Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of AOE
2.2. Acute Toxicity and Anxiolytic-like Activity
2.3. Antidepressant-like Activity
2.4. Effects on Sedation and Motor Coordination
2.5. Anticonvulsant Activity
2.6. Docking Studies
2.7. ADMET Properties of DHS
3. Discussion
4. Materials and Methods
4.1. Drugs
4.2. Plant Material
4.3. Preparation of Plant Extract and Sample Treatment
4.4. Sample Treatment and GC–MS Analysis
4.5. Animals
4.6. Pharmacological Treatment
4.7. Acute Toxicity
4.8. Anxiolytic-like Tests
4.8.1. Hole Board Test
4.8.2. Exploratory Cylinder Test
4.9. Antidepressant-like Tests
4.9.1. Tail Suspension Test
4.9.2. Forced Swimming Test
4.10. Sedative and Locomotion Tests
4.10.1. Pentobarbital-Induced Sedation Test
4.10.2. Rotarod Test
4.11. Anticonvulsant Effect
4.12. Molecular Docking Studies
4.13. Calculation of ADMET Properties
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-Ruíz, J.; Bernal, J.; Gonzales-Castañeda, J.; Ruíz-Nieto, J.E.; Mireles-Arriaga, A.I. Argemone ochroleuca: (Papaveraceae), alkaloid potential source for agricultural and medicinal uses. Trop. Subtrop. Agroecosystems. 2020, 23, 31. [Google Scholar] [CrossRef]
- Argueta, A.; Cano, L. Atlas de las Plantas de la Medicina Tradicional Mexicana, 1st ed.; Instituto Nacional Indigenista: México City, México, 1994; pp. 402–403. [Google Scholar]
- Rios-Carrasco, S.; Vázquez-Santana, S. The mixed mating system of a widespread weed: The case of Argemone ochroleuca Sweet (Papaveraceae). Bot. Sci. 2022, 100, 814–826. [Google Scholar] [CrossRef]
- de Rzedowski, R.G.; Rzedowski, J. Flora Fanerogámica del Valle de México, 2nd ed.; Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Michoacán, México, 2001; pp. 185–187. [Google Scholar]
- Sánchez-Mendoza, M.E.; Castillo-Henkel, C.; Navarrete, A. Relaxant action mechanism of berberine identified as the active principle of Argemone ochroleuca Sweet in guinea-pig tracheal smooth muscle. J. Pharm. Pharmacol. 2008, 60, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, O.R.; Sánchez-Hernández, I.M.; Barragán-Álvarez, C.P.; Flores-Hernández, J.M.; Padilla-Camberos, E. Argemone ochroleuca: Biology, pharmacological potential and perspectives. J. Food Nutr. Res. 2018, 4, 14–17. [Google Scholar] [CrossRef]
- Martínez-Delgado, A.; de Anda, J.; León-Morales, J.M.; Mateos-Díaz, J.C.; Gutiérrez-Mora, A.; Castañeda-Nava, J.J. Argemone species: Potential source of biofuel and high-value biological active compounds. Environ. Eng. Res. 2022, 27, 200619–200635. [Google Scholar] [CrossRef]
- Alamri, S.A.; Moustafa, M.F. Antibacterial activity of the latex of Argemone ochroleuca Sweet. Saudi Med. J. 2010, 31, 1207–1210. [Google Scholar]
- Moustafa, M.F.M.; Alamri, S.A.; Taha, T.H.; Alrumman, S.A. In vitro antifungal activity of Argemone ochroleuca Sweet latex against some pathogenic fungi. Afr. J. Biotechnol. 2013, 12, 1132–1137. [Google Scholar] [CrossRef]
- Reyes, F.D.; Peña, C.J.; Canales, M.; Jiménez, M.; Meráz, S.; Hernández, T. Antimicrobial activity of Argemone ochroleuca Sweet (Chicalote). Bol. Latinoam. Caribe Plant. Med. Aromat. 2011, 10, 139–146. [Google Scholar]
- Dimayuga, R.E.; Virgen, M.; Ochoa, N. Antimicrobial activity of medicinal plants from Baja California Sur (México). Pharm. Biol. 1998, 36, 33–43. [Google Scholar] [CrossRef]
- Sharma, A.; Flores-Vallejo, R.C.; Cardoso-Taketa, A.; Villareal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017, 208, 264–329. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sattar, E.; Maes, L.; Salam, M.M. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother. Res. 2010, 24, 1322–1328. [Google Scholar] [CrossRef]
- Pereira, A.S.P.; den Han, H.; Peña-García, J.; Moreno, M.M.; Pérez-Sánchez, H.; Apostolides, Z. Exploring African medicinal plants for potential anti-diabetic compounds with the DIA-DB inverse virtual screening web server. Molecules 2019, 24, 2002. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.T.; Takken, G.; Blaney, B.J.; Alberts, V. Isoquinoline alkaloids and keto-fatty acids of Argemone ochroleuca and A. mexicana (Mexican poppy) seed. I. An assay method and factors affecting their concentration. Aust. J. Agric. Res. 1993, 44, 265–275. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Hsieh, P.-W.; Chang, F.-R.; Wu, F.-R.; Liaw, C.-C.; Lee, K.-H.; Wu, Y.-C. Two new protopines Argemexicaines A and B and the anti-HIV alkaloid 6-acetonyldihydrochelerythrine from formosan Argemone mexicana. Planta Med. 2003, 69, 148–152. [Google Scholar] [CrossRef]
- Stermitz, F.R.; Nicodem, D.E.; Wei, C.C.; McMurtrey, K.D. Alkaloids of Argemone polyanthemos, A. corymbosa, A. chisosensis, A. Sanguinea, A. Aurantiaca and general Argemone systematics. Phytochemistry 1969, 8, 615–621. [Google Scholar] [CrossRef]
- Nigdelioglu, D.S.; Kocanci, F.G.; Aslim, B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed. Pharmacother. 2021, 140, 111690–111707. [Google Scholar] [CrossRef]
- Navarro, V.; Delgado, G. Two antimicrobial alkaloids from Bocconia arborea. J. Ethnopharmacol. 1999, 66, 223–226. [Google Scholar] [CrossRef]
- Vrublova, E.; Vostalova, J.; Vecera, R.; Klejdus, B.; Stejskal, D.; Kosina, P.; Zdarilova, A.; Svobodova, A.; Lichnovsky, V.; Anzenbacher, P.; et al. The toxicity and pharmacokinetics of dihydrosanguinarine in rat: A pilot study. Food Chem. Toxicol. 2008, 46, 2546–2553. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, L.; Zhao, S. Ligands of Adrenergic Receptors: A Structural Point of View. Biomolecules 2021, 11, 936. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.L.; Iwata, Y.; Sato, F. Dihydrosanguinarine enhances glucose uptake in mouse 3T3-L1 cells. ACS Omega 2017, 2, 6916–6925. [Google Scholar] [CrossRef] [PubMed]
- Gaona-Tovar, E.; Estrada-Soto, S.; González-Trujano, M.E.; Martínez-Vargas, D.; Hernandez-Leon, A.; Narváez-González, F.; Villalobos-Molina, R.; Almanza-Pérez, J.C. Antinociceptive and gastroprotective activities of Bocconia arborea S. Watson and its bioactive metabolite dihydrosanguinarine in murine models. J. Ethnopharmacol. 2022, 296, 115492. [Google Scholar] [CrossRef]
- Moragrega, I.; Ríos, J.L. Medicinal Plants in the Treatment of Depression. II: Evidence from Clinical Trials. Planta Med. 2022, 88, 1092–1110. [Google Scholar] [CrossRef]
- Dokkedal-Silva, V.; Berro, L.F.; Galduróz, J.; Tufik, S.; Andersen, M.L. Clonazepam: Indications, side effects, and potential for nonmedical use. Harv. Rev. Psychiatry 2019, 27, 279–289. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; et al. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol. Int. 2021, 13, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Alba-Betancourt, C.; Sánchez-Recillas, A.; Alonso-Castro, A.J.; Esquivel-Juárez, D.; Zapata-Morales, J.R.; Yañez-Perez, V.; Álvarez-Camacho, D.; Medina-Rivera, Y.E.; González-Chávez, M.M.; Gasca-Martinez, D.; et al. Antidiarrheal, vasorelaxant, and neuropharmacological actions of the diterpene tilifodiolide. Drug Develop. Res. 2019, 80, 981–991. [Google Scholar] [CrossRef]
- Donaire, R.; Papini, M.R.; Torres, C. Effects of alcohol consumption induced by reward loss on behavior in the hole-board test. Behav. Process. 2020, 176, 104135. [Google Scholar] [CrossRef] [PubMed]
- Stukalin, Y.; Lan, A.; Einat, H. Revisiting the validity of the mouse tail suspension test: Systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci. Biobehav. Rev. 2020, 112, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Nikoui, V.; Naveed, A.; Mumtaz, F.; Zaman, H.; Haider, A.; Aman, W.; Wahab, A.; Khan, S.N.; Ullah, N.; et al. Antidepressant-like effect of ethanol in mice forced swimming test is mediated via inhibition of NMDA/nitric oxide/cGMP signaling pathway. Alcohol 2021, 92, 53–63. [Google Scholar] [CrossRef]
- Wisden, W.; Yu, X.; Franks, N.P. GABA receptors and the pharmacology of sleep. Handb. Exp. Pharmacol. 2019, 253, 279–304. [Google Scholar] [CrossRef]
- Jacquez, B.; Choi, H.; Bird, C.W.; Linsenbardt, D.N.; Valenzuela, C.F. Characterization of motor function in mice developmentally exposed to ethanol using the Catwalk system: Comparison with the triple horizontal bar and rotarod tests. Behav. Brain Res. 2021, 396, 112885. [Google Scholar] [CrossRef]
- Becker, A.J. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathol. Appl. Neurobiol. 2018, 44, 112–129. [Google Scholar] [CrossRef]
- Fedor, F.Z.; Paraczky, C.; Ravasz, L.; Tóth, K.; Borhegyi, Z.; Somogyvári, Z.; Juhász, G.; Fekete, Z. Electrophysiological and behavioral properties of 4-aminopyridine-induced epileptic activity in mice. Biol. Futur. 2020, 71, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Stein, M.B. Update on treatments for anxiety-related disorders. Curr. Opin. Psychiatry 2023, 36, 140–145. [Google Scholar] [CrossRef]
- Jørgensen, C.K.; Juul, S.; Siddiqui, F.; Barbateskovic, M.; Munkholm, K.; Hengartner, M.P.; Kirsch, I.; Gluud, C.; Jakobsen, J.C. Tricyclic antidepressants versus ‘active placebo’, placebo or no intervention for adults with major depressive disorder: A protocol for a systematic review with meta-analysis and Trial Sequential Analysis. Syst. Rev. 2021, 10, 227. [Google Scholar] [CrossRef]
- Wu, S.Z.; Xu, H.C.; Wu, X.L.; Liu, P.; Shi, Y.C.; Pang, P.; Deng, L.; Zhou, G.X.; Chen, X.Y. Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine 2019, 59, 152895. [Google Scholar] [CrossRef]
- Pauwels, P.J.; Colpaert, F.C. Disparate ligand-mediated Ca(2+) responses by wild-type, mutant Ser(200)Ala and Ser(204)Ala alpha(2A)-adrenoceptor: G(alpha15) fusion proteins: Evidence for multiple ligand-activation binding sites. Br. J. Pharmacol. 2000, 130, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Yamahara, J.; Konoshima, T.; Sakakibara, Y.; Ishiguro, M.; Sawada, T. Central depressant action of tetrahydroberberine and its derivatives. Chem. Pharm. Bull. 1976, 24, 1909–1912. [Google Scholar] [CrossRef]
- Wu, J.; Jin, G.Z. Tetrahydroberberine suppresses dopamine-induced potassium current in acutely dissociated CA1 pyramidal neurons from rat hippocampus. Neurosci. Lett. 1996, 207, 155–158. [Google Scholar] [CrossRef]
- Wu, C.; Yang, K.; Liu, Q.; Wakui, M.; Jin, G.Z.; Zhen, X.; Wu, J. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology 2010, 59, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Akamine, Y.; Yasui-Furukori, N.; Uno, T. Drug-Drug Interactions of P-gp Substrates Unrelated to CYP Metabolism. Curr. Drug Metab. 2019, 20, 124–129. [Google Scholar] [CrossRef]
- OECD Organization of Economic Co-Operation and Development. OECD Guideline for Testing of Chemical 423: Acute Oral Toxicity-Acute Toxic Class Method; OECD: Paris, France, 2001. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Molecular Operating Environment (MOE). 2022.02 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910; H3A 2R7; MOE: Montreal, QC, Canada, 2022. [Google Scholar]
Classification | Metabolite Name | Retention Time |
---|---|---|
Aliphatic compounds | 3-methyltridecane | 8.0 |
2,6,10-trimethyldodecane | 8.3 | |
2-dodecanone | 8.3 | |
3-methyltetradecane | 9.5 | |
Hexadecane | 9.9 | |
4-methylhexadecane | 10.0 | |
3-methypentadecane | 10.0 | |
2,6,10-trimethylpentadecane | 10.4 | |
Octadecane | 10.7 | |
2,6,11,15-tetramethylhexadecane | 11.2 | |
2,6,10,14-tetramethylhexadecane | 11.3 | |
2-methyloctadecane | 11.9 | |
Nonadecane | 12.6 | |
Eicosane | 13.0 | |
Heneicosane | 14.1 | |
Docosane | 14.7 | |
Tricosane | 15.8 | |
Alkaloids | Canadine (Tetrahydroberberine) | 20.6 |
Stylopine (Tetrahydrocoptisine) | 20.7 | |
Allocryptopine | 20.8 | |
Protopine | 20.9 | |
Cryptopalmatine (Muramine) | 21.0 | |
(±)-Corynoline | 21.0 | |
Dihydrosanguinarine | 22.3 | |
Dihydrochelerythrine | 22.5 | |
Aromatic compounds | p-Diacetylbenzene | 8.2 |
Carboxylic acids and related compounds | Dodecyl acrylate | 10.9 |
Tetradecanoic acid | 11.3 | |
Hexadecanoic acid methyl ester | 12.8 | |
14-methyl pentadecanoic acid methyl ester | 12.8 | |
10,13-dimethyltetradecanoic acid methyl ester | 12.8 | |
Hexadecanoic acid | 13.1 | |
Octadecanoic acid | 14.7 | |
Phenolic compounds | Vanillin | 7.8 |
2,4-di-tert-butylphenol | 8.9 | |
8-hydroxy-3-methyl-3,4-dihydro-1H-2-Benzopyran-1-one | 9.4 | |
4,5-dimethoxy-hydroxybenzoic acid methyl ester | 11.5 | |
Ferulic acid methyl ester | 12.1 | |
Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | 12.9 | |
Benzoquinones and related compounds | 7,9-di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione | 12.7 |
Terpenes | Dihydroactinolide | 9.3 |
Isozizanoic acid | 11.4 | |
Dihydrofrullanolide | 11.4 | |
(-)-Loliolide | 11.6 |
Treatment | Onset of Convulsion (s) | Duration of Convulsion (s) | Mortality (%) | Protection against Seizures (%) |
---|---|---|---|---|
2 mg/kg strychnine | ||||
Vehicle | 130.3 ± 14.6 | 40.2 ± 3.9 | 100 | 0 |
CNZ 1.5 mg/kg | 201.2 ± 6.8 ** | 20.9 ± 3.1 ** | 80 | 20 |
AOE 0.1 mg/kg | 185.4 ± 8.3 | 36.1 ± 3.8 | 60 | 40 |
AOE 1 mg/kg | 221.3 ± 16.7 ** | 40.9 ± 3.7 | 40 | 60 |
AOE 10 mg/kg | 240.8 ± 18.9 ** | 34.5 ± 2.3 | 0 | 100 |
1 mg/kg AOE + 2 mg/kg flumazenil | 140.1 ± 3.2 | 42.3 ± 2.3 | 100 | 0 |
10 mg/kg 4-aminopyridine | ||||
Vehicle | 129 ± 4.2 | 42.1 ± 3.3 | 100 | 0 |
CNZ 1.5 mg/kg | 490.1 ± 15.6 ** | 15.8 ± 1.3 ** | 70 | 30 |
AOE 0.1 mg/kg | 265 ± 7.3 | 39.2 ± 2.9 | 100 | 0 |
AOE 1 mg/kg | 334.5 ± 7.4 ** | 36.4 ± 1.7 | 100 | 0 |
AOE 10 mg/kg | 461.8 ± 4.9 ** | 30 ± 0.9 | 100 | 0 |
DHS 0.1 mg/kg | 114.8 ± 17.4 | 143.0 ± 23.7 ** | 100 | 0 |
DHS 1 mg/kg | 125.2 ± 15.6 | 208.4 ± 43.4 ** | 100 | 0 |
DHS 10 mg/kg | 184.6 ± 14.6 ** | 180.0 ± 09.1 ** | 100 | 0 |
Model | Property | Result | ||
---|---|---|---|---|
Absorption | DHS | FYP | E3F | |
Blood–Brain Barrier | Permeability | Yes | Yes | Yes |
Human Intestinal Absorption | High | Yes | Yes | Yes |
P-glycoprotein | Substrate | Yes | No | Yes |
Metabolism | ||||
CYP450 1A2 | Affinity | Yes | No | No |
CYP450 2C9 | Affinity | Yes | No | No |
CYP450 2D6 | Affinity | No | No | No |
CYP450 2C19 | Affinity | Yes | No | No |
CYP450 3A4 | Affinity | Yes | No | No |
Toxicity | ||||
Hepatotoxicity | Inactive | 0.75 | 0.95 | 0.83 |
Cytotoxicity | Inactive | 0.71 | 0.57 | 0.56 |
Lethal dose 50 | mg/kg | 500 | 1300 | 74 |
Toxicity category | Class | IV | IV | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yáñez-Barrientos, E.; Barragan-Galvez, J.C.; Hidalgo-Figueroa, S.; Reyes-Luna, A.; Gonzalez-Rivera, M.L.; Cruz Cruz, D.; Isiordia-Espinoza, M.A.; Deveze-Álvarez, M.A.; Villegas Gómez, C.; Alonso-Castro, A.J. Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine. Pharmaceuticals 2023, 16, 1175. https://doi.org/10.3390/ph16081175
Yáñez-Barrientos E, Barragan-Galvez JC, Hidalgo-Figueroa S, Reyes-Luna A, Gonzalez-Rivera ML, Cruz Cruz D, Isiordia-Espinoza MA, Deveze-Álvarez MA, Villegas Gómez C, Alonso-Castro AJ. Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine. Pharmaceuticals. 2023; 16(8):1175. https://doi.org/10.3390/ph16081175
Chicago/Turabian StyleYáñez-Barrientos, Eunice, Juan Carlos Barragan-Galvez, Sergio Hidalgo-Figueroa, Alfonso Reyes-Luna, Maria L. Gonzalez-Rivera, David Cruz Cruz, Mario Alberto Isiordia-Espinoza, Martha Alicia Deveze-Álvarez, Clarisa Villegas Gómez, and Angel Josabad Alonso-Castro. 2023. "Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine" Pharmaceuticals 16, no. 8: 1175. https://doi.org/10.3390/ph16081175
APA StyleYáñez-Barrientos, E., Barragan-Galvez, J. C., Hidalgo-Figueroa, S., Reyes-Luna, A., Gonzalez-Rivera, M. L., Cruz Cruz, D., Isiordia-Espinoza, M. A., Deveze-Álvarez, M. A., Villegas Gómez, C., & Alonso-Castro, A. J. (2023). Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine. Pharmaceuticals, 16(8), 1175. https://doi.org/10.3390/ph16081175