Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer’s Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Acetylcholinesterase and Butyrylcholinesterase Inhibition Studies
Structure–Activity Relationship (SAR) for Acetylcholinesterase and Butyrylcholinesterase Inhibition Studies
2.3. Molecular Docking
3. Materials and Methods
3.1. General Information
3.2. General Method for Synthesizing Benzimidazole-Based Schiff Base Derivatives (1–18)
3.2.1. Procedure for 2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethan-1-one (III)
3.2.2. Procedure for Targeted Benzimidazole-Based Schiff Base Analogues (1–18)
3.3. Structural Analysis
3.3.1. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (1)
3.3.2. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-methyl-4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (2)
3.3.3. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (3)
3.3.4. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (4)
3.3.5. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (5)
3.3.6. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-bromo-4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (6)
3.3.7. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-bromophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (7)
3.3.8. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(o-tolyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (8)
3.3.9. (Z)-5-(2-((1H-benzo[d]imidazol-2-yl)thio)-1-((4-((3-nitrophenyl)amino)cyclopenta-1,3-dien-1-yl)imino)ethyl)-2-methoxyphenol (9)
3.3.10. (Z)-2-((4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenylethylidene)amino)cyclopenta-1,3-dien-1-yl)amino)-5-nitrophenol (10)
3.3.11. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (11)
3.3.12. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(p-tolyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (12)
3.3.13. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(m-tolyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (13)
3.3.14. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(o-tolyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (14)
3.3.15. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-methyl-4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (15)
3.3.16. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2,4-dichlorophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (16)
3.3.17. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-bromophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (17)
3.3.18. (Z)-N-(4-((2-((1H-benzo[d]imidazol-2-yl)thio)-1-(2-bromo-4-nitrophenyl)ethylidene)amino)cyclopenta-1,3-dien-1-yl)-3-nitroaniline (18)
3.4. Acetylcholinesterase and Butyrylcholinesterase Inhibition Assay
3.5. Molecular Docking Protocol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matej, R.; Tesar, A.; Rusina, R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin. Biochem. 2019, 73, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2015, 11, 332–384. [Google Scholar]
- King, A.; Bodi, I.; Troakes, C. The neuropathological diagnosis of Alzheimer’s disease-the challenges of pathological mimics and concomitant pathology. Brain Sci. 2020, 10, 479. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.A.; Blazey, T.M.; Su, Y.; Hari-Raj, A.; Dincer, A.; Flores, S.; Christensen, J.; McDade, E.; Wang, G.; Xiong, C.; et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol. 2018, 17, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef]
- Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245–4249. [Google Scholar] [CrossRef]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef]
- Swalley, S.E. Expanding therapeutic opportunities for neurodegenerative diseases: A perspective on the important role of phenotypic screening. Bioorg. Med. Chem. 2020, 28, 115239. [Google Scholar] [CrossRef]
- Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet 2011, 377, 1019–1031. [Google Scholar] [CrossRef]
- Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014, 13, 759–774. [Google Scholar]
- Sethy, S.; Mandal, S.K.; Ewies, E.F.; Dhiman, N.; Garg, A. Synthesis, Characterization and Biological Evaluation of Benzimidazole and Benzindazole Derivatives as Anti-hypertensive Agents. Egypt. J. Chem. 2021, 64, 3659–3664. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, M.B.; Bertsetseg, D.; Wang, Y.H.; Bao, X.L.; Zhu, W.B.; Chen, P.R.; Tang, H.S.; Yan, Y.J.; Chen, Z.L. Design, synthesis and biological evaluation of novel fluoro-substituted benzimidazole derivatives with anti-hypertension activities. Bioorg. Chem. 2020, 101, 104042. [Google Scholar] [CrossRef] [PubMed]
- Gulcan, H.O.; Mavideniz, A.; Sahin, M.F.; and Orhan, I.E. Benzimidazole-derived compounds designed for different targets of Alzheimer’s disease. Curr. Med. Chem. 2019, 26, 3260–3278. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M. Benzimidazole-Triazole Hybrids as Antimicrobial and Antiviral Agents: A Systematic Review. Antibiotics 2023, 12, 1220. [Google Scholar] [CrossRef] [PubMed]
- Patagar, D.N.; Batakurki, S.R.; Kusanur, R.; Patra, S.M.; Saravanakumar, S.; Ghate, M. Synthesis, antioxidant and anti-diabetic potential of novel benzimidazole substituted coumarin-3-carboxamides. J. Mol. Struct. 2023, 1274, 134589. [Google Scholar] [CrossRef]
- Hayat, S.; Ullah, H.; Rahim, F.; Ullah, I.; Taha, M.; Iqbal, N.; Khan, F.; Khan, M.S.; Shah, S.A.A.; Wadood, A.; et al. Synthesis, biological evaluation and molecular docking study of benzimidazole derivatives as α-glucosidase inhibitors and anti-diabetes candidates. J. Mol. Struct. 2023, 1276, 134774. [Google Scholar] [CrossRef]
- Rashid, M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg. Chem. 2020, 96, 103576. [Google Scholar] [CrossRef]
- Bansal, Y.; Silakari, O.; Lapinsky, D.J.; Kusayanagi, T.; Tsukuda, S.; Shimura, S.; Manita, D.; Iwakiri, K.; Kamisuki, S.; Takakusagi, Y.; et al. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6208–6236. [Google Scholar] [CrossRef]
- Revanasiddappa, H.D.; Prasad, K.S.; Kumar, L.S.; Jayalakshmi, B. Synthesis and biological activity of new Schiff bases containing 4(3H)-quinazolinone ring system. Int. J. ChemTech Res. 2010, 2, 1344–1349. [Google Scholar]
- Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc. 2011, 17, 337–344. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, L.; Jin, Z.; Liu, J.B.; Dai, H.; Fang, J.X. Synthesis and antitumor activity evaluation of some Schiff bases derived from 2-aminothiazole derivatives. Heteroat. Chem. 2007, 18, 55–59. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ganguly, S.; VijaiPandi, P.; Veerasamy, R.; John, B. Synthesis, Antiviral and Cytotoxic Investigations of 2-(4-chlorophenyl)-3-substituted quinazolin-4 (3H) ones. Int. J. Drug Des. Discov. 2012, 3, 702–712. [Google Scholar]
- Adalat, B.; Rahim, F.; Taha, M.; Alshamrani, F.J.; Anouar, E.H.; Uddin, N.; Shah, S.A.A.; Ali, Z.; Zakaria, Z.A. Synthesis of Benzimidazole–Based Analogs as Anti Alzheimer’s Disease Compounds and Their Molecular Docking Studies. Molecules 2020, 25, 4828. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Ullah, H.; Rahim, F.; Sarfraz, M.; Taha, M.; Iqbal, R.; Rehman, W.; Khan, S.; Shah, S.A.A.; Hyder, S.; et al. Multipotent Cholinesterase Inhibitors for the Treatment of Alzheimer’s disease: Synthesis, Biological Analysis and Molecular Docking Study of Benzimidazole-Based Thiazole Derivatives. Molecules 2022, 27, 6087. [Google Scholar] [CrossRef] [PubMed]
- Adalat, B.; Rahim, F.; Rehman, W.; Ali, Z.; Rasheed, L.; Khan, Y.; Farghaly, T.A.; Shams, S.; Taha, M.; Wadood, A. Biologically Potent Benzimidazole-Based-Substituted Benzaldehyde Derivatives as Potent Inhibitors for Alzheimer’s Disease along with Molecular Docking Study. Pharmaceuticals 2023, 16, 208. [Google Scholar] [CrossRef] [PubMed]
- Mavroidi, B.; Kaminari, A.; Matiadis, D.; Hadjipavlou-Litina, D.; Pelecanou, M.; Tzinia, A.; Sagnou, M. The prophylactic and multimodal activity of two isatin thiosemicarbazones against Alzheimer’s disease in vitro. Brain Sci. 2022, 12, 806. [Google Scholar] [CrossRef]
- Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem. 2019, 84, 41–50. [Google Scholar] [CrossRef]
- Anwar, S.; Rehman, W.; Hussain, R.; Khan, S.; Alanazi, M.M.; Alsaif, N.A.; Khan, Y.; Iqbal, S.; Naz, A.; Hashmi, M.A. Investigation of Novel Benzoxazole-Oxadiazole Derivatives as Effective Anti-Alzheimer’s Agents: In Vitro and In Silico Approaches. Pharmaceuticals 2023, 16, 909. [Google Scholar] [CrossRef]
- Khan, S.; Iqbal, S.; Taha, M.; Rahim, F.; Shah, M.; Ullah, H.; Bahadur, A.; Alrbyawi, H.; Dera, A.A.; Alahmdi, M.I.; et al. Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Studies of Indole Based Thiadiazole Derivatives as Dual Inhibitor of Acetylcholinesterase and Butyrylchloinesterase. Molecules 2022, 27, 7368. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, H.; Hussain, R.; Khan, Y.; Khan, M.U.; Khan, M.; Sattar, A.; Khan, M.S. Synthesis, in Vitro Bio-evaluation, and Molecular Docking Study of Thiosemicarbazone-based Isatin/bis-Schiff base Hybrid Analogues as Effective Cholinesterase Inhibitors. J. Mol. Struct. 2023, 1284, 135351. [Google Scholar] [CrossRef]
- Khan, Y.; Rehman, W.; Hussain, R.; Khan, S.; Malik, A.; Khan, M.; Liaqat, A.; Rasheed, L.; Begum, F.; Fazil, S.; et al. New biologically potent benzimidazole-based-triazole derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors along with molecular docking study. J. Heterocycl. Chem. 2022, 59, 2225–2239. [Google Scholar] [CrossRef]
- Khan, S.; Iqbal, S.; Khan, M.; Rehman, W.; Shah, M.; Hussain, R.; Rasheed, L.; Khan, Y.; Dera, A.A.; Pashameah, R.A.; et al. Design, Synthesis, In Silico Testing, and In Vitro Evaluation of Thiazolidinone-Based Benzothiazole Derivatives as Inhibitors of α-Amylase and α-Glucosidase. Pharmaceuticals 2022, 15, 1164. [Google Scholar] [CrossRef] [PubMed]
Compounds | R | R1 | AChE Inhibition IC50 ± SEM a [µM] | BuChE Inhibition IC50 ± SEM a [µM] |
---|---|---|---|---|
1 | 213.78 ± 11.60 | 248.70 ± 10.90 | ||
2 | 198.82 ± 10.20 | 203.70 ± 8.20 | ||
3 | 123.90 ± 10.20 | 131.30 ± 9.70 | ||
4 | 273.50 ± 7.60 | 285.32 ± 8.20 | ||
5 | 168.60 ± 7.70 | 179.30 ± 6.70 | ||
6 | 226.30 ± 10.10 | 273.70 ± 13.80 | ||
7 | 313.60 ± 12.80 | 325.80 ± 13.10 | ||
8 | 290.70 ± 12.60 | 303.60 ±13.80 | ||
9 | 174.22 ± 6.76 | 181.20 ± 8.50 | ||
10 | 342.60 ± 10.60 | 375.80 ± 12.80 | ||
11 | 267.50 ± 11.70 | 273.60 ± 9.10 | ||
12 | 308.40 ± 8.80 | 317.68 ± 9.80 | ||
13 | 320.67 ± 13.50 | 354.10 ± 12.70 | ||
14 | 288.90 ± 11.50 | 310.70 ± 12.30 | ||
15 | 216.70 ± 8.28 | 221.34 ± 8.70 | ||
16 | 209.45 ± 8.30 | 218.50 ± 8.50 | ||
17 | 233.82 ± 10.10 | 269.40 ± 9.60 | ||
18 | 213.50 ± 8.20 | 246.60 ± 9.10 | ||
Standard Donepezil drug | 243.76 ± 5.70 | 276.60 ± 6.50 |
Active Analogues | Distance (A°) | Types of Interactions | Receptor | Docking Score |
---|---|---|---|---|
Compound-3 AChE complex | 5.2 | H-B | HIS-A-101 | −10.20 |
4.96 | Pi-Pi stacked | TYR-A-62 | ||
5.14 | Pi-Sigma | LEU-A-162 | ||
5.15 | Pi-R | LEU-A-162 | ||
6.14 | Pi-R | ALA-A-198 | ||
6.75 | Pi-cation | HIS-A-201 | ||
6.13 | H-B | GLN-A-63 | ||
3.48 | H-B | ASN-A-105 | ||
3.58 | H-B | ALA-A-106 | ||
4.19 | Pi-R | TRP-A-59 | ||
Compound-3 in BuChE complex | 4.94 | Pi-S | MET-A-470 | −11.70 |
7.21 | Pi-Pi T-shaped | TRP-A-432 | ||
6.11 | H-B | ASN-A-552 | ||
4.68 | Pi-R | LYS-A-506 | ||
4.36 | H-B | LYS-A-506 | ||
4.26 | Pi-R | LYS-A-506 | ||
4.63 | Unfavorable D-D | SER-A-497 | ||
4.89 | Pi-sigma | ILE-A-233 | ||
6.15 | Pi-R | ALA-A-231 | ||
5.23 | H-B | ASP-A-232 | ||
4.05 | Unfavorable D-D | ALA-A-234 | ||
4.94 | Pi-R | ALA-A-234 | ||
5.02 | Pi-R | ALA-A-234 | ||
6.01 | Pi-Pi T-shaped | PHE-A-236 | ||
Compound-5 In AChE complex | 5.81 | Pi-R | LEU-A-162 | −9.12 |
4.04 | Pi-sigma | TYR-A-62 | ||
5.76 | Pi-R | TYR-A-62 | ||
4.05 | Pi-R | TRP-A-59 | ||
3.6 | H-B | ALA-A-106 | ||
3.41 | H-B | ASN-A-105 | ||
4.83 | H-B | ASN-A-105 | ||
5.61 | H-B | GLN-A-63 | ||
Compound-5 in BuChE complex | 6.84 | Pi-Pi T-shaped | TRP-A-432 | −11.40 |
5.45 | Pi-Pi T-shaped | TRP-A-432 | ||
7.22 | Pi-cation | ASP-A-568 | ||
5.98 | Pi-cation | ASP-A-568 | ||
6.7 | H-B | PHE-A-601 | ||
4.54 | Pi-cation | LYS-A-506 | ||
4.29 | Pi-R | SER-A-497 | ||
4.54 | H-B | ASN-A-496 | ||
4.97 | Pi-sigma | ILE-A-233 | ||
5.49 | Pi-sigma | ASP-A-232 | ||
7.3 | Pi-Pi T-shaped | TRP-A-329 | ||
Compound-9 in AChE complex | 4.32 | Pi-Pi Stacked | TYR-A-62 | −11.28 |
4.94 | Pi-Pi Stacked | TYR-A-62 | ||
5.16 | H-B | GLN-A-63 | ||
6.21 | Pi-R | HIS-A-305 | ||
7.35 | Pi-R | TRP-A-59 | ||
5.14 | H-B | TRP-A-357 | ||
4.79 | Pi-R | TRP-A-59 | ||
6.27 | Pi-R | ALA-A-198 | ||
6 | H-B | TYR-A-151 | ||
5.9 | Pi-R | LEU-A-162 | ||
6.49 | Pi-R | LEU-A-162 | ||
Compound-9 in BuChE complex | 7.25 | Pi-anion | ASP-A-568 | −10.50 |
7.82 | Pi-Pi Stacked | TRP-A-357 | ||
6.38 | H-B | ARG-A-552 | ||
4.27 | C-H | SER-A-505 | ||
4.2 | Pi-R | LYS-A-506 | ||
4.93 | Pi-R | ILE-A-233 | ||
7.24 | Pi-Pi Stacked | PHE-A-236 | ||
6.46 | Pi-Pi Stacked | PHE-A-236 | ||
4.74 | Pi-R | ALA-A-234 | ||
4.76 | Pi-R | ALA-A-234 | ||
3.95 | H-B | ALA-A-234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, R.; Khan, S.; Ullah, H.; Ali, F.; Khan, Y.; Sardar, A.; Iqbal, R.; Ataya, F.S.; El-Sabbagh, N.M.; Batiha, G.E.-S. Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer’s Disease. Pharmaceuticals 2023, 16, 1278. https://doi.org/10.3390/ph16091278
Hussain R, Khan S, Ullah H, Ali F, Khan Y, Sardar A, Iqbal R, Ataya FS, El-Sabbagh NM, Batiha GE-S. Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer’s Disease. Pharmaceuticals. 2023; 16(9):1278. https://doi.org/10.3390/ph16091278
Chicago/Turabian StyleHussain, Rafaqat, Shoaib Khan, Hayat Ullah, Farhan Ali, Yousaf Khan, Asma Sardar, Rashid Iqbal, Farid S. Ataya, Nasser M. El-Sabbagh, and Gaber El-Saber Batiha. 2023. "Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer’s Disease" Pharmaceuticals 16, no. 9: 1278. https://doi.org/10.3390/ph16091278
APA StyleHussain, R., Khan, S., Ullah, H., Ali, F., Khan, Y., Sardar, A., Iqbal, R., Ataya, F. S., El-Sabbagh, N. M., & Batiha, G. E. -S. (2023). Benzimidazole-Based Schiff Base Hybrid Scaffolds: A Promising Approach to Develop Multi-Target Drugs for Alzheimer’s Disease. Pharmaceuticals, 16(9), 1278. https://doi.org/10.3390/ph16091278