Radiosynthesis Standardization and Preclinical Assessment of the [68Ga]Ga-DOTA-Ubiquicidin29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes
Abstract
:1. Introduction
2. Results
2.1. Synthesis, Radiochemical Purity Evaluation and Stability
2.2. Partition Coefficient
2.3. In Vitro Studies
2.4. In Vivo Studies
2.5. Clinical Case
3. Discussion
4. Materials and Methods
4.1. Synthesis of the [68Ga]Ga-DOTA-Ubiquicidin29-41
4.2. Radiochemical Purity Evaluation
4.2.1. Ascendant Thin-Layer Chromatography
4.2.2. Solid-Phase Extraction
4.2.3. Reversed-Phase High-Performance Liquid Chromatography
4.3. Partition Coefficient Determination
4.4. In Vitro Studies
4.4.1. Stability of [68Ga]Ga-DOTA-UBI29-41
4.4.2. Serum Protein Binding (SPB)
4.4.3. Production of the Methicillin-Resistant Staphylococcus aureus Bacteria
4.5. In Vivo Studies
4.5.1. Animals
4.5.2. Infection Model
4.5.3. Ex Vivo Biodistribution Study
4.5.4. Preclinical PET/CT Imaging
4.5.5. Clinical Case
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelband, H.; Miller-Petrie, M.; Pant, S.; Gandra, S.; Levinson, J.; Barter, D.; White, A.; Laxminarayan, R. The state of the World’s antibiotics 2015. Wound Health S. Afr. 2015, 8, 30–34. Available online: https://onehealthtrust.org/wp-content/uploads/2015/09/the-state-of-the-worlds-antibiotics-_2015.pdf (accessed on 23 October 2023).
- Marjanovic-Painter, B.; Kleynhans, J.; Zeevaart, J.R.; Rohwer, E.; Ebenhan, T. A decade of ubiquicidin development for PET imaging of infection: A systematic review. Nucl. Med. Biol. 2023, 108307, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Boyles, T.H.; Wasserman, S. Diagnosis of bacterial infection. S. Afr. Med. J. 2015, 105, 419. [Google Scholar] [CrossRef]
- Polvoy, I.; Flavell, R.R.; Rosenberg, O.S.; Ohliger, M.A.; Wilson, D.M. Nuclear imaging of bacterial infection. The state of the art and future directions. J. Nucl. Med. 2020, 61, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.J.; Vallabhajosula, S. Clinically proven radiopharmaceuticals for infection imaging: Mechanisms and applications. Semin. Nucl. Med. 2009, 39, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Love, C.; Palestro, C.J. Radionuclide imaging of infection. J. Nucl. Med. Technol. 2004, 32, 47–57. [Google Scholar] [PubMed]
- Palestro, C.J. The current role of gallium imaging in infection. Semin. Nucl. Med. 1994, 24, 128–141. [Google Scholar] [CrossRef]
- Palestro, C.J.; Love, C. Role of nuclear medicine for diagnosing infection of recently implanted lower extremity arthroplasties. Semin. Nucl. Med. 2017, 47, 630–638. [Google Scholar] [CrossRef]
- Britton, K.E.; Wareham, D.W.; Das, S.S.; Solanki, K.K.; Amaral, H.; Bhatnagar, A.; Katamihardja, A.H.S.; Malamitsi, J.; Moustafa, H.M.; Soroa, V.E.; et al. Imaging bacterial infection with 99mTc-ciprofloxacin (Infecton). J. Clin. Pathol. 2002, 55, 817–823. [Google Scholar] [CrossRef]
- Ueda, C.E.; Ono, C.R. Role of 18F-FDG PET/CT in renal cyst infection. Curr. Radiol. Rep. 2018, 6, 6. [Google Scholar] [CrossRef]
- Keidar, Z.; Gurman-Balbir, A.; Gaitini, D.; Israel, O. Fever of unknown origin: The role of 18F-FDG PET/CT. J. Nucl. Med. 2008, 49, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- Stumpe, K.D.; Dazzi, H.; Schaffner, A.; von Schulthess, G.K. Infection imaging using whole-body FDG-PET. Eur. J. Nucl. Med. 2000, 27, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Palestro, C.J. Radionuclide imaging of infection: In search of the grail. J. Nucl. Med. 2009, 50, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Van Dijl, J.M.; Van Oosten, M.; Van Dam, G.M. Molecular imaging of infectious and inflammatory diseases: A terra incognita. J. Nucl. Med. 2015, 56, 659–661. [Google Scholar] [PubMed]
- Signore, A.; Artiko, V.; Conserva, M.; Ferro-Flores, G.; Welling, M.M.; Jain, S.K.; Hess, S.; Sathekge, M. Imaging bacteria with radiolabelled probes: Is it feasible? J. Clin. Med. 2020, 9, 2372. [Google Scholar] [CrossRef] [PubMed]
- Welling, M.M.; Hensbergen, A.W.; Bunschoten, A.; Velders, A.H.; Roestengberg, M.; van Leeuwen, F.W.B. An update on radiotracer development for molecular imaging of bacterial infections. Clin. Transl. Imaging 2019, 7, 105–124. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Hàkansson, J.; Ringstad, L.; Björn, C.C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar]
- Akhtar, M.S.; Qaisar, A.; Irfanullah, J.; Iqbal, J.; Khan, B.; Jehangir, M.; Nadeem, M.A.; Imran, M.B. Antimicrobial peptide 99mTc-Ubiquicidin 29–41 as human infection-imaging agent: Clinical trial. J. Nucl. Med. 2005, 46, 567–573. [Google Scholar]
- Gemmel, F.; Dumarey, N.; Welling, M. Future diagnostic agents. Semin. Nucl. Med. 2009, 39, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Ostovar, A.; Assadi, M.; Vahdat, K.; Nabipour, I.; Javadi, H.; Eftekhari, M.; Assadi, M. A pooled analysis of diagnostic value of (99m)Tc-ubiquicidin (UBI) scintigraphy in detection of an infectious process. Clin. Nucl. Med. 2013, 38, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Welling, M.; Paulusma-Annema, A.; Balter, H.S.; Pauwels, E.K.; Nibbering, P.H. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur. J. Nucl. Med. 2000, 27, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Luppeti, A.; Welling, M.M.; Pauwels, E.K.J.; Nibbering, P.H. Radiolabelled antimicrobial peptides for infection detection. Lancet Infect. Dis. 2003, 3, 223–339. [Google Scholar] [CrossRef] [PubMed]
- Velikyan, I. Prospective of 68Ga radionuclide contribution to the development of imaging agents for infection and inflammation. Contrast Media Mol. Imaging 2018, 1, 9713691. [Google Scholar] [CrossRef]
- Vilche, M.; Reyes, A.L.; Vasilskis, E.; Oliver, P.; Balter, H.; Engler, H. 68Ga- NOTA-UBI-29-41 as a PET tracer for detection of bacterial infection. J. Nucl. Med. 2016, 57, 622–627. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Iqbal, J.; Khan, M.A.; Irfanullah, J.; Jehangir, M.; Khan, B.; Ul-Haq, I.; Muhammad, G.; Nadeem, M.A.; Afzal, M.S.; et al. 99mTc-labeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J. Nucl. Med. 2004, 45, 849–856. [Google Scholar]
- Nibbering, P.H.; Welling, M.M.; Paulusma-Annema, A.; Brouwer, C.P.J.M.; Lupetti, A.; Pauwels, E.K.J. 99mTc-Labeled UBI29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J. Nucl. Med. 2004, 45, 321–326. [Google Scholar]
- Ebenhan, T.; Gheysens, O.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M.M. Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. BioMed Res. Int. 2014, 2014, 867381. [Google Scholar] [CrossRef]
- Ebenhan, T.; Chadwick, N.; Sathekge, M.M.; Govender, P.; Govender, T.; Kruger, H.G.; Marjanovic-Painter, B.; Zeevaart, J.R. Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl. Med. Biol. 2014, 41, 390–400. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bhatt, J.; Shinto, A.; Korde, A.; Kumar, M.; Kamaleshwaran, K.; Joseph, J.; Sarma, H.D.; Dash, A. 68Ga-NOTA-Ubiquicidin fragment for PET imaging of infection: From bench to bedside. J. Pharm. Biomed. Anal. 2018, 159, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Bhusari, P.; Bhatt, J.; Sood, A.; Kaur, R.; Vatsa, R.; Rastogi, A.; Mukherjee, A.; Dash, A.; Mittal, B.R.; Shukla, J. Evaluating the potential of kit-based 68Ga-ubiquicidin formulation in diagnosis of infection: A pilot study 68Ga. Nucl. Med. Commun. 2019, 40, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Roux, J.; Rubiw, S.; Ebenhan, T.; Wagener, C. An automated synthesis method for 68Ga-labelled ubiquicidin 29–41. J. Radioanal. Nucl. Chem. 2019, 323, 105–116. [Google Scholar] [CrossRef]
- Boddeti, D.; Evans, S.; Kumar, V. Potential of 68Ga-DOTA-UBI to detect Staph-A infection lesions in an animal model. J. Nucl. Med. 2014, 55, 383. Available online: https://jnm.snmjournals.org/content/55/supplement_1/383/tab-article-info (accessed on 23 October 2023).
- Sasikumar, A.; Joy, A.; Nanabala, R.; Pillai, M.R.A.; Hari, T.A. 68Ga-DOTA Ubiquicidin PET/CT in an infected implant. Clin. Nucl. Med. 2017, 42, e115–e116. [Google Scholar] [CrossRef]
- Sriwiang, W.; Rangsawai, W.; Pumkhem, S. 68Ga-labeled ubiquicidin for monitoring of mouse infected with Staphylococcus aureus. J. Phys. Conf. Ser. 2019, 1285, 012028. [Google Scholar] [CrossRef]
- Boddeti, D.K.; Kumar, V. Evaluation of 68Ga-DOTA-Ubiquicidin (29–41) for imaging Staphylococcus aureus (Staph-A) infection and turpentine-induced inflammation in a preclinical setting. World J. Nucl. Med. 2021, 20, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, J.; Mukherjee, A.; Korde, A.; Kumar, M.; Sarma, H.D.; Dash, A. Radiolabeling and preliminary evaluation of Ga-68 labeled NODAGA-Ubiquicidin fragments for prospective infection imaging. Mol. Imaging Biol. 2017, 19, 59–67. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J. Current status of and perspectives on radiolabelled Ubiquicidin 29-41 derivatives for bacterial infection imaging. Mini-Rev. Med. Chem. 2023, 23, 1500–1506. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Jain, S.K. Pathogen-specific bacterial imaging in Nuclear Medicine. Semin. Nucl. Med. 2018, 48, 182–194. [Google Scholar] [CrossRef]
- Bhatt, J.; Mukherjee, A.; Shinto, A.; Karuppusamy, K.K.; Korde, A.; Kumar, M.; Sarma, H.D.; Repaka, K.; Dash, A. Gallium-68 labeled ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl. Med. Biol. 2018, 62–63, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.A.; de Barboza, M.F.; Dell’Aquila, A.M.; Santos, D.C.B.; Osawa, A. Could 68Ga-DOTA-UBI-29-41 help identify chronic osteomyelitis on PET/CT images? A Pilot Study. Clin. Nucl. Med. 2023, 48, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Ebenhan, T.; Sathekge, M.M.; Lengana, T.; Koole, M.; Gheysens, O.; Govender, T.; Zeevaart, J.R. 68Ga-NOTA-Functionalized Ubiquicidin: Cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT Imaging of Infections. J. Nucl. Med. 2018, 59, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Durante, A.C.R.; Sobral, D.V.; Miranda, A.C.C.; de Almeida, É.V.; Fuscaldi, L.L.; de Barboza, M.R.F.F.; Malavolta, L. Comparative Study of Two Oxidizing Agents, Chloramine T and Iodo-Gen. Pharmaceuticals 2019, 12, 25. [Google Scholar] [CrossRef]
- Saraiva, F.B.; de Araújo, A.C.C.; de Araújo, A.É.V.; Senna, J.P.M. Monoclonal antibody antiPBP2a protects mice against MRSA (Methicillin Resistant Staphylococcus aureus) infections. PLoS ONE 2019, 14, e0225752. [Google Scholar] [CrossRef]
Time (h) | Module-Based Radiolabeling RCP (%) | |
---|---|---|
Ascendant TLC | RP-HPLC | |
0 | 99.78 ± 0.06 | 99.63 ± 0.17 |
1 | 99.81 ± 0.04 | 99.64 ± 0.14 |
2 | 99.75 ± 0.08 | 99.73 ± 0.25 |
3 | 99.80 ± 0.06 | 99.81 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, A.C.C.; Fuscaldi, L.L.; Mejia, J.; da Silva, F.F.A.; Turato, W.M.; Mendonça, F.F.; Nogueira, S.A.; Osawa, A.; Yamaga, L.Y.I.; Malavolta, L.; et al. Radiosynthesis Standardization and Preclinical Assessment of the [68Ga]Ga-DOTA-Ubiquicidin29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes. Pharmaceuticals 2024, 17, 48. https://doi.org/10.3390/ph17010048
Miranda ACC, Fuscaldi LL, Mejia J, da Silva FFA, Turato WM, Mendonça FF, Nogueira SA, Osawa A, Yamaga LYI, Malavolta L, et al. Radiosynthesis Standardization and Preclinical Assessment of the [68Ga]Ga-DOTA-Ubiquicidin29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes. Pharmaceuticals. 2024; 17(1):48. https://doi.org/10.3390/ph17010048
Chicago/Turabian StyleMiranda, Ana Cláudia Camargo, Leonardo Lima Fuscaldi, Jorge Mejia, Fábio Fernando Alves da Silva, Walter Miguel Turato, Fernanda Ferreira Mendonça, Solange Amorim Nogueira, Akemi Osawa, Lilian Yuri Itaya Yamaga, Luciana Malavolta, and et al. 2024. "Radiosynthesis Standardization and Preclinical Assessment of the [68Ga]Ga-DOTA-Ubiquicidin29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes" Pharmaceuticals 17, no. 1: 48. https://doi.org/10.3390/ph17010048
APA StyleMiranda, A. C. C., Fuscaldi, L. L., Mejia, J., da Silva, F. F. A., Turato, W. M., Mendonça, F. F., Nogueira, S. A., Osawa, A., Yamaga, L. Y. I., Malavolta, L., & de Barboza, M. F. (2024). Radiosynthesis Standardization and Preclinical Assessment of the [68Ga]Ga-DOTA-Ubiquicidin29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes. Pharmaceuticals, 17(1), 48. https://doi.org/10.3390/ph17010048