4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of 4-HR
2.1.1. Development of Analytical Method of 4-HR
2.1.2. Linearity
2.1.3. Precision and Accuracy
2.2. Nanoparticle Size, PDI, and Zeta Potential of 4-HR-Loaded SLNs
2.3. Determination of the Drug Loading Capacity
2.4. In Vitro Drug Release Study
2.5. In Vitro Cytotoxicity Evaluation
3. Materials and Methods
3.1. Materials
3.2. Preparation of 4-HR-Loaded SLNs
3.3. Characterization of 4-HR
3.3.1. Development of Analytical Method for 4-HR
3.3.2. Linearity
3.3.3. Precision and Accuracy
3.4. Measurements of Nanoparticle Size, PDI, and Zeta Potential of 4-HR-Loaded SLNs
3.5. Determination of Drug Loading Capacity
3.6. In Vitro Drug Release Studies
3.7. In Vitro Cytotoxicity Evaluation
3.7.1. Cytotoxicity Study Using Tumor Cell Lines
3.7.2. Viability of Cancer Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thambiraj, S.; Vijayalakshmi, R.; Ravi Shankaran, D. An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci. Rep. 2021, 11, 2808. [Google Scholar] [CrossRef]
- Xu, X.; Fallah, M.; Tian, Y.; Mukama, T.; Sundquist, K.; Sundquist, J.; Brenner, H.; Kharazmi, E. Risk of invasive prostate cancer and prostate cancer death in relatives of patients with prostatic borderline or in situ neoplasia: A nationwide cohort study. Cancer 2020, 126, 4371–4378. [Google Scholar] [CrossRef]
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Pu, K. Recent advances in dual-and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022, 291, 121906. [Google Scholar] [CrossRef]
- Bar-Zeev, M.; Livney, Y.D.; Assaraf, Y.G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updat. 2017, 31, 15–30. [Google Scholar] [CrossRef]
- Neumann, P.-A.; Berlet, M.W.; Friess, H. Surgical oncology in the age of multimodality therapy for cancer of the upper and lower gastrointestinal tract. Expert Rev. Anticancer Ther. 2021, 21, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Bhardwaj, A.; Gupta, S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023, 50, 9663–9676. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.-Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Kim, S.-G.; JeonG, J.-H.; Park, Y.-W.; SonG, J.-Y.; Kim, A.-S.; CHoI, J.-Y.; Chae, W.-S. 4-Hexylresorcinol inhibits transglutaminase-2 activity and has synergistic effects along with cisplatin in KB cells. Oncol. Rep. 2011, 25, 1597–1602. [Google Scholar] [CrossRef]
- Kim, S.-G.; Lee, S.-W.; Park, Y.-W.; Jeong, J.-H.; Choi, J.-Y. 4-hexylresorcinol inhibits NF-κB phosphorylation and has a synergistic effect with cisplatin in KB cells. Oncol. Rep. 2011, 26, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Choi, J.-Y. 4-hexylresorcinol exerts antitumor effects via suppression of calcium oscillation and its antitumor effects are inhibited by calcium channel blockers. Oncol. Rep. 2013, 29, 1835–1840. [Google Scholar] [CrossRef]
- Dieter, M.; Jameson, C.; French, J.; Gangjee, S.; Stefanski, S.; Chhabra, R.; Chan, P. Development and validation of a cellular transplant model for leukemia in Fischer rats: A short-term assay for potential anti-leukemic chemicals. Leuk. Res. 1989, 13, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Kim, D.-W.; Lee, S.K.; Choi, J.-Y.; Che, X.; Kim, S.-G.; Garagiola, U. Increased expression of TGF-β1 by 4-hexylresorcinol is mediated by endoplasmic reticulum and mitochondrial stress in human umbilical endothelial vein cells. Appl. Sci. 2021, 11, 9128. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Kim, D.-W.; Che, X.; Choi, J.-Y.; Kim, S.-G. Inhibition of TP53 Mutant Oral Cancer by Reactivating p53. Appl. Sci. 2022, 12, 5921. [Google Scholar] [CrossRef]
- Barneda-Zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol. 2012, 6, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Botrugno, O.A.; Dal Zuffo, R.; Pallavicini, I.; Matthews, G.M.; Cluse, L.; Barozzi, I.; Senese, S.; Fornasari, L.; Moretti, S. A dual role for Hdac1: Oncosuppressor in tumorigenesis, oncogene in tumor maintenance. J. Am. Soc. Hematol. 2013, 121, 3459–3468. [Google Scholar] [CrossRef]
- Burke, B.; Eden, C.; Perez, C.; Belshoff, A.; Hart, S.; Plaza-Rojas, L.; Delos Reyes, M.; Prajapati, K.; Voelkel-Johnson, C.; Henry, E. Inhibition of histone deacetylase (HDAC) enhances checkpoint blockade efficacy by rendering bladder cancer cells visible for T cell-mediated destruction. Front. Oncol. 2020, 10, 699. [Google Scholar] [CrossRef]
- Kim, M.K.; Yoon, C.S.; Kim, S.G.; Park, Y.W.; Lee, S.S.; Lee, S.K. Effects of 4-hexylresorcinol on protein expressions in RAW 264.7 cells as determined by immunoprecipitation high performance liquid chromatography. Sci. Rep. 2019, 9, 3379. [Google Scholar] [CrossRef]
- Kim, J.; Jo, Y.-u.; Na, K. Photodynamic therapy with smart nanomedicine. Arch. Pharm. Res. 2020, 43, 22–31. [Google Scholar] [CrossRef]
- Sharma, N.; Kumari, R.M.; Gupta, N.; Syed, A.; Bahkali, A.H.; Nimesh, S. Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules 2020, 25, 4243. [Google Scholar] [CrossRef]
- Kullenberg, F.; Degerstedt, O.; Calitz, C.; Pavlović, N.; Balgoma, D.; Gråsjö, J.; Sjögren, E.; Hedeland, M.; Heindryckx, F.; Lennernäs, H. In vitro cell toxicity and intracellular uptake of doxorubicin exposed as a solution or liposomes: Implications for treatment of hepatocellular carcinoma. Cells 2021, 10, 1717. [Google Scholar] [CrossRef]
- Teskač, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm. 2010, 390, 61–69. [Google Scholar] [CrossRef]
- Hu, H.; Liu, D.; Zhao, X.; Qiao, M.; Chen, D. Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B. Drug Dev. Ind. Pharm. 2013, 39, 770–779. [Google Scholar] [CrossRef]
- Garcês, A.; Amaral, M.; Lobo, J.S.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid. Interface Sci. 2019, 273, 102033. [Google Scholar] [CrossRef]
- Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm. 2016, 109, 214–223. [Google Scholar] [CrossRef]
- Severino, P.; Silveira, E.F.; Loureiro, K.; Chaud, M.V.; Antonini, D.; Lancellotti, M.; Sarmento, V.H.; da Silva, C.F.; Santana, M.H.A.; Souto, E.B. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur. J. Pharm. Sci. 2017, 106, 177–184. [Google Scholar] [CrossRef]
- Gupta, T.; Singh, J.; Kaur, S.; Sandhu, S.; Singh, G.; Kaur, I.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Front. Bioeng. Biotechnol. 2020, 8, 879. [Google Scholar] [CrossRef]
- Han, L.; Wang, T. Preparation of glycerol monostearate from glycerol carbonate and stearic acid. RSC Adv. 2016, 6, 34137–34145. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; Song, H.H.; Kim, M.J.; Hong, S.; Yoon, I.; Lee, W.K. Synthesis and design of purpurin-18-loaded solid lipid nanoparticles for improved anticancer efficiency of photodynamic therapy. Pharmaceutics 2022, 14, 1064. [Google Scholar] [CrossRef]
- Yeo, S.; Kim, M.J.; Shim, Y.K.; Yoon, I.; Lee, W.K. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency. ACS Omega 2022, 7, 35875–35884. [Google Scholar] [CrossRef]
- Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019, 34, 20180032. [Google Scholar] [CrossRef]
- Shinde, V.R.; Revi, N.; Murugappan, S.; Singh, S.P.; Rengan, A.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis. Photodyn. Ther. 2022, 39, 102915. [Google Scholar] [CrossRef]
- Sharifi, M.; Cho, W.C.; Ansariesfahani, A.; Tarharoudi, R.; Malekisarvar, H.; Sari, S.; Bloukh, S.H.; Edis, Z.; Amin, M.; Gleghorn, J.P. An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 2022, 14, 2868. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Pashkovskaya, A.A.; Vazdar, M.; Zimmermann, L.; Jovanovic, O.; Pohl, P.; Pohl, E.E. Mechanism of long-chain free fatty acid protonation at the membrane-water interface. Biophys. J. 2018, 114, 2142–2151. [Google Scholar] [CrossRef]
- Ghadiri, M.; Fatemi, S.; Vatanara, A.; Doroud, D.; Najafabadi, A.R.; Darabi, M.; Rahimi, A.A. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size. Int. J. Pharm. 2012, 424, 128–137. [Google Scholar] [CrossRef]
- Vivek, K.; Reddy, H.; Murthy, R.S. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2007, 8, 16–24. [Google Scholar] [CrossRef]
- Zoubari, G.; Staufenbiel, S.; Volz, P.; Alexiev, U.; Bodmeier, R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. 2017, 110, 39–46. [Google Scholar] [CrossRef]
- Parisi, G.; Narayan, S. A fluorine-free customizable membrane using sintered copper for oil/water and surfactant-stabilized water-in-oil emulsion separation. Chem. Eng. Process Process Intensif. 2022, 181, 109165. [Google Scholar] [CrossRef]
- Yang, P.; Hu, R.; Yu, B.; Sun, Y.; Liu, Y.; Lu, M. Modified cotton fabric with durable anti-fouling performance for separation of surfactant-stabilized oil-in-water emulsions. Cellulose 2022, 29, 3557–3568. [Google Scholar] [CrossRef]
- Kuklenyik, Z.; Jones, J.I.; Gardner, M.S.; Schieltz, D.M.; Parks, B.A.; Toth, C.A.; Rees, J.C.; Andrews, M.L.; Carter, K.; Lehtikoski, A.K. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLoS ONE 2018, 13, e0194797. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar]
- Khan, M.I.; Hossain, M.I.; Hossain, M.K.; Rubel, M.; Hossain, K.; Mahfuz, A.; Anik, M.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio. Mater. 2022, 5, 971–1012. [Google Scholar] [CrossRef]
- Yeo, S.; Jung, S.; Cho, H.K.; Kim, Y.H.; Kim, G.H.; Kim, D.; Ko, B.H.; Lee, J. Design and characterization of elastic artificial skin containing adenosine-loaded solid lipid nanoparticles for treating wrinkles. Pharmaceutics 2020, 13, 33. [Google Scholar] [CrossRef]
Hela (μM) | A549 (μM) | CT-56 (μM) | Particle Size (nm) | EE (%) | |
---|---|---|---|---|---|
4-HR | 88.5 | 70.0 | 97.2 | N/A | N/A |
F1 | 74.5 | 50.0 | 90.3 | 644.8 ± 19.3 | 75.0 ± 1.3 |
F2 | 47.4 | 49.9 | 76.4 | 594.0 ± 11.1 | 76.4 ± 2.5 |
F3 | 23.8 | 35.5 | 23.8 | 267.2 ± 6.6 | 88.4 ± 0.6 |
F4 | 28.0 | 35.7 | 23.8 | 383.8 ± 4.9 | 87.7 ± 2.4 |
F5 | 35.8 | 36.6 | 46.6 | 486.9 ± 3.6 | 86.8 ± 0.4 |
F6 | 45.7 | 38.1 | 56.7 | 540.6 ± 4.3 | 78.8 ± 1.9 |
F7 | 19.6 | 28.6 | 21.2 | 186.9 ± 1.2 | 92.6 ± 0.6 |
F8 | 15.4 | 17.4 | 15.3 | 169.4 ± 2.5 | 96.5 ± 0.7 |
F9 | 18.6 | 17.8 | 15.9 | 176.6 ± 3.7 | 95.0 ± 0.8 |
Formulation | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | |
---|---|---|---|---|---|---|---|---|---|---|
Drug (mg) | 4-HR | 50 | 50 | 50 | 50 | 70 | 100 | 50 | 50 | 50 |
Lipid (mg) | LAD | 100 | ||||||||
PA | 100 | |||||||||
SA | 100 | 100 | 100 | 100 | ||||||
GMS | 100 | 50 | 100 | |||||||
Surfactant (mg) | PX 188 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 400 | |
TW 80 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, S.; Jung, S.; Kim, H.; Ahn, J.-H.; Hwang, S.-J. 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals 2024, 17, 1296. https://doi.org/10.3390/ph17101296
Yeo S, Jung S, Kim H, Ahn J-H, Hwang S-J. 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals. 2024; 17(10):1296. https://doi.org/10.3390/ph17101296
Chicago/Turabian StyleYeo, Sooho, Sukkyun Jung, Haneul Kim, Jun-Hyun Ahn, and Sung-Joo Hwang. 2024. "4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity" Pharmaceuticals 17, no. 10: 1296. https://doi.org/10.3390/ph17101296
APA StyleYeo, S., Jung, S., Kim, H., Ahn, J. -H., & Hwang, S. -J. (2024). 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals, 17(10), 1296. https://doi.org/10.3390/ph17101296