henri Mondor, Doumer University Hospitals, and hospitalization at home | 27967 (40.2%) | 1712 (6.12%) | 26255 (93.9%) | Ref. | Ref. | |
AP-HP Nord and Hôpitaux Universitaires Paris Seine-Saint-Denis | 27967 (40.2%) | 1641 (5.87%) | 26326 (94.1%) | 0.94 (0.88—1.01; 0.077) | 1.05 (0.98—1.13; 0.142) | |
AP-HP Sorbonne University | 13556 (19.5%) | 1063 (7.84%) | 12493 (92.2%) | 1.27 (1.18–1.37; <0.001 *) | 1.07 (0.99–1.16; 0.078) | |
Period of hospitalization | 1.07 | |||||
2 May 2020–31 March 2021 | 28216 (40.6%) | 2136 (7.57%) | 26080 (92.4%) | Ref. | Ref. | |
1 April 2021–27 January 2022 | 25576 (36.8%) | 1640 (6.41%) | 23936 (93.6%) | 0.83 (0.78–0.88; <0.001 *) | 0.95 (0.89–1.01; 0.093) | |
28 January 2022–31 August 2022 | 15698 (22.6%) | 640 (4.08%) | 15058 (95.9%) | 0.53 (0.48–0.57; <0.001 *) | 0.50 (0.46–0.55; <0.001*) | |
Medication according to compassionate use or as part of a clinical trial a | 1.05 | |||||
Yes | 1777 (2.56%) | 297 (16.7%) | 1480 (83.3%) | 2.86 (2.54–3.22; <0.001 *) | 1.07 (0.95–1.21; 0.271) | |
No | 67713 (97.4%) | 4119 (6.08%) | 63594 (93.9%) | Ref. | Ref. | |
Other infectious diseases b | 1.27 | |||||
Yes | 5243 (7.54%) | 878 (16.7%) | 4365 (83.3%) | 3.14 (2.91–3.38; <0.001 *) | 1.08 (0.99–1.17; 0.070) | |
No | 64247 (92.5%) | 3538 (5.51%) | 60709 (94.5%) | Ref. | Ref. | |
Neoplasms and diseases of the blood c | 1.18 | |||||
Yes | 7502 (10.8%) | 1074 (14.3%) | 6428 (85.7%) | 2.74 (2.56–2.94; <0.001 *) | 1.11 (1.03–1.19; 0.008 *) | |
No | 61988 (89.2%) | 3342 (5.39%) | 58646 (94.6%) | Ref. | Ref. | |
Mental disorders d | 1.18 | |||||
Yes | 5964 (8.58%) | 818 (13.7%) | 5146 (86.3%) | 2.50 (2.32–2.70; <0.001 *) | 0.86 (0.79–0.93; <0.001 *) | |
No | 63526 (91.4%) | 3598 (5.66%) | 59928 (94.3%) | Ref. | Ref. | |
Diseases of the nervous system e | 1.15 | |||||
Yes | 4323 (6.22%) | 658 (15.2%) | 3665 (84.8%) | 2.75 (2.53–2.99; <0.001 *) | 1.14 (1.04–1.24; 0.005 *) | |
No | 65167 (93.8%) | 3758 (5.77%) | 61409 (94.2%) | Ref. | Ref. | |
Cardiovascular disorders f | 1.55 | |||||
Yes | 12527 (18.0%) | 2135 (17.0%) | 10392 (83.0%) | 4.53 (4.27–4.81; <0.001 *) | 1.06 (0.98–1.14; 0.141) | |
No | 56963 (82.0%) | 2281 (4.00%) | 54682 (96.0%) | Ref. | Ref. | |
Respiratory disorders g | 1.58 | |||||
Yes | 14232 (20.5%) | 2649 (18.6%) | 11583 (81.4%) | 6.26 (5.90–6.65; <0.001 *) | 2.22 (2.06–2.40; <0.001 *) | |
No | 55258 (79.5%) | 1767 (3.20%) | 53491 (96.8%) | Ref. | Ref. | |
Digestive disorders h | 1.11 | |||||
Yes | 4604 (6.63%) | 589 (12.8%) | 4015 (87.2%) | 2.22 (2.04–2.42; <0.001 *) | 1.01 (0.92–1.11; 0.787) | |
No | 64886 (93.4%) | 3827 (5.90%) | 61059 (94.1%) | Ref. | Ref. | |
Dermatological disorders i | 1.07 | |||||
Yes | 1571 (2.26%) | 223 (14.2%) | 1348 (85.8%) | 2.36 (2.06–2.70; <0.001 *) | 0.95 (0.83–1.09; 0.465) | |
No | 67919 (97.7%) | 4193 (6.17%) | 63726 (93.8%) | Ref. | Ref. | |
Diseases of the musculoskeletal system j | 1.08 | |||||
Yes | 3800 (5.47%) | 392 (10.3%) | 3408 (89.7%) | 1.71 (1.54–1.90; <0.001 *) | 0.80 (0.72–0.90; <0.001 *) | |
No | 65690 (94.5%) | 4024 (6.13%) | 61666 (93.9%) | Ref. | Ref. | |
Diseases of the genitourinary system k | 1.37 | |||||
Yes | 6275 (9.03%) | 1270 (20.2%) | 5005 (79.8%) | 4.34 (4.07–4.63; <0.001 *) | 1.46 (1.35–1.57; <0.001 *) | |
No | 63215 (91.0%) | 3146 (4.98%) | 60069 (95.0%) | Ref. | Ref. | |
Endocrine disorders l | 1.55 | |||||
Yes | 13922 (20.0%) | 2022 (14.5%) | 11900 (85.5%) | 3.51 (3.31–3.73; <0.001 *) | 0.72 (0.67–0.78; <0.001 *) | |
No | 55568 (80.0%) | 2394 (4.31%) | 53174 (95.7%) | Ref. | Ref. | |
Eye–ear–nose–throat disorders m | 1.05 | |||||
Yes | 1245 (1.79%) | 151 (12.1%) | 1094 (87.9%) | 1.98 (1.68–2.33; <0.001 *) | 0.76 (0.64–0.89; 0.001 *) | |
No | 68245 (98.2%) | 4265 (6.25%) | 63980 (93.8%) | Ref. | Ref. | |
Biological severity of COVID-19 at baseline n | 1.29 | |||||
Yes | 18486 (26.6%) | 2930 (15.8%) | 15556 (84.2%) | 5.78 (5.43–6.15; <0.001 *) | 1.91 (1.78–2.05; <0.001 *) | |
No | 51004 (73.4%) | 1486 (2.91%) | 49518 (97.1%) | Ref. | Ref. | |
Clinical severity of COVID-19 at baseline o | 1.18 | |||||
Yes | 9015 (13.0%) | 1592 (17.7%) | 7423 (82.3%) | 4.07 (3.82–4.32; <0.001 *) | 1.52 (1.42–1.63; <0.001 *) | |
No | 60475 (87.0%) | 2824 (4.67%) | 57651 (95.3%) | Ref. | Ref. |
Full Population (N= 9714) | Death (N = 1409) | No Death (N = 8305) | Crude Analysis | Multivariable Analysis | ||
---|---|---|---|---|---|---|
Mean (SD)/ N (%) | Mean (SD)/ N (%) | Mean (SD)/ N (%) | HR (95%CI; p-Value) | AHR (95%CI; p-Value) | GVIF | |
Age | ||||||
18–50 years | 1326 (13.7%) | 29 (2.2%) | 1297 (97.8%) | Ref. | Ref. | 1.21 |
51–60 years | 1023 (10.5%) | 66 (6.5%) | 957 (93.5%) | 3.27 (2.09–5.12; <0.001) | 2.46 (1.57–3.85; <0.001) | |
61–70 years | 1704 (17.5%) | 208 (12.2%) | 1496 (87.8%) | 6.23 (4.17–9.31; <0.001) | 4.40 (2.94–6.59; <0.001) | |
71–80 years | 2175 (22.4%) | 347 (16.0%) | 1828 (84.0%) | 8.42 (5.69–12.46; <0.001) | 6.86 (4.62–10.18; <0.001) | |
81–90 years | 2383 (24.5%) | 505 (21.2%) | 1878 (78.8%) | 11.72 (7.96–17.26; <0.001) | 11.78 (7.97–17.42; <0.001) | |
More than 90 years | 1103 (11.40%) | 254 (23.0%) | 849 (77.0%) | 12.74 (8.57–18.95; <0.001) | 15.01 (10.03–22.45; <0.001) | |
Sex | ||||||
Women | 4663 (48.0%) | 569 (12.2%) | 4094 (87.8%) | Ref. | Ref. | 1.06 |
Men | 5051 (52.0%) | 840 (16.6%) | 4211 (83.4%) | 1.40 (1.25–1.55; <0.001) | 1.41 (1.27–1.58; <0.001) | |
Hospital | ||||||
AP-HP Centre—Paris University, Henri Mondor, Doumer University Hospitals, and hospitalization at home | 4118 (42.4%) | 576 (14.0%) | 3542 (86.0%) | Ref. | Ref. | 1.08 |
AP-HP Nord and Hôpitaux Universitaires Paris Seine-Saint-Denis | 2885 (29.7%) | 419 (14.5%) | 2466 (85.5%) | 1.02 (0.90–1.16; 0.763) | 1.05 (0.92–1.20; 0.463) | |
AP-HP Sorbonne University | 2711 (27.9%) | 414 (15.3%) | 2297 (84.7%) | 1.09 (0.96–1.24; 0.162) | 1.04 (0.91–1.18; 0.564) | |
Period of hospitalization | ||||||
2 May 2020–31 March 2021 | 3242 (33.4%) | 650 (20.0%) | 2592 (80.0%) | Ref. | Ref. | 1.07 |
1 April 2021–27 January 2022 | 3259 (33.5%) | 527 (16.2%) | 2732 (83.8%) | 0.79 (0.70–0.89; <0.001) | 0.94 (0.84–1.06; 0.298) | |
28 January 2022–31 August 2022 | 3213 (33.1%) | 232 (7.2%) | 2981 (92.8%) | 0.35 (0.30–0.40; <0.001) | 0.46 (0.39–0.53; <0.001) | |
Medication according to compassionate use or as part of a clinical trial a | ||||||
Yes | 1051 (10.8%) | 204 (19.4%) | 847 (80.6%) | 1.41 (1.22–1.64; <0.001) | 1.11 (0.95–1.29; 0.181) | 1.05 |
No | 8663 (89.2%) | 1205 (13.9%) | 7458 (86.1%) | Ref. | Ref. | |
Other infectious diseases b | ||||||
Yes | 1863 (19.2%) | 339 (18.2%) | 1524 (81.8%) | 1.31 (1.16–1.48; <0.001) | 0.99 (0.87–1.13; 0.875) | 1.27 |
No | 7851 (80.8%) | 1070 (13.6%) | 6781 (86.4%) | Ref. | Ref. | |
Neoplasms and diseases of the blood c | ||||||
Yes | 3347 (34.5%) | 518 (15.5%) | 2829 (84.5%) | 1.11 (1.00–1.24; 0.056) | 1.14 (1.02–1.28; 0.023) | 1.18 |
No | 6367 (65.5%) | 891 (14.0%) | 5476 (86.0%) | Ref. | Ref. | |
Mental disorders d | ||||||
Yes | 2656 (27.3%) | 401 (15.1%) | 2255 (84.9%) | 1.06 (0.94–1.19; 0.356) | 0.89 (0.78–1.00; 0.052) | 1.18 |
No | 7058 (72.7%) | 1008 (14.3%) | 6050 (85.7%) | Ref. | Ref. | |
Diseases of the nervous systeme | ||||||
Yes | 1804 (18.6%) | 289 (16.0%) | 1515 (84.0%) | 1.13 (0.99–1.28; 0.068) | 1.07 (0.93–1.23; 0.33) | 1.15 |
No | 7910 (81.4%) | 1120 (14.2%) | 6790 (85.8%) | Ref. | Ref. | |
Cardiovascular disorders f | ||||||
Yes | 5578 (57.4%) | 972 (17.4%) | 4606 (82.6%) | 1.70 (1.52–1.90; <0.001) | 1.02 (0.90–1.16; 0.712) | 1.55 |
No | 4136 (42.6%) | 437 (10.6%) | 3699 (89.4%) | Ref. | Ref. | |
Respiratory disorders g | ||||||
Yes | 4952 (51.0%) | 1094 (22.1%) | 3858 (77.9%) | 3.64 (3.21–4.13; <0.001) | 2.58 (2.24–2.96; <0.001) | 1.58 |
No | 4762 (49.0%) | 315 (6.6%) | 4447 (93.4%) | Ref. | Ref. | |
Digestive disorders h | ||||||
Yes | 1717 (17.7%) | 249 (14.5%) | 1468 (85.5%) | 1.00 (0.87–1.14; 0.956) | 0.97 (0.84–1.12; 0.685) | 1.11 |
No | 7997 (82.3%) | 1160 (14.5%) | 6837 (85.5%) | Ref. | Ref. | |
Dermatological disorders i | ||||||
Yes | 650 (6.7%) | 107 (16.5%) | 543 (83.5%) | 1.13 (0.93–1.38; 0.221) | 1.04 (0.85–1.28; 0.703) | 1.07 |
No | 9064 (93.3%) | 1302 (14.4%) | 7762 (85.6%) | Ref. | Ref. | |
Diseases of the musculoskeletal system j | ||||||
Yes | 1684 (17.3%) | 204 (12.1%) | 1480 (87.9%) | 0.79 (0.68–0.92; 0.002) | 0.88 (0.76–1.03; 0.112) | 1.08 |
No | 8030 (82.7%) | 1205 (15.0%) | 6825 (85.0%) | Ref. | Ref. | |
Diseases of the genitourinary system k | ||||||
Yes | 2663 (27.4%) | 536 (20.1%) | 2127 (79.9%) | 1.66 (1.49–1.85; <0.001) | 1.24 (1.10–1.40; <0.001) | 1.37 |
No | 7051 (72.6%) | 873 (12.4%) | 6178 (87.6%) | Ref. | Ref. | |
Endocrine disorders l | ||||||
Yes | 5722 (58.9%) | 922 (16.1%) | 4800 (83.9%) | 1.33 (1.19–1.49; <0.001) | 0.77 (0.68–0.87; <0.001) | 1.55 |
No | 3992 (41.1%) | 487 (12.2%) | 3505 (87.8%) | Ref. | Ref. | |
Eye–ear–nose–throat disorders m | ||||||
Yes | 603 (6.21%) | 86 (14.3%) | 517 (85.7%) | 0.99 (0.79–1.23; 0.903) | 0.82 (0.66–1.03; 0.089) | 1.05 |
No | 9111 (93.8%) | 1323 (14.5%) | 7788 (85.5%) | Ref. | Ref. | |
Biological severity of COVID-19 at baseline n | ||||||
Yes | 5009 (51.6%) | 1030 (20.6%) | 3979 (79.4%) | 2.71 (2.41–3.05; <0.001) | 1.66 (1.46–1.89; <0.001) | 1.29 |
No | 4705 (48.4%) | 379 (8.1%) | 4326 (91.9%) | Ref. | Ref. | |
Clinical severity of COVID-19 at baseline o | ||||||
Yes | 3370 (34.7%) | 757 (22.5%) | 2613 (77.5%) | 2.31 (2.08–2.56; <0.001) | 1.58 (1.42–1.76; <0.001) | 1.18 |
No | 6344 (65.3%) | 652 (10.3%) | 5692 (89.7%) | Ref. | Ref. |
Exposed to Any FIASMA Medication (N = 4857) | Not Exposed to FIASMA Medication (N= 64633) | Non-Exposed Matched Group (N= 4857) | Exposed to Any FIASMA Medication vs. Not exposed | Exposed to Any FIASMA Medication vs. Non-Exposed Matched Group | |
---|---|---|---|---|---|
Crude Analysis | Matched Analytic Sample Analysis Using a 1:1 Ratio | ||||
N (%) | N (%) | N (%) | SMD | SMD | |
Age | 0.900 | 0.082 | |||
18–50 years | 722 (14.9%) | 32016 (49.5%) | 604 (12.4%) | ||
51–60 years | 500 (10.3%) | 8786 (13.6%) | 523 (10.8%) | ||
61–70 years | 811 (16.7%) | 7898 (12.2%) | 893 (18.4%) | ||
71–80 years | 1104 (22.7%) | 7373 (11.4%) | 1071 (22.1%) | ||
81–90 years | 1181 (24.3%) | 5983 (9.26%) | 1202 (24.7%) | ||
More than 90 years | 539 (11.1%) | 2577 (3.99%) | 564 (11.6%) | ||
Sex | 0.064 | 0.033 | |||
Women | 2372 (48.8%) | 33629 (52.0%) | 2291 (47.2%) | ||
Men | 2485 (51.2%) | 31004 (48.0%) | 2566 (52.8%) | ||
Hospital | 0.293 | 0.042 | |||
AP-HP Centre—Paris University, Henri Mondor, Doumer University Hospitals, and hospitalization at home | 2049 (42.2%) | 25918 (40.1%) | 2069 (42.6%) | ||
AP-HP Nord and Hôpitaux Universitaires Paris Seine-Saint-Denis | 1410 (29.0%) | 26557 (41.1%) | 1475 (30.4%) | ||
AP-HP Sorbonne University | 1398 (28.8%) | 12158 (18.8%) | 1313 (27.0%) | ||
Period of hospitalization | 0.410 | 0.024 | |||
2 May 2020–31 March 2021 | 1604 (33.0%) | 26612 (41.2%) | 1638 (33.7%) | ||
1 April 2021–7 January 2022 | 1620 (33.4%) | 23956 (37.1%) | 1639 (33.7%) | ||
28 January 2022–31 August 2022 | 1633 (33.6%) | 14065 (21.8%) | 1580 (32.5%) | ||
Medication according to compassionate use or as part of a clinical trial a | 0.384 | 0.079 | |||
Yes | 585 (12.0%) | 1192 (1.84%) | 466 (9.59%) | ||
No | 4272 (88.0%) | 63441 (98.2%) | 4391 (90.4%) | ||
Other infectious diseases b | 0.384 | 0.008 | |||
Yes | 939 (19.3%) | 4304 (6.66%) | 924 (19.0%) | ||
No | 3918 (80.7%) | 60329 (93.3%) | 3933 (81.0%) | ||
Neoplasms and diseases of the blood c | 0.654 | 0.010 | |||
Yes | 1685 (34.7%) | 5817 (9.00%) | 1662 (34.2%) | ||
No | 3172 (65.3%) | 58816 (91.0%) | 3195 (65.8%) | ||
Mental disorders d | 0.558 | 0.006 | |||
Yes | 1335 (27.5%) | 4629 (7.16%) | 1321 (27.2%) | ||
No | 3522 (72.5%) | 60004 (92.8%) | 3536 (72.8%) | ||
Diseases of the nervous system e | 0.428 | 0.017 | |||
Yes | 918 (18.9%) | 3405 (5.27%) | 886 (18.2%) | ||
No | 3939 (81.1%) | 61228 (94.7%) | 3971 (81.8%) | ||
Cardiovascular disorders f | 0.973 | 0.012 | |||
Yes | 2774 (57.1%) | 9753 (15.1%) | 2804 (57.7%) | ||
No | 2083 (42.9%) | 54880 (84.9%) | 2053 (42.3%) | ||
Respiratory disorders g | 0.698 | 0.059 | |||
Yes | 2404 (49.5%) | 11828 (18.3%) | 2548 (52.5%) | ||
No | 2453 (50.5%) | 52805 (81.7%) | 2309 (47.5%) | ||
Digestive disorders h | 0.371 | 0.008 | |||
Yes | 851 (17.5%) | 3753 (5.81%) | 866 (17.8%) | ||
No | 4006 (82.5%) | 60880 (94.2%) | 3991 (82.2%) | ||
Dermatological disorders i | 0.227 | 0.018 | |||
Yes | 314 (6.46%) | 1257 (1.94%) | 336 (6.92%) | ||
No | 4543 (93.5%) | 63376 (98.1%) | 4521 (93.1%) | ||
Diseases of the musculoskeletal system j | 0.422 | 0.009 | |||
Yes | 850 (17.5%) | 2950 (4.56%) | 834 (17.2%) | ||
No | 4007 (82.5%) | 61683 (95.4%) | 4023 (82.8%) | ||
Diseases of the genitourinary system k | 0.554 | 0.028 | |||
Yes | 1362 (28.0%) | 4913 (7.60%) | 1301 (26.8%) | ||
No | 3495 (72.0%) | 59720 (92.4%) | 3556 (73.2%) | ||
Endocrine disorders l | 0.928 | 0.039 | |||
Yes | 2815 (58.0%) | 11107 (17.2%) | 2907 (59.9%) | ||
No | 2042 (42.0%) | 53526 (82.8%) | 1950 (40.1%) | ||
Eye–ear–nose–throat disorders m | 0.270 | 0.042 | |||
Yes | 326 (6.71%) | 919 (1.42%) | 277 (5.70%) | ||
No | 4531 (93.3%) | 63714 (98.6%) | 4580 (94.3%) | ||
Biological severity of COVID-19 at baseline n | 0.527 | 0.082 | |||
Yes | 2405 (49.5%) | 16081 (24.9%) | 2604 (53.6%) | ||
No | 2452 (50.5%) | 48552 (75.1%) | 2253 (46.4%) | ||
Clinical severity of COVID-19 at baseline o | 0.558 | 0.034 | |||
Yes | 1646 (33.9%) | 7369 (11.4%) | 1724 (35.5%) | ||
No | 3211 (66.1%) | 57264 (88.6%) | 3133 (64.5%) |
ARR | NNT | |
---|---|---|
Any FIASMA medication | 2.7% | 37.0 |
FIASMA cardiovascular system medications | 7.0% | 14.3 |
Other FIASMA cardiovascular system medications | 7.0% | 14.3 |
Amlodipine | 7.0% | 14.3 |
FIASMA nervous system medications | 3.5% | 28.5 |
Fluoxetine | 5.7% | 17.5 |
Escitalopram | 9.9% | 10.1 |
Power to Detect a 20% Reduction in Mortality | |
---|---|
% | |
FIASMA medication | 99.5 |
FIASMA alimentary tract and metabolism medication | 7.8 |
Loperamide | 9.3 |
Mebeverine | 2.3 |
FIASMA cardiovascular system medications | 95.2 |
FIASMA calcium channel blockers | 55.4 |
Carvedilol | 3.5 |
Amiodarone | 71.1 |
Other FIASMA cardiovascular system medications | 88.1 |
Amlodipine | 98.2 |
FIASMA nervous system medications | 84.1 |
FIASMA psychoanaleptic medications | 80.7 |
Amitriptyline | 15.9 |
Sertraline | 16.7 |
Fluoxetine | 13 |
Maprotiline | NA |
Trimipramine | 2.4 |
Clomipramine | 4.9 |
Citalopram | 9.5 |
Duloxetine | 8.1 |
Paroxetine | 29.1 |
Fluvoxamine | 2.9 |
Escitalopram | 36.1 |
Hydroxyzine | 59.6 |
FIASMA psycholeptic medications | 7.2 |
Aripiprazole | 3.8 |
Penfluridol | NA |
Pimozide | NA |
Chlorpromazine | 5.3 |
Other FIASMA nervous system medications | 5.2 |
Biperidene | 4 |
Flunarizine | NA |
FIASMA respiratory system medications | 8.3 |
Desloratadine | 8.8 |
Loratadine | NA |
References
- Chevance, A.; Gourion, D.; Hoertel, N.; Llorca, P.-M.; Thomas, P.; Bocher, R.; Moro, M.-R.; Laprévote, V.; Benyamina, A.; Fossati, P.; et al. Ensuring Mental Health Care during the SARS-CoV-2 Epidemic in France: A Narrative Review. L’Encephale 2020, 46, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Blachier, M.; Blanco, C.; Olfson, M.; Massetti, M.; Rico, M.S.; Limosin, F.; Leleu, H. A Stochastic Agent-Based Model of the SARS-CoV-2 Epidemic in France. Nat. Med. 2020, 26, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Marín-Corral, J.; Rodríguez-Morató, J.; Gomez-Gomez, A.; Pascual-Guardia, S.; Muñoz-Bermúdez, R.; Salazar-Degracia, A.; Pérez-Terán, P.; Restrepo, M.I.; Khymenets, O.; Haro, N.; et al. Metabolic Signatures Associated with Severity in Hospitalized COVID-19 Patients. Int. J. Mol. Sci. 2021, 22, 4794. [Google Scholar] [CrossRef] [PubMed]
- Torretta, E.; Garziano, M.; Poliseno, M.; Capitanio, D.; Biasin, M.; Santantonio, T.A.; Clerici, M.; Lo Caputo, S.; Trabattoni, D.; Gelfi, C. Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature. Int. J. Mol. Sci. 2021, 22, 10198. [Google Scholar] [CrossRef] [PubMed]
- Mühle, C.; Kremer, A.; Vetter, M.; Schmid, J.; Achenbach, S.; Schumacher, F.; Lenz, B.; Cougoule, C.; Hoertel, N.; Carpinteiro, A.; et al. COVID-19 and Its Clinical Severity Are Associated with Alterations of Plasma Sphingolipids and Enzyme Activities of Sphingomyelinase and Ceramidase. medRxiv 2022. [Google Scholar] [CrossRef]
- Hoertel, N.; Blachier, M.; Sánchez-Rico, M.; Limosin, F.; Leleu, H. Impact of the Timing and Adherence to Face Mask Use on the Course of the COVID-19 Epidemic in France. J. Travel Med. 2021, 28, taab016. [Google Scholar] [CrossRef]
- Lim, S.; Tignanelli, C.J.; Hoertel, N.; Boulware, D.R.; Usher, M.G. Prevalence of Medical Contraindications to Nirmatrelvir/Ritonavir in a Cohort of Hospitalized and Nonhospitalized Patients With COVID-19. Open Forum Infect. Dis. 2022, 9, ofac389. [Google Scholar] [CrossRef]
- Hoertel, N.; Boulware, D.R.; Sánchez-Rico, M.; Burgun, A.; Limosin, F. Prevalence of Contraindications to Nirmatrelvir-Ritonavir among Hospitalized Patients With COVID-19 at Risk for Progression to Severe Disease. JAMA Netw. Open 2022, 5, e2242140. [Google Scholar] [CrossRef]
- Hoertel, N. Do the Selective Serotonin Reuptake Inhibitor Antidepressants Fluoxetine and Fluvoxamine Reduce Mortality Among Patients With COVID-19? JAMA Netw. Open 2021, 4, e2136510. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Herrera-Morueco, J.J.; De La Muela, P.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Becker, K.A.; Cougoule, C.; Limosin, F.; et al. Comorbid Medical Conditions Are a Key Factor to Understand the Relationship between Psychiatric Disorders and COVID-19-Related Mortality: Results from 49,089 COVID-19 Inpatients. Mol. Psychiatry 2022, 27, 1278–1280. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Cougoule, C.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Becker, K.A.; Reiersen, A.M.; Lenze, E.J.; Seftel, D.; et al. Repurposing Antidepressants Inhibiting the Sphingomyelinase Acid/Ceramide System against COVID-19: Current Evidence and Potential Mechanisms. Mol. Psychiatry 2021, 26, 7098–7099. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Hoertel, N.; Gulbins, E. The Acid Sphingomyelinase/Ceramide System in COVID-19. Mol. Psychiatry 2022, 27, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Carpinteiro, A.; Edwards, M.J.; Hoffmann, M.; Kochs, G.; Gripp, B.; Weigang, S.; Adams, C.; Carpinteiro, E.; Gulbins, A.; Keitsch, S.; et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep. Med. 2020, 1, 100142. [Google Scholar] [CrossRef]
- Petrache, I.; Pujadas, E.; Ganju, A.; Serban, K.A.; Borowiec, A.; Babbs, B.; Bronova, I.A.; Egersdorf, N.; Hume, P.S.; Goel, K.; et al. Marked Elevations in Lung and Plasma Ceramide in COVID-19 Linked to Microvascular Injury. JCI Insight 2023, 8, e156104. [Google Scholar] [CrossRef] [PubMed]
- Carpinteiro, A.; Gripp, B.; Hoffmann, M.; Pöhlmann, S.; Hoertel, N.; Edwards, M.J.; Kamler, M.; Kornhuber, J.; Becker, K.A.; Gulbins, E. Inhibition of Acid Sphingomyelinase by Ambroxol Prevents SARS-CoV-2 Entry into Epithelial Cells. J. Biol. Chem. 2021, 296, 100701. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Mühle, C.; Rhein, C.; Muehlbacher, M.; Groemer, T.W.; Gulbins, E. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): A Novel Pharmacological Group of Drugs with Broad Clinical Applications. Cell. Physiol. Biochem. 2010, 26, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Péricat, D.; Leon-Icaza, S.A.; Sanchez Rico, M.; Mühle, C.; Zoicas, I.; Schumacher, F.; Planès, R.; Mazars, R.; Gros, G.; Carpinteiro, A.; et al. Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model. Int. J. Mol. Sci. 2022, 23, 13623. [Google Scholar] [CrossRef]
- Schloer, S.; Brunotte, L.; Goretzko, J.; Mecate-Zambrano, A.; Korthals, N.; Gerke, V.; Ludwig, S.; Rescher, U. Targeting the Endolysosomal Host-SARS-CoV-2 Interface by Clinically Licensed Functional Inhibitors of Acid Sphingomyelinase (FIASMA) Including the Antidepressant Fluoxetine. Emerg. Microbes Infect. 2020, 9, 2245–2255. [Google Scholar] [CrossRef]
- Fred, S.M.; Kuivanen, S.; Ugurlu, H.; Casarotto, P.C.; Levanov, L.; Saksela, K.; Vapalahti, O.; Castrén, E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in Vitro. Front. Pharmacol. 2022, 12, 755600. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Chen, S.; Zhan, Q.; Wu, D.; Yang, C.; He, X.; Qiu, M.; Zhang, N.; Li, Z.; et al. Sertraline Is an Effective SARS-CoV-2 Entry Inhibitor Targeting the Spike Protein. J. Virol. 2022, 96, e01245-22. [Google Scholar] [CrossRef]
- Khater, S.E.; El-khouly, A.; Abdel-Bar, H.M.; Al-mahallawi, A.M.; Ghorab, D.M. Fluoxetine Hydrochloride Loaded Lipid Polymer Hybrid Nanoparticles Showed Possible Efficiency against SARS-CoV-2 Infection. Int. J. Pharm. 2021, 607, 121023. [Google Scholar] [CrossRef]
- Brunotte, L.; Zheng, S.; Mecate-Zambrano, A.; Tang, J.; Ludwig, S.; Rescher, U.; Schloer, S. Combination Therapy with Fluoxetine and the Nucleoside Analog GS-441524 Exerts Synergistic Antiviral Effects against Different SARS-CoV-2 Variants In Vitro. Pharmaceutics 2021, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Dechaumes, A.; Nekoua, M.P.; Belouzard, S.; Sane, F.; Engelmann, I.; Dubuisson, J.; Alidjinou, E.K.; Hober, D. Fluoxetine Can Inhibit SARS-CoV-2 In Vitro. Microorganisms 2021, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Schloer, S.; Brunotte, L.; Mecate-Zambrano, A.; Zheng, S.; Tang, J.; Ludwig, S.; Rescher, U. Drug Synergy of Combinatory Treatment with Remdesivir and the Repurposed Drugs Fluoxetine and Itraconazole Effectively Impairs SARS-CoV-2 Infection in Vitro. Br. J. Pharmacol. 2021, 178, 2339–2350. [Google Scholar] [CrossRef] [PubMed]
- Zimniak, M.; Kirschner, L.; Hilpert, H.; Geiger, N.; Danov, O.; Oberwinkler, H.; Steinke, M.; Sewald, K.; Seibel, J.; Bodem, J. The Serotonin Reuptake Inhibitor Fluoxetine Inhibits SARS-CoV-2 in Human Lung Tissue. Sci. Rep. 2021, 11, 5890. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Lenze, E.J.; Reiersen, A.M.; Abellán, M.; Muela, P.; Vernet, R.; et al. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin. Pharmacol. Ther. 2021, 110, 1498–1511. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Beeker, N.; Jannot, A.-S.; Neuraz, A.; Salamanca, E.; Paris, N.; Daniel, C.; Gramfort, A.; et al. Association between Antidepressant Use and Reduced Risk of Intubation or Death in Hospitalized Patients with COVID-19: Results from an Observational Study. Mol. Psychiatry 2021, 26, 5199–5212. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; Abellán, M.; De La Muela, P.; Vernet, R.; Beeker, N.; Neuraz, A.; et al. Association between FIASMA Psychotropic Medications and Reduced Risk of Intubation or Death in Individuals with Psychiatric Disorders Hospitalized for Severe COVID-19: An Observational Multicenter Study. Transl. Psychiatry 2022, 12, 90. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Kornhuber, J.; Gulbins, E.; Reiersen, A.M.; Lenze, E.J.; Fritz, B.A.; Jalali, F.; Mills, E.J.; Cougoule, C.; et al. Antidepressant Use and Its Association with 28-Day Mortality in Inpatients with SARS-CoV-2: Support for the FIASMA Model against COVID-19. J. Clin. Med. 2022, 11, 5882. [Google Scholar] [CrossRef]
- Oskotsky, T.; Marić, I.; Tang, A.; Oskotsky, B.; Wong, R.J.; Aghaeepour, N.; Sirota, M.; Stevenson, D.K. Mortality Risk Among Patients With COVID-19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants. JAMA Netw. Open 2021, 4, e2133090. [Google Scholar] [CrossRef]
- Darquennes, G.; Le Corre, P.; Le Moine, O.; Loas, G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study. Pharmaceuticals 2021, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Loas, G.; Van De Borne, P.; Darquennes, G.; Le Corre, P. Association of Amlodipine with the Risk of In-Hospital Death in Patients with COVID-19 and Hypertension: A Reanalysis on 184 COVID-19 Patients with Hypertension. Pharmaceuticals 2022, 15, 380. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.A.; Hoertel, N.; Lenze, E.J.; Jalali, F.; Reiersen, A.M. Association between Antidepressant Use and ED or Hospital Visits in Outpatients with SARS-CoV-2. Transl. Psychiatry 2022, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Rayner, D.; Ramaraju, H.B.; Abbas, U.; Garcia, C.; Heybati, K.; Zhou, F.; Huang, E.; Park, Y.-J.; Moskalyk, M. Efficacy and Safety of Selective Serotonin Reuptake Inhibitors in COVID-19 Management: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2023, 29, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rico, M.; Limosin, F.; Vernet, R.; Beeker, N.; Neuraz, A.; Blanco, C.; Olfson, M.; Lemogne, C.; Meneton, P.; Daniel, C.; et al. Hydroxyzine Use and Mortality in Patients Hospitalized for COVID-19: A Multicenter Observational Study. J. Clin. Med. 2021, 10, 5891. [Google Scholar] [CrossRef] [PubMed]
- Gulbins, E.; Palmada, M.; Reichel, M.; Lüth, A.; Böhmer, C.; Amato, D.; Müller, C.P.; Tischbirek, C.H.; Groemer, T.W.; Tabatabai, G.; et al. Acid Sphingomyelinase–Ceramide System Mediates Effects of Antidepressant Drugs. Nat. Med. 2013, 19, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Terfloth, L.; Bleich, S.; Wiltfang, J.; Gulbins, E. Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structure-Property-Activity Relation Model. J. Med. Chem. 2008, 51, 219–237. [Google Scholar] [CrossRef]
- Naz, A.; Asif, S.; Alwutayd, K.M.; Sarfaraz, S.; Abbasi, S.W.; Abbasi, A.; Alenazi, A.M.; Hasan, M.E. Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach. Molecules 2023, 28, 2989. [Google Scholar] [CrossRef]
- Clelland, C.L.; Ramiah, K.; Steinberg, L.; Clelland, J.D. Analysis of the Impact of Antidepressants and Other Medications on COVID-19 Infection Risk in a Chronic Psychiatric in-Patient Cohort. BJPsych Open 2022, 8, e6. [Google Scholar] [CrossRef]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 2292. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira-Silva, E.A.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; Dos Santos, C.V.Q.; de Souza Campos, V.H.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; et al. Effect of Early Treatment with Fluvoxamine on Risk of Emergency Care and Hospitalisation among Patients with COVID-19: The TOGETHER Randomised, Platform Clinical Trial. Lancet Glob. Health 2022, 10, e42–e51. [Google Scholar] [CrossRef] [PubMed]
- Seftel, D.; Boulware, D.R. Prospective Cohort of Fluvoxamine for Early Treatment of Coronavirus Disease 19. Open Forum Infect. Dis. 2021, 8, ofab050. [Google Scholar] [CrossRef] [PubMed]
- Calusic, M.; Marcec, R.; Luksa, L.; Jurkovic, I.; Kovac, N.; Mihaljevic, S.; Likic, R. Safety and Efficacy of Fluvoxamine in COVID-19 ICU Patients: An Open Label, Prospective Cohort Trial with Matched Controls. Br. J. Clin. Pharmacol. 2022, 88, 2065–2073. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Rico, M.S.; Vernet, R.; Beeker, N.; Jannot, A.-S.; Neuraz, A.; Salamanca, E.; Paris, N.; Daniel, C.; Gramfort, A.; et al. Association between SSRI Antidepressant Use and Reduced Risk of Intubation or Death in Hospitalized Patients with Coronavirus Disease 2019: A Multicenter Retrospective Observational Study. medRxiv 2020. [Google Scholar] [CrossRef]
- Kirenga, B.J.; Mugenyi, L.; Sánchez-Rico, M.; Kyobe, H.; Muttamba, W.; Mugume, R.; Mwesigwa, E.; Kalimo, E.; Nyombi, V.; Segawa, I.; et al. Association of Fluvoxamine with Mortality and Symptom Resolution among Inpatients with COVID-19 in Uganda: A Prospective Interventional Open-Label Cohort Study. Mol. Psychiatry 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Németh, Z.K.; Szűcs, A.; Vitrai, J.; Juhász, D.; Németh, J.P.; Holló, A. Fluoxetine Use Is Associated with Improved Survival of Patients with COVID-19 Pneumonia: A Retrospective Case-Control Study. Ideggyógy. Szle. 2021, 74, 389–396. [Google Scholar] [CrossRef]
- Creeden, J.F.; Imami, A.S.; Eby, H.M.; Gillman, C.; Becker, K.N.; Reigle, J.; Andari, E.; Pan, Z.K.; O’Donovan, S.M.; McCullumsmith, R.E.; et al. Fluoxetine as an Anti-Inflammatory Therapy in SARS-CoV-2 Infection. Biomed. Pharmacother. 2021, 138, 111437. [Google Scholar] [CrossRef]
- Solaimanzadeh, I. Nifedipine and Amlodipine Are Associated with Improved Mortality and Decreased Risk for Intubation and Mechanical Ventilation in Elderly Patients Hospitalized for COVID-19. Cureus 2020, 12, e8069. [Google Scholar] [CrossRef]
- Khodadoust, M.M. Inferring a Causal Relationship between Ceramide Levels and COVID-19 Respiratory Distress. Sci. Rep. 2021, 11, 20866. [Google Scholar] [CrossRef]
- Dei Cas, M.; Ottolenghi, S.; Morano, C.; Rinaldo, R.; Roda, G.; Chiumello, D.; Centanni, S.; Samaja, M.; Paroni, R. Link between Serum Lipid Signature and Prognostic Factors in COVID-19 Patients. Sci. Rep. 2021, 11, 21633. [Google Scholar] [CrossRef]
- Matta, J.; Wiernik, E.; Robineau, O.; Carrat, F.; Touvier, M.; Severi, G.; De Lamballerie, X.; Blanché, H.; Deleuze, J.-F.; Gouraud, C.; et al. Association of Self-Reported COVID-19 Infection and SARS-CoV-2 Serology Test Results With Persistent Physical Symptoms Among French Adults During the COVID-19 Pandemic. JAMA Intern. Med. 2022, 182, 19. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Muehlbacher, M.; Trapp, S.; Pechmann, S.; Friedl, A.; Reichel, M.; Mühle, C.; Terfloth, L.; Groemer, T.W.; Spitzer, G.M.; et al. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLoS ONE 2011, 6, e23852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, A.; Jonsson, U.; Andersson, G.; Söderlund, A.; Allard, P.; Bertilsson, G. Efficacy and Tolerability of Antidepressants in People Aged 65 Years or Older with Major Depressive Disorder—A Systematic Review and a Meta-Analysis. J. Affect. Disord. 2016, 205, 1–12. [Google Scholar] [CrossRef]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for the Acute Treatment of Adults with Major Depressive Disorder: A Systematic Review and Network Meta-Analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhatme, V.P.; Reiersen, A.M.; Vayttaden, S.J.; Sukhatme, V.V. Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Front. Pharmacol. 2021, 12, 652688. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Suzuki, T.; Hashimoto, K. Mechanisms of Action of Fluvoxamine for COVID-19: A Historical Review. Mol. Psychiatry 2022, 27, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Reiersen, A.M.; Santosh, P.J. Repurposing Fluvoxamine, and Other Psychiatric Medications, for COVID-19 and Other Conditions. World Psychiatry 2022, 21, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Le Strat, Y.; Hoertel, N. Correlation Is No Causation: Gymnasium Proliferation and the Risk of Obesity. Addict. Abingdon Engl. 2011, 106, 1871–1872. [Google Scholar] [CrossRef]
- Dhanavade, M.J.; Sonawane, K.D. Role of Nutrition in COVID-19: Present Knowledge and Future Guidelines. Curr. Nutr. Food Sci. 2022, 18, 516–517. [Google Scholar] [CrossRef]
- Hoertel, N.; Chevance, A.; Limosin, F. Inclusion and Exclusion Criteria and Psychological Research. In The SAGE Encyclopedia of Abnorma l and Clinical Psychology; SAGE Reference: Los Angeles, CA, USA, 2017; Volume 7, ISBN 978-1-4833-6583-1. [Google Scholar]
- Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Molnupiravir plus Usual Care versus Usual Care Alone as Early Treatment for Adults with COVID-19 at Increased Risk of Adverse Outcomes (PANORAMIC): An Open-Label, Platform-Adaptive Randomised Controlled Trial. Lancet 2023, 401, 281–293. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Jannot, A.-S.; Neuraz, A.; Blanco, C.; Lemogne, C.; Airagnes, G.; Paris, N.; Daniel, C.; et al. Observational Study of Haloperidol in Hospitalized Patients with COVID-19. PLoS ONE 2021, 16, e0247122. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Jannot, A.-S.; Neuraz, A.; Blanco, C.; Lemogne, C.; Airagnes, G.; Paris, N.; Daniel, C.; et al. Observational Study of Chlorpromazine in Hospitalized Patients with COVID-19. Clin. Drug Investig. 2021, 41, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez-Rico, M.; Vernet, R.; Beeker, N.; Neuraz, A.; Alvarado, J.M.; Daniel, C.; Paris, N.; Gramfort, A.; Lemaitre, G.; et al. Dexamethasone Use and Mortality in Hospitalized Patients with Coronavirus Disease 2019: A Multicentre Retrospective Observational Study. Br. J. Clin. Pharmacol. 2021, 87, 3766–3775. [Google Scholar] [CrossRef] [PubMed]
- Hoertel, N.; Sánchez-Rico, M.; Gulbins, E.; Kornhuber, J.; Vernet, R.; Beeker, N.; Neuraz, A.; Blanco, C.; Olfson, M.; Airagnes, G.; et al. Association between Benzodiazepine Receptor Agonist Use and Mortality in Patients Hospitalised for COVID-19: A Multicentre Observational Study. Epidemiol. Psychiatr. Sci. 2022, 31, e18. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rico, M.; De La Muela, P.; Herrera-Morueco, J.J.; Geoffroy, P.A.; Limosin, F.; Hoertel, N.; AP-HP/Université de Paris/INSERM COVID-19 Research Collaboration/AP-HP COVID CDR Initiative/Entrepôt de Données de Santé AP-HP Consortium. Melatonin Does Not Reduce Mortality in Adult Hospitalized Patients with COVID-19: A Multicenter Retrospective Observational Study. J. Travel Med. 2022, 29, taab195. [Google Scholar] [CrossRef]
- Hoertel, N.; Sánchez-Rico, M.; De La Muela, P.; Abellán, M.; Blanco, C.; Leboyer, M.; Cougoule, C.; Gulbins, E.; Kornhuber, J.; Carpinteiro, A.; et al. Risk of Death in Individuals Hospitalized for COVID-19 With and Without Psychiatric Disorders: An Observational Multicenter Study in France. Biol. Psychiatry Glob. Open Sci. 2023, 3, 56–67. [Google Scholar] [CrossRef]
- Sánchez-Rico, M.; Rezaei, K.; Delgado-Álvarez, A.; Limosin, F.; Hoertel, N.; Alvarado, J.M. Comorbidity Patterns and Mortality Among Hospitalized Patients with Psychiatric Disorders and COVID-19. Rev. Bras. Psiquiatr. 2023. [Google Scholar] [CrossRef]
- Haut Conseil de la Santé Publique. Statement on the Management at Home or in a Care Facility of Suspected or Confirmed COVID-19 Patients. 2020. Available online: https://www.hcsp.fr (accessed on 1 May 2020).
- Lagunas-Rangel, F.A. Neutrophil-to-Lymphocyte Ratio and Lymphocyte-to-C-Reactive Protein Ratio in Patients with Severe Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. J. Med. Virol. 2020, 92, 1733–1734. [Google Scholar] [CrossRef] [Green Version]
- Neuraz, A.; Lerner, I.; Digan, W.; Paris, N.; Tsopra, R.; Rogier, A.; Baudoin, D.; Cohen, K.B.; Burgun, A.; Garcelon, N.; et al. Natural Language Processing for Rapid Response to Emergent Diseases: Case Study of Calcium Channel Blockers and Hypertension in the COVID-19 Pandemic. J. Med. Internet Res. 2020, 22, e20773. [Google Scholar] [CrossRef]
- Stuart, E.A.; Lee, B.K.; Leacy, F.P. Prognostic Score–Based Balance Measures Can Be a Useful Diagnostic for Propensity Score Methods in Comparative Effectiveness Research. J. Clin. Epidemiol. 2013, 66, S84–S90. [Google Scholar] [CrossRef]
- Austin, P.C. Using the Standardized Difference to Compare the Prevalence of a Binary Variable between Two Groups in Observational Research. Commun. Stat. Simul. Comput. 2009, 38, 1228–1234. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance Diagnostics after Propensity Score Matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.T.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000; ISBN 0-387-98784-3. [Google Scholar]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Sonawane, K.D.; Barale, S.S.; Dhanavade, M.J.; Waghmare, S.R.; Nadaf, N.H.; Kamble, S.A.; Mohammed, A.A.; Makandar, A.M.; Fandilolu, P.M.; Dound, A.S.; et al. Structural Insights and Inhibition Mechanism of TMPRSS2 by Experimentally Known Inhibitors Camostat Mesylate, Nafamostat and Bromhexine Hydrochloride to Control SARS-Coronavirus-2: A Molecular Modeling Approach. Inform. Med. Unlocked 2021, 24, 100597. [Google Scholar] [CrossRef]
Number of Events/Number of Patients | Crude Cox Regression Analysis of the Matched Analytic Sample | |
---|---|---|
N/N (%) | HR (95%CI; p-Value) | |
Full sample (N = 9714) | ||
FIASMA medication | 625/4857 (12.9%) | 0.80 (0.72–0.88; <0.001) |
No FIASMA medication | 772/4857 (15.9%) | Ref. |
Women (N= 4744) | ||
FIASMA medication | 258/2372 (10.9%) | 0.80 (0.68–0.94; 0.007 *) |
No FIASMA medication | 318/2372 (13.4%) | Ref. |
Men (N= 4970) | ||
FIASMA medication | 367/2485 (14.8%) | 0.82 (0.71–0.94; 0.004 *) |
No FIASMA medication | 441/2485 (17.7%) | Ref. |
Younger (≤70 years) (N = 3940) | ||
FIASMA medication | 117/1970 (5.9%) | 0.70 (0.55–0.88; 0.003 *) |
No FIASMA medication | 166/1970 (8.4%) | Ref. |
Older (>70 years) (N= 5774) | ||
FIASMA medication | 508/2887 (17.6%) | 0.84 (0.74–0.94; 0.003 *) |
No FIASMA medication | 594/2887 (20.6%) | Ref. |
Hospitalized before 24 October 2021 (N= 2037) | ||
FIASMA medication | 372/2037 (18.3%) | 0.85 (0.74–0.98; 0.021 *) |
No FIASMA medication | 431/2037 (21.2%) | Ref. |
Hospitalized from 25 October 2021 (N= 5640) | ||
FIASMA medication | 253/2820 (9.0%) | 0.67 (0.57–0.79; <0.001 *) |
No FIASMA medication | 368/2820 (13.0%) | Ref. |
Patients with Medication | Patients without Medication in the Matched Sample a | Crude Cox Regression Analysis in the Matched Analytic Sample | Multivariable Cox Regression Analysis of the Matched Analytic Sample Adjusted for Unbalanced Covariates | |
---|---|---|---|---|
N/N (%) | N/N (%) | HR (95%CI; p-Value) | AHR (95%CI; p-Value) | |
FIASMA alimentary tract and metabolism medication | 13/114 (11.4%) | 12/114 (10.5%) | 1.10 (0.50–2.41; 0.816) | 1.41 (0.61–3.24; 0.420) b |
Loperamide | 13/112 (11.6%) | 67/560 (12.0%) | 0.98 (0.54–1.77; 0.944) | 0.98 (0.54–1.78; 0.953) c |
Mebeverine | 0/2 (0.0%) | 1/10 (10.0%) | NA | NA |
FIASMA cardiovascular system medications | 389/2732 (14.2%) | 490/2732 (17.9%) | 0.78 (0.68–0.89; <0.001 *) | NP |
FIASMA calcium channel blockers | 152/717 (21.2%) | 157/717 (21.9%) | 0.97 (0.77–1.21; 0.774) | NP |
Carvedilol | 3/23 (13.0%) | 10/115 (8.7%) | 1.50 (0.41–5.46; 0.537) | 1.82 (0.48–6.82; 0.377) d |
Amiodarone | 151/697 (21.7%) | 711/3485 (20.4%) | 1.07 (0.90–1.28; 0.429) | NP |
Other FIASMA cardiovascular system medications | 256/2120 (12.1%) | 368/2120 (17.4%) | 0.67 (0.57–0.79; <0.001 *) | 0.69 (0.58–0.80; <0.001 *) e |
Amlodipine | 256/2120 (12.1%) | 1857/10600 (17.5%) | 0.67 (0.59–0.76; <0.001 *) | 0.66 (0.58–0.75; <0.001 *) f |
FIASMA nervous system medications | 266/2327 (11.4%) | 332/2327 (14.3%) | 0.79 (0.67–0.92; 0.004 *) | 0.83 (0.71–0.98; 0.024 *) g |
FIASMA psychoanaleptic medications | 256/2226 (11.5%) | 310/2226 (13.9%) | 0.81 (0.69–0.96; 0.014 *) | 0.93 (0.79–1.10; 0.382) h |
Amitriptyline | 28/187 (15.0%) | 131/935 (14.0%) | 1.06 (0.71–1.60; 0.772) | 1.24 (0.82–1.87; 0.306) i |
Sertraline | 21/165 (12.7%) | 138/825 (16.7%) | 0.75 (0.47–1.19; 0.218) | 0.82 (0.52–1.30; 0.395) j |
Fluoxetine | 9/145 (6.2%) | 100/725 (13.8%) | 0.44 (0.22–0.87; 0.019 *) | 0.49 (0.25–0.97; 0.042 *) k |
Maprotiline | 0/2 (0.0%) | 0/10 (0.0%) | NA | NA |
Trimipramine | 0/1 (0.0%) | 1/5 (20.0%) | NA | NA |
Clomipramine | 7/36 (19.4%) | 21/180 (11.7%) | 1.73 (0.74–4.07; 0.209) | 2.07 (0.86–5.00; 0.104) l |
Citalopram | 18/93 (19.4%) | 69/465 (14.8%) | 1.35 (0.8–2.27; 0.254) | 1.42 (0.83–2.41; 0.197) m |
Duloxetine | 7/95 (7.4%) | 54/475 (11.4%) | 0.65 (0.30–1.44; 0.291) | 0.78 (0.35–1.74; 0.548) n |
Paroxetine | 45/354 (12.7%) | 253/1770 (14.3%) | 0.88 (0.64–1.21; 0.420) | 0.88 (0.64–1.20; 0.417) o |
Fluvoxamine | 0/6 (0.0%) | 4/30 (13.3%) | NA | NA |
Escitalopram | 45/378 (11.9%) | 323/1890 (17.1%) | 0.67 (0.49–0.91; 0.012 *) | 0.69 (0.51–0.95; 0.022 *) p |
Hydroxyzine | 104/962 (10.8%) | 591/4810 (12.3%) | 0.88 (0.71–1.08; 0.210) | 1.09 (0.89–1.35; 0.396) q |
FIASMA psycholeptic medications | 10/134 (7.5%) | 11/134 (8.2%) | 0.91 (0.39–2.14; 0.824) | 1.04 (0.43–2.50; 0.936) r |
Aripiprazole | 1/58 (1.7%) | 13/290 (4.5%) | NA | NA |
Penfluridol | 0/1 (0.0%) | 0/5 (0.0%) | NA | NA |
Pimozide | 0/1 (0.0%) | 0/5 (0.0%) | NA | NA |
Chlorpromazine | 9/79 (11.4%) | 29/395 (7.3%) | 1.57 (0.74–3.32; 0.237) | 1.87 (0.87–4.00; 0.107) s |
Other FIASMA nervous system medications | 3/19 (15.8%)’ | 4/19 (21.1%) | NA | NA |
Biperidene | 3/18 (16.7%) | 13/90 (14.4%) | NA | NA |
Flunarizine | 0/1 (0.0%) | 0/5 (0.0%) | NA | NA |
FIASMA respiratory system medications | 11/97 (11.3%) | 13/97 (13.4%) | 0.83 (0.37–1.86; 0.654) | 1.61 (0.66–3.91; 0.297) t |
Desloratadine | 11/94 (11.7%) | 62/470 (13.2%) | 0.88 (0.46–1.67; 0.700) | 0.92 (0.49–1.76; 0.807) u |
Loratadine | 0/4 (0.0%) | 1/20 (5.0%) | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoertel, N.; Rezaei, K.; Sánchez-Rico, M.; Delgado-Álvarez, A.; Kornhuber, J.; Gulbins, E.; Olfson, M.; Ouazana-Vedrines, C.; Carpinteiro, A.; Cougoule, C.; et al. Medications Modulating the Acid Sphingomyelinase/Ceramide System and 28-Day Mortality among Patients with SARS-CoV-2: An Observational Study. Pharmaceuticals 2023, 16, 1107. https://doi.org/10.3390/ph16081107
Hoertel N, Rezaei K, Sánchez-Rico M, Delgado-Álvarez A, Kornhuber J, Gulbins E, Olfson M, Ouazana-Vedrines C, Carpinteiro A, Cougoule C, et al. Medications Modulating the Acid Sphingomyelinase/Ceramide System and 28-Day Mortality among Patients with SARS-CoV-2: An Observational Study. Pharmaceuticals. 2023; 16(8):1107. https://doi.org/10.3390/ph16081107
Chicago/Turabian StyleHoertel, Nicolas, Katayoun Rezaei, Marina Sánchez-Rico, Alfonso Delgado-Álvarez, Johannes Kornhuber, Erich Gulbins, Mark Olfson, Charles Ouazana-Vedrines, Alexander Carpinteiro, Céline Cougoule, and et al. 2023. "Medications Modulating the Acid Sphingomyelinase/Ceramide System and 28-Day Mortality among Patients with SARS-CoV-2: An Observational Study" Pharmaceuticals 16, no. 8: 1107. https://doi.org/10.3390/ph16081107
APA StyleHoertel, N., Rezaei, K., Sánchez-Rico, M., Delgado-Álvarez, A., Kornhuber, J., Gulbins, E., Olfson, M., Ouazana-Vedrines, C., Carpinteiro, A., Cougoule, C., Becker, K. A., Alvarado, J. M., Limosin, F., & on behalf of the AP-HP/Université Paris Cité/INSERM COVID-19 Research Collaboration, AP-HP COVID CDR Initiative and “Entrepôt de Données de Santé” AP-HP Consortium. (2023). Medications Modulating the Acid Sphingomyelinase/Ceramide System and 28-Day Mortality among Patients with SARS-CoV-2: An Observational Study. Pharmaceuticals, 16(8), 1107. https://doi.org/10.3390/ph16081107