Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry
Abstract
:1. Introduction
2. Tyrosine-Click
3. Sulfo-Click
4. Sulfur(VI) Fluoride Exchange (SuFEx)
5. Thiol-Ene Click
6. Azo Coupling
7. Hydrazone and Oxime Formations
8. RIKEN Click
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohtavinejad, N.; Ardestani, M.S.; Khalaj, A.; Pormohammad, A.; Najafi, R.; Bitarafan-Rajabi, A.; Hajiramezanali, M.; Amanlou, M. Application of radiolabeled peptides in tumor imaging and therapy. Life Sci. 2020, 258, 118206. [Google Scholar] [CrossRef] [PubMed]
- Krecisz, P.; Czarnecka, K.; Królicki, L.; Mikiciuk-Olasik, E.; Szymański, P. Radiolabeled Peptides and Antibodies in Medicine. Bioconjug. Chem. 2021, 32, 25–42. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, H.; Chen, X.; Dou, Z.; Yu, B.; Su, W.; Wang, W.; Jin, X.; Katsube, T.; Wang, B.; et al. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov. 2024, 10, 16. [Google Scholar] [CrossRef]
- Kuhnast, B.; Dollé, F. The Challenge of Labeling Macromolecules with Fluorine-18: Three Decades of Research. Curr. Radiopharm. 2010, 3, 174–201. [Google Scholar] [CrossRef]
- Lattuada, L.; Barge, A.; Cravotto, G.; Giovenzana, G.B.; Tei, L. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem. Soc. Rev. 2011, 40, 3019–3049. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. Engl. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Mařík, J.; Sutcliffe, J.L. Click for PET: Rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006, 47, 6681–6684. [Google Scholar] [CrossRef]
- Ramenda, T.; Bergmann, R.; Wuest, F. Synthesis of 18F-labeled neurotensin(8-13) via copper-mediated 1,3-dipolar [3+2]cycloaddition reaction. Lett. Drug Des. Discov. 2007, 4, 279–285. [Google Scholar] [CrossRef]
- Bouvet, V.; Wuest, M.; Wuest, F. Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org. Biomol. Chem. 2011, 9, 7393–7399. [Google Scholar] [CrossRef]
- Mushtaq, S.; Yun, S.-J.; Jeon, J. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019, 24, 3567. [Google Scholar] [CrossRef]
- Carroll, L.; Boldon, S.; Bejot, R.; Moore, J.E.; Declerck, J.; Gouverneur, V. The traceless Staudinger ligation for indirect 18F-radiolabelling. Org. Biomol. Chem. 2011, 9, 136–140. [Google Scholar] [CrossRef]
- Li, Z.; Cai, H.; Hassink, M.; Blackman, M.L.; Brown, R.C.D.; Conti, P.S.; Fox, J.M. Tetrazine–trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Comm. 2010, 46, 8043–8045. [Google Scholar] [CrossRef]
- Ban, H.; Gavrilyuk, J.; Barbas, C. Tyrosine bioconjugation through aqueous ene-type reactions: A click-like reaction for tyrosine. J. Am. Chem. Soc. 2010, 132, 1523–1525. [Google Scholar] [CrossRef]
- Ban, H.; Nagano, M.; Gavrilyuk, J.; Hakamata, W.; Inokuma, T.; Barbas, C.F. Facile and stabile linkages through tyrosine: Bioconjugation strategies with the tyrosine-click reaction. Bioconjug. Chem. 2013, 24, 520–532. [Google Scholar] [CrossRef]
- Flagothier, J.; Warnier, C.; Dammicco, S.; Lemaire, C.; Luxen, A. Synthesis of [18F]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione: An agent for specific radiolabelling of tyrosine. RSC Adv. 2013, 3, 24936–24940. [Google Scholar]
- Al-Momani, E.; Israel, I.; Buck, A.K.; Samnick, S. Improved synthesis of [18F]FS-PTAD as a new tyrosine-specific prosthetic group for radiofluorination of biomolecules. Appl. Radiat. Isot. 2015, 104, 136–142. [Google Scholar] [CrossRef]
- Sato, S.; Nakamura, K.; Nakamura, H. Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives. ACS Chem. Biol. 2015, 10, 2633–2640. [Google Scholar] [CrossRef]
- Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L.J. The reaction of thio acids with azides: A new mechanism and new synthetic applications. J. Am. Chem. Soc. 2003, 125, 7754–7755. [Google Scholar] [CrossRef]
- Rijkers, D.T.S.; Merkx, R.; Yim, C.; Brouwer, A.J.; Liskamp, R.M.J. ‘Sulfo-click’ for ligation as well as for site-specific conjugation with peptides, fluorophores, and metal chelators. J. Pept. Sci. 2010, 16, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yim, C.; Dijkgraaf, I.; Merkx, R.; Versluis, C.; Eek, A.; Mulder, G.E.; Rijkers, D.T.S.; Boerman, O.C.; Liskamp, R.M.J. Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed “click” cycloaddition and thio acid/sulfonyl azide “sulfo-click” amidation and their in vivo evaluation. J. Med. Chem. 2010, 53, 3944–3953. [Google Scholar] [CrossRef]
- Yim, C.B.; van der Wildt, B.; Dijkgraaf, I.; Joosten, L.; Eek, A.; Versluis, C.; Rijkers, D.T.S.; Boerman, O.C.; Liskamp, R.M.J. Spacer effects on in vivo properties of DOTA-conjugated dimeric [Tyr3]octreotate peptides, synthesized via a ‘Cu(I)-click’ and ‘sulfo-click’ ligation method. ChemBioChem 2011, 12, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Urkow, J.; Bergman, C.; Wuest, F. Sulfo-click chemistry with 18F-labeled thio acids. Chem. Commun. 2019, 55, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Krasnova, L.; Finn, M.G.; Sharpless, K.B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem. Int. Ed. 2014, 53, 9430–9448. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Dorta, D.; Deniaud, D.; Mével, M.; Gouin, S.G. Tyrosine Conjugation Methods for Protein Labelling. Chem. Eur. J. 2020, 26, 14257–14269. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, H.; Wang, H.; Du, W.H.; Wang, N.; Xiong, H.; Gu, Y.; Noodleman, L.; Sharpless, K.B.; Yang, G.; et al. Sulfur [18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. J. Am. Chem. Soc. 2021, 143, 3753–3763. [Google Scholar] [CrossRef]
- Walter, N.; Bertram, J.; Drewes, B.; Bahutski, V.; Timmer, M.; Schütz, M.B.; Krämer, F.; Neumaier, F.; Endepols, H.; Neumaier, B.; et al. Convenient PET-tracer production via SuFEx 18F-fluorination of nanomolar precursor amounts. Eur. J. Med. Chem. 2022, 237, 114383. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Wang, K.; Xie, J.; Zhu, Z.; Ni, M.; Wang, S.; Xie, Q. Design, synthesis, and preliminary evaluation of [18F]-aryl flurosulfates PET radiotracers via SuFEx methods for β-amyloid plaques in Alzheimer’s disease. Bioorg. Med. Chem. 2022, 75, 117087. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lv, G.; Hua, D.; Zhang, N.; Liu, Q.; Qin, S.; Zhang, L.; Xi, H.; Qiu, L.; Lin, J. Preparation and Bioevaluation of 18F-Labeled Small-Molecular Radiotracers via Sulfur(VI) Fluoride Exchange Chemistry for Imaging of Programmed Cell Death Protein Ligand 1 Expression in Tumors. Mol. Pharm. 2023, 20, 4228–4235. [Google Scholar] [CrossRef]
- Battisti, U.M.; Müller, M.; García-Vázquez, R.; Herth, M.M. Labeling of Highly Reactive Tetrazines using [18F]SuFEx. Synlett. 2023, 34. [Google Scholar] [CrossRef]
- Craig, A.; Kogler, J.; Laube, M.; Ullrich, M.; Donat, C.K.; Wodtke, R.; Kopka, K.; Stadlbauer, S. Preparation of 18F-Labeled Tracers Targeting Fibroblast Activation Protein via Sulfur [18F]Fluoride Exchange Reaction. Pharmaceutics 2023, 15, 2749. [Google Scholar] [CrossRef]
- Kim, M.P.; Cho, H.; Kayal, S.; Jeon, M.H.; Seo, J.K.; Son, J.; Jeong, J.; Hong, S.Y.; Chun, J. Direct 18F-Fluorosulfurylation of Phenols and Amines Using an [18F]FSO2+Transfer Agent Generated In Situ. J. Org. Chem. 2023, 88, 6263–6273. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Jeon, M.H.; Park, N.K.; Seo, J.K.; Son, J.; Ryu, Y.H.; Hong, S.Y.; Chun, J. Synthesis of 18F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination. Org. Lett. 2020, 22, 5511–5516. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; Equbal, D. Thiol-Ene Reaction: Synthetic Aspects and Mechanistic Studies of an Anti-Markovnikov-Selective Hydrothiolation of Olefins. Asian J. Org. Chem. 2019, 8, 32–47. [Google Scholar] [CrossRef]
- Boutureira, O.; Bernardes, G.J.L.; D’Hoogea, F.; Davis, B.G. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars. Chem. Commun. 2011, 47, 10010–10012. [Google Scholar] [CrossRef]
- Glaser, M.; Karlsen, H.; Solbakken, M.; Arukwe, J.; Brady, F.; Luthra, S.K.; Cuthbertson, A. 18F-Fluorothiols: A New Approach To Label Peptides Chemoselectively as Potential Tracers for Positron Emission Tomography. Bioconjug. Chem. 2004, 15, 1447–1453. [Google Scholar] [CrossRef]
- Richard, M.; Specklin, S.; Hinnen, F.; Kuhnast, B. Design of a new 18F-prosthetic reagent for the “thiol-ene”-Dha-based conjugation with proteins. J. Label. Compd. Radiopharm. 2019, 62, S165. [Google Scholar]
- Murphy, J.; Ma, G. One-step synthesis of [18F]fluoro-4-(vinylsulfonyl)benzene (FVSB): A thiol reactive synthon for selective radiofluorination of peptides and proteins. J. Label. Compd. Radiopharm. 2019, 62, S194–S195. [Google Scholar]
- Hayes, T.; Lyon, P.A.; Silva-Lopez, E.; Twamley, B.; Benny, P. Photo-initiated Thiol-ene Click Reactions as a Potential Strategy for Incorporation of [MI(CO)3]+ (M = Re, 99mTc) Complexes. Inorg. Chem. 2013, 52, 3259–3267. [Google Scholar] [CrossRef]
- Sengupta, S.; Chandrasekaran, S. Modifications of amino acids using arenediazonium salts. Org. Biomol. Chem. 2019, 17, 8308–8329. [Google Scholar] [CrossRef]
- Sundberg, M.W.; Meares, C.F.; Goodwin, D.A.; Diamanti, C.I. Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA. J. Med. Chem. 1974, 17, 1304–1307. [Google Scholar] [CrossRef]
- Hruby, M.; Kucka, J.; Novakova, M.; Mackova, H.; Vetrik, M. New coupling strategy for radionuclide labeling of synthetic polymers. Appl. Radiat. Isot. 2010, 68, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Leier, S.; Richter, S.; Bergmann, R.; Wuest, M.; Wuest, F. Radiometal-Containing Aryl Diazonium Salts for Chemoselective Bioconjugation of Tyrosine Residues. ACS Omega 2019, 4, 22101–22107. [Google Scholar] [CrossRef] [PubMed]
- Paiva, I.; Mattingly, S.; Wuest, M.; Leier, S.; Vakili, M.R.; Weinfeld, M.; Lavasanifar, A.; Wuest, F. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol. Pharm. 2020, 17, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Patt, J.T.; Patt, M. Reaction of [18F]4-fluorobenzenediazonium cations with cysteine or the cysteinyl group: Preparation of 18F-labeled S-aryl-cysteine and a radiolabeled peptide. J. Label. Compd. Radiopharm. 2002, 45, 1229–1238. [Google Scholar] [CrossRef]
- Patt, J.T.; Patt, M. 18F-labeled diazonium cation: A possible precursor for radiolabeling of peptides. J. Label. Compd. Radiopharm. 2012, 44, S154–S156. [Google Scholar] [CrossRef]
- Kölmel, D.K.; Kool, E.T. Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. Chem. Rev. 2017, 117, 10358–10376. [Google Scholar] [CrossRef]
- Meyer, V.; Janny, A. Ueber stickstoffhaltige Acetonderivate. Ber. Dtsch. Chem. Ges. 1882, 15, 1164–1167. [Google Scholar] [CrossRef]
- Fischer, E. Ueber die Hydrazone. Ber. Dtsch. Chem. Ges. 1888, 21, 984–988. [Google Scholar] [CrossRef]
- Chang, Y.S.; Jeong, J.M.; Lee, Y.; Kim, H.W.; Rai, G.B.; Lee, S.J.; Lee, D.S.; Chung, J.; Lee, M.C. Preparation of 18F-Human Serum Albumin: A Simple and Efficient Protein Labeling Method with 18F Using a Hydrazone-Formation Method. Bioconjug. Chem. 2005, 16, 1329–1333. [Google Scholar] [CrossRef]
- Bruus-Jensen, K.; Poethko, T.; Schottelius, M.; Hauser, A.; Schwaiger, M.; Wester, H. Chemoselective hydrazone formation between HYNIC-functionalized peptides and 18F-fluorinated aldehydes. Nucl. Med. Biol. 2006, 33, 173–183. [Google Scholar] [CrossRef]
- Lee, Y.; Jeong, J.M.; Kim, H.W.; Chang, Y.S.; Kim, Y.J.; Hong, M.K.; Rai, G.B.; Chi, D.Y.; Kang, W.J.; Kang, J.H.; et al. An improved method of 18F peptide labeling: Hydrazone formation with HYNIC-conjugated c(RGDyK). Nucl. Med. Biol. 2006, 33, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Rennen, H.J.J.M.; Laverman, P.; van Eerd, J.E.M.; Oyen, W.J.G.; Corstens, F.H.M.; Boerman, O.C. PET imaging of infection with a HYNIC-conjugated LTB4 antagonist labeled with F-18 via hydrazone formation. Nucl. Med. Biol. 2007, 34, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakht, S.; Kobarfard, F.; Beiki, D.; Sabzevari, O.; Amini, M.; Mehrnejad, F.; Tabib, K.; Shahhosseini, S. HYNIC a bifunctional prosthetic group for the labelling of peptides with 99mTc and 18FDG. J. Radioanal. Nucl. Chem. 2016, 307, 1125–1134. [Google Scholar] [CrossRef]
- Simeonova, G.; Todorov, B.J. Modification of [18F]FDG by the formation of a hydrazone bond. J. IMAB 2023, 29, 4784–4788. [Google Scholar] [CrossRef]
- Ganguly, T.; Kasten, B.B.; Bučar, D.; MacGillivray, L.R.; Berkman, C.E.; Benny, P.D. The hydrazide/hydrazone click reaction as a biomolecule labeling strategy for M(CO)3 (M = Re, 99mTc) radiopharmaceuticals. Chem. Commun. 2011, 47, 12846–12848. [Google Scholar] [CrossRef]
- Imlimthan, S.; Airaksinen, A.; Sarparanta, M. A one-pot synthesis of DOTA-hydrazide via HATU-mediated coupling reaction for biomacromolecule radiolabeling. J. Label. Compd. Radiopharm. 2019, 62, S260–S261. [Google Scholar]
- Imlimthan, S.; Otaru, S.; Keinänen, O.; Correia, A.; Lintinen, K.; Santos, H.A.; Airaksinen, A.J.; Kostiainen, M.A.; Sarparanta, M. Radiolabeled Molecular Imaging Probes for the In Vivo Evaluation of Cellulose Nanocrystals for Biomedical Applications. Biomacromolecules 2019, 20, 674–683. [Google Scholar] [CrossRef]
- Poethko, T.; Schottelius, M.; Thumshirn, G.; Hersel, U.; Herz, M.; Henriksen, G.; Kessler, H.; Schwaiger, M.; Wester, H.J. Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. J. Nucl. Med. 2004, 45, 892–902. [Google Scholar]
- Poethko, T.; Schottelius, M.; Thumshirn, G.; Herz, M.; Haubner, R.; Henriksen, G.; Kessler, H.; Schwaiger, M.; Wester, H. Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochim. Acta. 2004, 92, 317–327. [Google Scholar] [CrossRef]
- Flavell, R.R.; Kothari, P.; Bar-Dagan, M.; Synan, M.; Vallabhajosula, S.; Friedman, J.M.; Muir, T.W.; Ceccarini, G. Site-Specific 18F-Labeling of the Protein Hormone Leptin Using a General Two-Step Ligation Procedure. J. Am. Chem. Soc. 2008, 130, 9106–9112. [Google Scholar] [CrossRef]
- Namavari, M.; De Jesus, O.P.; Cheng, Z.; De, A.; Kovacs, E.; Levi, J.; Zhang, R.; Hoerner, J.K.; Grade, H.; Syud, F.A.; et al. Direct site-specific radiolabeling of an affibody protein with 4-[18F]fluorobenzaldehyde via oxime chemistry. Mol. Imaging. Biol. 2008, 10, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Åberg, O.; Pisaneschi, F.; Smith, G.; Nguyen, Q.; Stevens, E.; Aboagye, E.O. 18F-labelling of a cyclic pentapeptide inhibitor of the chemokine receptor CXCR4. J. Fluor. Chem. 2012, 135, 200–206. [Google Scholar] [CrossRef]
- Glaser, M.; Morrison, M.; Solbakken, M.; Arukwe, J.; Karlsen, H.; Wiggen, U.; Champion, S.; Kindberg, G.M.; Cuthbertson, A. Radiosynthesis and Biodistribution of Cyclic RGD Peptides Conjugated with Novel [18F]Fluorinated Aldehyde-Containing Prosthetic Groups. Bioconjug. Chem. 2008, 19, 951–957. [Google Scholar] [CrossRef]
- Carberry, P.; Lieberman, B.P.; Ploessl, K.; Choi, S.R.; Haase, D.N.; Kung, H.F. New F-18 Prosthetic Group via Oxime Coupling. Bioconjug. Chem. 2011, 22, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Morris, O.; Gregory, J.; Kadirvel, M.; Henderson, F.; Blykers, A.; McMahon, A.; Taylor, M.; Allsop, D.; Allan, S.; Grigg, J.; et al. Development & automation of a novel [18F]F prosthetic group, 2-[18F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide. Appl. Radiat. Isot. 2016, 116, 120–127. [Google Scholar] [PubMed]
- Wuest, F.; Hultsch, C.; Berndt, M.; Bergmann, R. Direct labelling of peptides with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG). Bioorg. Med. Chem. Lett. 2009, 19, 5426–5428. [Google Scholar] [CrossRef]
- Simeonova, G.; Todorov, B. An approach to develop personalized radiopharmaceuticals by modifying 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG). Nuc. Med. Rev. 2023, 26, 109–115. [Google Scholar] [CrossRef]
- Namavari, M.; Cheng, Z.; Zhang, R.; De, A.; Levi, J.; Hoerner, J.K.; Yaghoubi, S.S.; Syud, F.A.; Gambhir, S.S. A Novel Method for Direct Site-Specific Radiolabeling of Peptides Using [18F]FDG. Bioconjug. Chem. 2009, 20, 432–436. [Google Scholar] [CrossRef]
- Senisik, A.M.; Içhedef, C.; Kilçar, A.Y.; Uçar, E.; Ari, K.; Göksoy, D.; Parlak, Y.; Bilgin, B.E.S.; Teksöz, S. One-step conjugation of glycylglycine with [18F]FDG and a pilot PET imaging study. J. Radioanal. Nucl. Chem. 2018, 316, 457–463. [Google Scholar] [CrossRef]
- Khoshbakht, S.; Beiki, D.; Geramifar, P.; Kobarfard, F.; Sabzevari, O.; Amini, M.; Shahhosseini, S. 18FDG-labeled LIKKPF: A PET tracer for apoptosis imaging. J. Radioanal. Nucl. Chem. 2016, 310, 413–421. [Google Scholar] [CrossRef]
- Khoshbakht, S.; Beiki, D.; Geramifar, P.; Kobarfard, F.; Sabzevari, O.; Amini, M.; Bolourchian, N.; Shamshirian, D.; Shahhosseini, S. Design, Synthesis, Radiolabeling, and Biologic Evaluation of Three 18F-FDG-Radiolabeled Targeting Peptides for the Imaging of Apoptosis. Cancer Biother. Radiopharm. 2019, 34, 271–279. [Google Scholar] [CrossRef]
- Wang, R.F.; Wang, Z.G.; Yu, M.M.; Chen, Y.H.; Shi, B.; Xue, W. 18-F-Fluoroglucosylation of an arginine-arginine-leucine peptide as a potential tumor imaging agent for positron emission tomography. Int. J. Radiat. Res. 2021, 19, 357–363. [Google Scholar] [CrossRef]
- Dall’Angelo, S.; Zhang, Q.Z.; Fleming, I.N.; Piras, M.; Schweiger, L.F.; O’Hagan, D.; Zanda, M. Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor. Org. Biomol. Chem. 2013, 11, 4551–4558. [Google Scholar] [CrossRef] [PubMed]
- Keinänen, O.; Li, X.; Chenna, N.K.; Lumen, D.; Ott, J.; Molthoff, C.F.M.; Sarparanta, M.; Helariutta, K.; Vuorinen, T.; Windhorst, A.D. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging. ACS Med. Chem. Lett. 2016, 7, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.F.; Larghi, E.L.; Kaufman, T.S. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat. Prod. Rep. 2019, 36, 354–401. [Google Scholar] [CrossRef]
- Tanaka, K.; Masuyama, T.; Hasegawa, K.; Tahara, T.; Mizuma, H.; Wada, Y.; Watanabe, Y.; Fukase, K. A Submicrogram-Scale Protocol for Biomolecule-Based PET Imaging by Rapid 6π-Azaelectrocyclization: Visualization of Sialic Acid Dependent Circulatory Residence of Glycoproteins. Angew. Chem. Int. Ed. 2008, 47, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Siwu, E.R.O.; Minami, K.; Hasegawa, K.; Nozaki, S.; Kanayama, Y.; Koyama, K.; Chen, W.C.; Paulson, J.C.; Watanabe, Y.; et al. Noninvasive Imaging of Dendrimer-Type N-Glycan Clusters: In Vivo Dynamics Dependence on Oligosaccharide Structure. Angew. Chem. Int. Ed. 2010, 49, 8195–8200. [Google Scholar] [CrossRef]
- Nakamoto, Y.; Pradipta, A.R.; Mukai, H.; Zouda, M.; Watanabe, Y.; Kurbangalieva, A.; Ahmadi, P.; Manabe, Y.; Fukase, K.; Tanaka, K. Expanding the Applicability of the Metal Labeling of Biomolecules by the RIKEN Click Reaction: A Case Study with Gallium-68 Positron Emission Tomography. ChemBioChem 2018, 19, 2055–2060. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leier, S.; Wuest, F. Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals 2024, 17, 1270. https://doi.org/10.3390/ph17101270
Leier S, Wuest F. Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals. 2024; 17(10):1270. https://doi.org/10.3390/ph17101270
Chicago/Turabian StyleLeier, Samantha, and Frank Wuest. 2024. "Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry" Pharmaceuticals 17, no. 10: 1270. https://doi.org/10.3390/ph17101270
APA StyleLeier, S., & Wuest, F. (2024). Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals, 17(10), 1270. https://doi.org/10.3390/ph17101270