Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of EMAS and Isolation and Structure Elucidation of Palmatine
2.2. Effects of EMAS and Palmatine on Carrageenan-Induced Pleurisy
2.3. Effects of EMAS and Palmatine on Zymosan-Induced Joint Inflammation
2.4. Effects of EMAS and Palmatine on Formalin-Induced Nociception
2.5. Effect of Palmatine on TNF-Induced Hyperalgesia
2.6. Effect of EMAS and Palmatine on Leukocyte Viability by MTT
3. Discussion
4. Materials and Methods
4.1. Plant Material, EMAS Acquisition, and Isolation/Chemical Analysis of Palmatine
4.2. Reagents
4.3. Animals, Dissolution of EMAS and Palmatine, and Description of the Doses Used in the In Vivo and In Vitro Models
4.4. EMAS and Palmatine Test in Carrageenan-Induced Pleurisy
4.5. EMAS and Palmatine Test on Zymosan-Induced Joint Inflammation
4.6. EMAS and Palmatine Test on Formalin-Induced Nociception
4.7. Palmatine Test on TNF-Induced Hyperalgesia
4.8. Analysis of EMAS and Palmatine on Leukocyte Viability by Methylthiazolidiphenyl-Tetrazolium (MTT) Bromide Test
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in Chronic Inflammatory Diseases. Cell Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Ronchetti, S.; Migliorati, G.; Delfino, D.V. Association of Inflammatory Mediators with Pain Perception. Biomed. Pharmacother. 2017, 96, 1445–1452. [Google Scholar] [CrossRef]
- Baral, P.; Udit, S.; Chiu, I.M. Pain and Immunity: Implications for Host Defence. Nat. Rev. Immunol. 2019, 19, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.; Bruera, E. Balancing Opioid Analgesia with the Risk of Nonmedical Opioid Use in Patients with Cancer. Nat. Rev. Clin. Oncol. 2019, 16, 213–226. [Google Scholar] [CrossRef]
- Bertin, C.; Delage, N.; Rolland, B.; Pennel, L.; Fatseas, M.; Trouvin, A.-P.; Delorme, J.; Chenaf, C.; Authier, N. Analgesic Opioid Use Disorders in Patients with Chronic Non-Cancer Pain: A Holistic Approach for Tailored Management. Neurosci. Biobehav. Rev. 2021, 121, 160–174. [Google Scholar] [CrossRef]
- Barnes, P.J.; Adcock, I.M. Glucocorticoid Resistance in Inflammatory Diseases. Lancet 2009, 373, 1905–1917. [Google Scholar] [CrossRef]
- Quatrini, L.; Ugolini, S. New Insights into the Cell- and Tissue-Specificity of Glucocorticoid Actions. Cell Mol. Immunol. 2020, 18, 269–278. [Google Scholar] [CrossRef]
- Gonçalves, K.G.; Pasa, M.C. The Ethnobotany and Medicinal Plants in Community Sucuri, Cuiabá, MT, Brazil. Interações 2015, 16, 245–256. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Arumugam, R.; Ariyan, S. In Silico Validation of the Indigenous Knowledge of the Herbal Medicines among Tribal Communities in Sathyamangalam Wildlife Sanctuary, India. J. Tradit. Complement. Med. 2019, 9, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.G.; Kim, Y.-D. Quantitative Ethnobotanical Study of the Medicinal Plants Used by the Ati Negrito Indigenous Group in Guimaras Island, Philippines. J. Ethnopharmacol. 2014, 157, 228–242. [Google Scholar] [CrossRef]
- Yabesh, J.E.M.; Prabhu, S.; Vijayakumar, S. An Ethnobotanical Study of Medicinal Plants Used by Traditional Healers in Silent Valley of Kerala, India. J. Ethnopharmacol. 2014, 154, 774–789. [Google Scholar] [CrossRef]
- Li, D.; Xing, F. Ethnobotanical Study on Medicinal Plants Used by Local Hoklos People on Hainan Island, China. J. Ethnopharmacol. 2016, 194, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Longuefosse, J.L.; Nossin, E. Medical Ethnobotany Survey in Martinique. J. Ethnopharmacol. 1996, 53, 117–142. [Google Scholar] [CrossRef] [PubMed]
- Abe, R.; Ohtani, K. An Ethnobotanical Study of Medicinal Plants and Traditional Therapies on Batan Island, the Philippines. J. Ethnopharmacol. 2013, 145, 554–565. [Google Scholar] [CrossRef]
- Safira, A.; Widayani, P.; An-Najaaty, D.; Rani, C.A.M.; Septiani, M.; Putra, Y.A.S. A Review of an Important Plants: Annona squamosa Leaf. Pharmacogn. J. 2022, 14, 456–463. [Google Scholar] [CrossRef]
- Kumar, M.; Changan, S.; Tomar, M.; Prajapati, U.; Saurabh, V.; Hasan, M.; Sasi, M.; Maheshwari, C.; Singh, S.; Dhumal, S.; et al. Custard Apple (Annona squamosa L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Biological Activities. Biomolecules 2021, 11, 614. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Morvin Yabesh, J.E.; Prabhu, S.; Manikandan, R.; Muralidharan, B. Quantitative Ethnomedicinal Study of Plants Used in the Nelliyampathy Hills of Kerala, India. J. Ethnopharmacol. 2015, 161, 238–254. [Google Scholar] [CrossRef]
- Quílez, A.M.; Fernández-Arche, M.A.; García-Giménez, M.D.; De la Puerta, R. Potential Therapeutic Applications of the Genus Annona: Local and Traditional Uses and Pharmacology. J. Ethnopharmacol. 2018, 225, 244–270. [Google Scholar] [CrossRef]
- Magalhães, K.d.N.; Guarniz, W.A.S.; Sá, K.M.; Freire, A.B.; Monteiro, M.P.; Nojosa, R.T.; Bieski, I.G.C.; Custódio, J.B.; Balogun, S.O.; Bandeira, M.A.M. Medicinal Plants of the Caatinga, Northeastern Brazil: Ethnopharmacopeia (1980–1990) of the Late Professor Francisco José de Abreu Matos. J. Ethnopharmacol. 2019, 237, 314–353. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; Martins, D.T.d.O. Ethnobotanical Study of Medicinal Plants Used by Ribeirinhos in the North Araguaia Microregion, Mato Grosso, Brazil. J. Ethnopharmacol. 2017, 205, 69–102. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Mishra, B.; Mishra, R. Anti-Nociceptive and Anti-Inflammatory Activity of Annona squamosa L. Leaf Extract in Mice and Rats. Res. J. Pharmacogn. Phytochem. 2012, 4, 182–185. [Google Scholar]
- Umamaheshwari, A.; Arunkumar, A.; Vedhahari, B.N.; Suryaprabha, D.; Punitha, S. Phytochemical Evaluation and Antinflammatory Activity of Seed Extract of Annona squamosa. Int. J. Chem. Sci. 2008, 6, 1594–1599. [Google Scholar]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and Anti-Inflammatory Activity of Caryophyllene Oxide from Annona squamosa L. Bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef]
- Ning, N.; He, K.; Wang, Y.; Zou, Z.; Wu, H.; Li, X.; Ye, X. Hypolipidemic Effect and Mechanism of Palmatine from Coptis Chinensis in Hamsters Fed High-Fat Diet. Phytother. Res. 2015, 29, 668–673. [Google Scholar] [CrossRef]
- Hambright, H.G.; Batth, I.S.; Xie, J.; Ghosh, R.; Kumar, A.P. Palmatine Inhibits Growth and Invasion in Prostate Cancer Cell: Potential Role for RpS6/NFκB/FLIP. Mol. Carcinog. 2015, 54, 1227–1234. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Zhang, S.-L.; Zhu, X.-M.; Liu, Y.-Q.; Song, Z.-J.; Du, W.-J.; Ji, J.; Cui, C.-L.; He, X.; et al. Gastroprotective Effect of Palmatine against Acetic Acid-Induced Gastric Ulcers in Rats. J. Nat. Med. 2017, 71, 257–264. [Google Scholar] [CrossRef]
- Haj, E.; Losev, Y.; Guru KrishnaKumar, V.; Pichinuk, E.; Engel, H.; Raveh, A.; Gazit, E.; Segal, D. Integrating in Vitro and in Silico Approaches to Evaluate the “Dual Functionality” of Palmatine Chloride in Inhibiting and Disassembling Tau-Derived VQIVYK Peptide Fibrils. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1565–1575. [Google Scholar] [CrossRef]
- Shen, Y.; Guan, S.; Ge, H.; Xiong, W.; He, L.; Liu, L.; Yin, C.; Liu, H.; Li, G.; Xu, C.; et al. Effects of Palmatine on Rats with Comorbidity of Diabetic Neuropathic Pain and Depression. Brain Res. Bull. 2018, 139, 56–66. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, X.; Xiong, Y.; Jiang, L.; Li, W.; Li, J.; Wu, L. Chondroprotective Effects of Palmatine on Osteoarthritis in Vivo and in Vitro: A Possible Mechanism of Inhibiting the Wnt/β-Catenin and Hedgehog Signaling Pathways. Int. Immunopharmacol. 2016, 34, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Wang, D.; Dong, S.; Cheng, Z.; Na, L.; Sang, M.; Yang, H.; Yang, Z.; Zhang, S.; Yan, Z. Palmatine Inhibits TRIF-Dependent NF-ΚB Pathway against Inflammation Induced by LPS in Goat Endometrial Epithelial Cells. Int. Immunopharmacol. 2017, 45, 194–200. [Google Scholar] [CrossRef]
- Tarabasz, D.; Kukula-Koch, W. Palmatine: A Review of Pharmacological Properties and Pharmacokinetics. Phytother. Res. 2020, 34, 33–50. [Google Scholar] [CrossRef]
- Long, J.; Song, J.; Zhong, L.; Liao, Y.; Liu, L.; Li, X. Palmatine: A Review of Its Pharmacology, Toxicity and Pharmacokinetics. Biochimie 2019, 162, 176–184. [Google Scholar] [CrossRef]
- Zuo, H.; Zhou, W.; Chen, Y.; Zhou, B.; Wang, Z.; Huang, S.; Alinejad, T.; Chen, C. Palmatine Alleviates Particulate Matter-Induced Acute Lung Injury by Inhibiting Pyroptosis via Activating the Nrf2-Related Pathway. Inflammation 2024. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, L.; Guan, S.; Zheng, X.; Ge, H.; Yin, C.; Shen, Y.; Tan, M.; Wang, C.; Gao, Y.; et al. Palmatine Alleviates Hyperalgesia by Inhibiting the Expression of Calcitonin Gene-Related Peptide in the Trigeminal Ganglion of Rats with Chronic Constriction Injury of the Infraorbital Nerve. Br. J. Oral Maxillofac. Surg. 2020, 58, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.V.; Pinheiro, M.L.B.; Barison, A.; Campos, F.R.; Salvador, M.J.; Maia, B.H.L.N.S.; Cabral, E.C.; Eberlin, M.N. Alkaloids from the Bark of Guatteria hispida and Their Evaluation as Antioxidant and Antimicrobial Agents. J. Nat. Prod. 2010, 73, 1180–1183. [Google Scholar] [CrossRef]
- Hemalatha, K.; Satyanarayana, D. Anti-inflammatory activity of Annona squamosa Linn. Biomed. Pharmacol. J. 2009, 2, 17–20. [Google Scholar]
- Singh, T.P.; Singh, R.K.; Malik, P. Analgesic and Anti-Inflammatory Activities of Annona squamosa Linn Bark. J. Sci. Innov. Res. 2014, 3, 60–64. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Li, F.-Q.; Zhu, X.-L.; Chen, J.-W.; Li, X. Chemical Composition and Anti-Hepatoma Effect of Annona squamosa L. Pericarp Oil. Nat. Prod. Res. 2020, 36, 401–404. [Google Scholar] [CrossRef]
- Shehata, M.G.; Abu-Serie, M.M.; Abd El-Aziz, N.M.; El-Sohaimy, S.A. Nutritional, Phytochemical, and in Vitro Anticancer Potential of Sugar Apple (Annona squamosa) Fruits. Sci. Rep. 2021, 11, 6224. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.D.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, Anti-Inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.; Radai, J.A.S.; do Nascimento, K.F.; Formagio, A.S.N.; de Matos Balsalobre, N.; Ziff, E.B.; Castelon Konkiewitz, E.; Kassuya, C.A.L. Contribution of Spathulenol to the Anti-Nociceptive Effects of Psidium Guineense. Nutr. Neurosci. 2022, 25, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Al-Nemari, R.; Al-Senaidy, A.; Semlali, A.; Ismael, M.; Badjah-Hadj-Ahmed, A.Y.; Ben Bacha, A. GC-MS Profiling and Assessment of Antioxidant, Antibacterial, and Anticancer Properties of Extracts of Annona Squamosa L. Leaves. BMC Complement. Med. Ther. 2020, 20, 296. [Google Scholar] [CrossRef]
- Paula-Freire, L.I.G.; Andersen, M.L.; Gama, V.S.; Molska, G.R.; Carlini, E.L.A. The Oral Administration of Trans-Caryophyllene Attenuates Acute and Chronic Pain in Mice. Phytomedicine 2014, 21, 356–362. [Google Scholar] [CrossRef]
- Aguilar-Ávila, D.S.; Flores-Soto, M.E.; Tapia-Vázquez, C.; Pastor-Zarandona, O.A.; López-Roa, R.I.; Viveros-Paredes, J.M. β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice. J. Med. Food 2019, 22, 460–468. [Google Scholar] [CrossRef]
- Oliveira-Tintino, C.D.d.M.; Pessoa, R.T.; Fernandes, M.N.M.; Alcântara, I.S.; da Silva, B.A.F.; de Oliveira, M.R.C.; Martins, A.O.B.P.B.; da Silva, M.d.S.; Tintino, S.R.; Rodrigues, F.F.G.; et al. Anti-Inflammatory and Anti-Edematogenic Action of the Croton campestris A. St.-Hil (Euphorbiaceae) Essential Oil and the Compound β-Caryophyllene in in Vivo Models. Phytomedicine 2018, 41, 82–95. [Google Scholar] [CrossRef]
- Katsuyama, S.; Mizoguchi, H.; Kuwahata, H.; Komatsu, T.; Nagaoka, K.; Nakamura, H.; Bagetta, G.; Sakurada, T.; Sakurada, S. Involvement of Peripheral Cannabinoid and Opioid Receptors in β-Caryophyllene-Induced Antinociception. Eur. J. Pain 2013, 17, 664–675. [Google Scholar] [CrossRef]
- Garg, S.N.; Gupta, D. Composition of the Leaf Oil of Annona squamosa L. from the North Indian Plains. J. Essent. Oil Res. 2005, 17, 257–258. [Google Scholar] [CrossRef]
- Santos, C.C.d.M.P.; Salvadori, M.S.; Mota, V.G.; Costa, L.M.; de Almeida, A.A.C.; de Oliveira, G.A.L.; Costa, J.P.; de Sousa, D.P.; de Freitas, R.M.; de Almeida, R.N. Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models. Neurosci. J. 2013, 2013, 949452. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Zoheir, K.M.A.; Abdel-Hamied, H.E.; Alrashidi, I.; Attia, S.M.; Bakheet, S.A.; Ashour, A.E.; Abd-Allah, A.R.A. Role of a Histamine 4 Receptor as an Anti-Inflammatory Target in Carrageenan-Induced Pleurisy in Mice. Immunology 2014, 142, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Carlos, F.P.; de Paula Alves da Silva, M.; de Lemos Vasconcelos Silva Melo, E.; Costa, M.S.; Zamuner, S.R. Protective Effect of Low-Level Laser Therapy (LLLT) on Acute Zymosan-Induced Arthritis. Lasers Med. Sci. 2014, 29, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Guazelli, C.F.S.; Staurengo-Ferrari, L.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Ruiz-Miyazawa, K.W.; Vicentini, F.T.M.C.; Vignoli, J.A.; Camilios-Neto, D.; Georgetti, S.R.; Baracat, M.M.; et al. Quercetin Attenuates Zymosan-Induced Arthritis in Mice. Biomed. Pharmacother. 2018, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Hunskaar, S.; Hole, K. The Formalin Test in Mice: Dissociation between Inflammatory and Non-Inflammatory Pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef]
- Ali, H.; Dixit, S. Extraction Optimization of Tinospora cordifolia and Assessment of the Anticancer Activity of Its Alkaloid Palmatine. ScientificWorldJournal 2013, 2013, 376216. [Google Scholar] [CrossRef]
- Chaves, S.K.M.; Afzal, M.I.; Islam, M.T.; Hameed, A.; Da Mata, A.M.O.F.; Da Silva Araújo, L.; Ali, S.W.; Rolim, H.M.L.; De Medeiros, M.d.G.F.; Costa, E.V.; et al. Palmatine Antioxidant and Anti-Acetylcholinesterase Activities: A Pre-Clinical Assessment. Cell Mol. Biol. 2020, 66, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Okechukwu, P.N.; Ekeuku, S.O.; Chan, H.K.; Eluri, K.; Froemming, G.R.A. Palmatine Inhibits Up-Regulation of GRP78 and CALR Protein in an STZ-Induced Diabetic Rat Model. Curr. Pharm. Biotechnol. 2021, 22, 288–298. [Google Scholar] [CrossRef]
- Tang, C.; Hong, J.; Hu, C.; Huang, C.; Gao, J.; Huang, J.; Wang, D.; Geng, Q.; Dong, Y. Palmatine Protects against Cerebral Ischemia/Reperfusion Injury by Activation of the AMPK/Nrf2 Pathway. Oxid. Med. Cell Longev. 2021, 2021, 6660193. [Google Scholar] [CrossRef]
- Kim, J.H.; Ryu, Y.B.; Lee, W.S.; Kim, Y.H. Neuraminidase Inhibitory Activities of Quaternary Isoquinoline Alkaloids from Corydalis turtschaninovii Rhizome. Bioorganic Med. Chem. 2014, 22, 6047–6052. [Google Scholar] [CrossRef]
- Zhou, J.-T.; Li, C.-L.; Tan, L.-H.; Xu, Y.-F.; Liu, Y.-H.; Mo, Z.-Z.; Dou, Y.-X.; Su, R.; Su, Z.-R.; Huang, P.; et al. Inhibition of Helicobacter Pylori and Its Associated Urease by Palmatine: Investigation on the Potential Mechanism. PLoS ONE 2017, 12, e0168944. [Google Scholar] [CrossRef]
- Ho, Y.-J.; Lu, J.-W.; Huang, Y.-L.; Lai, Z.-Z. Palmatine Inhibits Zika Virus Infection by Disrupting Virus Binding, Entry, and Stability. Biochem. Biophys. Res. Commun. 2019, 518, 732–738. [Google Scholar] [CrossRef]
- He, K.; Kou, S.; Zou, Z.; Hu, Y.; Feng, M.; Han, B.; Li, X.; Ye, X. Hypolipidemic Effects of Alkaloids from Rhizoma coptidis in Diet-Induced Hyperlipidemic Hamsters. Planta Med. 2016, 82, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wang, L.; Zhang, Y. Immunological Activities of Components from Leaves of Liriodendron chinensis. Chin. Herbal. Med. 2015, 7, 279–282. [Google Scholar] [CrossRef]
- Anita, T.Z.; Mahdi, C.; Beltran, M.A.G.; Aulanni’am, A. Identification and Molecular Docking Analysis Alkaloids Polyalthia longifolia Leaves from Indonesia and the Philippines as Anti-Inflammatory. J. Phys. Conf. Ser. 2019, 1374, 012049. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Zhou, L.-J.; Hu, N.-W.; Xu, J.-T.; Wu, C.-Y.; Zhang, T.; Li, Y.-Y.; Liu, X.-G. Tumor Necrosis Factor-Alpha Induces Long-Term Potentiation of C-Fiber Evoked Field Potentials in Spinal Dorsal Horn in Rats with Nerve Injury: The Role of NF-Kappa B, JNK and P38 MAPK. Neuropharmacology 2007, 52, 708–715. [Google Scholar] [CrossRef]
- Schäfers, M.; Svensson, C.I.; Sommer, C.; Sorkin, L.S. Tumor Necrosis Factor-α Induces Mechanical Allodynia after Spinal Nerve Ligation by Activation of P38 MAPK in Primary Sensory Neurons. J. Neurosci. 2003, 23, 2517–2521. [Google Scholar] [CrossRef]
- Park, C.-K.; Lü, N.; Xu, Z.-Z.; Liu, T.; Serhan, C.N.; Ji, R.-R. Resolving TRPV1- and TNF-α-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. J. Neurosci. 2011, 31, 15072–15085. [Google Scholar] [CrossRef]
- Xu, J.-T.; Xin, W.-J.; Zang, Y.; Wu, C.-Y.; Liu, X.-G. The Role of Tumor Necrosis Factor-Alpha in the Neuropathic Pain Induced by Lumbar 5 Ventral Root Transection in Rat. Pain 2006, 123, 306–321. [Google Scholar] [CrossRef]
- Ali, D.; Ali, H. Assessment of DNA Damage and Cytotoxicity of Palmatine on Human Skin Epithelial Carcinoma Cells. Toxicol. Environ. Chem. 2014, 96, 941–950. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Wang, S.; Zhang, Q.; Wu, H.; Wei, J.; Yang, W.; Li, S.; Yang, H. Cardiotoxicity Evaluation of Nine Alkaloids from Rhizoma Coptis. Hum. Exp. Toxicol. 2018, 37, 185–195. [Google Scholar] [CrossRef]
- Vrba, J.; Havlikova, M.; Gerhardova, D.; Ulrichova, J. Palmatine Activates AhR and Upregulates CYP1A Activity in HepG2 Cells but Not in Human Hepatocytes. Toxicol. Vitr. 2014, 28, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Burade, K.; Agrawal, R. Evaluation of In Vivo and In Vitro Antiarthritic Potential of Annona Squamosa Leaves. J. Curr. Pharma Res. 2021, 13, 27–44. [Google Scholar]
- Vinegar, R.; Truax, J.F.; Selph, J.L. Some Quantitative Temporal Characteristics of Carrageenin-Induced Pleurisy in the Rat. Proc. Soc. Exp. Biol. Med. 1973, 143, 711–714. [Google Scholar] [CrossRef]
- Penido, C.; Conte, F.P.; Chagas, M.S.S.; Rodrigues, C.a.B.; Pereira, J.F.G.; Henriques, M.G.M.O. Antiinflammatory Effects of Natural Tetranortriterpenoids Isolated from Carapa guianensis Aublet on Zymosan-Induced Arthritis in Mice. Inflamm. Res. 2006, 55, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Leitão, M.M.; Radai, J.A.S.; Ferrari, I.C.; Negrão, F.J.; Silva-Filho, S.E.; Oliveira, R.J.; Mota, J.d.S.; Kassuya, C.A.L. Effects of an Ethanolic Extract and Fractions from Piper glabratum (Piperaceae) Leaves on Pain and Inflammation. Regul. Toxicol. Pharmacol. 2020, 117, 104762. [Google Scholar] [CrossRef]
- Aquino, D.F.d.S.; Piccinelli, A.C.; Soares, F.L.P.; Arena, A.C.; Salvador, M.J.; Kassuya, C.A.L. Anti-Hyperalgesic and Anti-Inflammatory Activity of Alternanthera maritima Extract and 2″-O-α-L-Rhamnopyranosylvitexin in Mice. Inflammation 2015, 38, 2057–2066. [Google Scholar] [CrossRef]
- Silva-Filho, S.E.; Wiirzler, L.A.M.; Cavalcante, H.A.O.; Uchida, N.S.; de Souza Silva-Comar, F.M.; Cardia, G.F.E.; da Silva, E.L.; Aguiar, R.P.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of Patchouli (Pogostemon cablin) Essential Oil on in Vitro and in Vivo Leukocytes Behavior in Acute Inflammatory Response. Biomed. Pharmacother. 2016, 84, 1697–1704. [Google Scholar] [CrossRef]
Analyzed Compounds a | Masses Calculated | Positive Ion Mode [M + H]+ (m/z) | Retention Time (min) | EMAS |
---|---|---|---|---|
Anonaine | 265 | 266 | 2.86 | + |
Asimilobine | 267 | 268 | 2.19 | - |
Liriodenine | 275 | 276 | 3.00 | + |
Lysicamine | 291 | 292 | 3.63 | - |
Isomoschatoline | 307 | 308 | 4.01 | - |
O-methyl-isomoschatoline | 321 | 322 | 4.45 | - |
Coreximine | 327 | 328 | 1.36 | - |
Isocoreximine | 327 | 328 | 1.36 | - |
Reticuline | 329 | 330 | 1.61 | - |
9-Methoxy-isomoscatoline | 337 | 338 | 4.18 | - |
Palmatine | 352 | 353 | 2.44 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, C.N.A.; Santos Procopio, E.d.; Balsalobre, N.d.M.; Machado, L.L.; Silva-Filho, S.E.; Pedroso, T.F.; Lourenço, C.C.d.; Oliveira, R.J.; Arena, A.C.; Salvador, M.J.; et al. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals 2024, 17, 1331. https://doi.org/10.3390/ph17101331
Ito CNA, Santos Procopio Ed, Balsalobre NdM, Machado LL, Silva-Filho SE, Pedroso TF, Lourenço CCd, Oliveira RJ, Arena AC, Salvador MJ, et al. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals. 2024; 17(10):1331. https://doi.org/10.3390/ph17101331
Chicago/Turabian StyleIto, Caren Naomi Aguero, Elisangela dos Santos Procopio, Natália de Matos Balsalobre, Lucas Luiz Machado, Saulo Euclides Silva-Filho, Taíse Fonseca Pedroso, Caroline Caramano de Lourenço, Rodrigo Juliano Oliveira, Arielle Cristina Arena, Marcos José Salvador, and et al. 2024. "Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves" Pharmaceuticals 17, no. 10: 1331. https://doi.org/10.3390/ph17101331
APA StyleIto, C. N. A., Santos Procopio, E. d., Balsalobre, N. d. M., Machado, L. L., Silva-Filho, S. E., Pedroso, T. F., Lourenço, C. C. d., Oliveira, R. J., Arena, A. C., Salvador, M. J., & Kassuya, C. A. L. (2024). Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals, 17(10), 1331. https://doi.org/10.3390/ph17101331