Assessing the Risk of QT Prolongation in a Psychiatric Inpatient Cohort: A Retrospective Cross-Sectional Study
Abstract
:1. Introduction
- -
- Demographic factors: Age >65 years, female sex, smoking, increased BMI.
- -
- Cardiovascular comorbidity and thyroid disease.
- -
- -
- -
2. Results
3. Discussion
4. Ethics Statement
5. Methods
- ≥5 fixed scheduled drugs;
- ≥2 fixed scheduled antipsychoticsand/or;
- Fixed scheduled antidepressants;
- Fixed scheduled treatment with an antipsychotic and a benzodiazepine without an end-date;
- ≥1 drug with known high risk of arrhythmias (tricyclic antidepressants, lithium, valproate, and clozapine).
6. Statistical Analyses
- -
- Age >65 years;
- -
- Being female;
- -
- Smoking;
- -
- Increased BMI (>25 cm/kg2);
- -
- Having a cardiovascular comorbidity;
- -
- Hypokalemia (<3.5 mmol/L);
- -
- Hypocalcemia (<2.20 mmol/L);
- -
- Hyponatremia (<135 mmol/L);
- -
- High alkaline phosphatases (>1.75 µkat/L);
- -
- Hypertension (systolic blood pressure >135 mmHg);
- -
- The use of QT-prolonging drugs according to CredibleMeds© (not dichotomized).
7. Limitations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stötzner, P.; Ferrebus Abate, R.E.; Henssler, J.; Seethaler, M.; Just, S.A.; Brandl, E.J. Structured Interventions to Optimize Polypharmacy in Psychiatric Treatment and Nursing Homes: A Systematic Review. J. Clin. Psychopharmacol. 2022, 42, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Bülow, C.; Clausen, S.S.; Lundh, A.; Christensen, M. Medication review in hospitalised patients to reduce morbidity and mortality. Cochrane Database Syst. Rev. 2023, 2023. [Google Scholar] [CrossRef]
- Ravn-Nielsen, L.V.; Duckert, M.L.; Lund, M.L.; Henriksen, J.P.; Nielsen, M.L.; Eriksen, C.S.; Buck, T.C.; Pottegård, A.; Hansen, M.R.; Hallas, J. Effect of an In-Hospital Multifaceted Clinical Pharmacist Intervention on the Risk of Readmission: A Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 375. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.; Pauly, A.; Mayr, A.; Grömer, T.; Lenz, B.; Kornhuber, J.; Friedland, K. Pharmacist-Led Medication Reviews to Identify and Collaboratively Resolve Drug-Related Problems in Psychiatry—A Controlled, Clinical Trial. PLoS ONE 2015, 10, e0142011. [Google Scholar] [CrossRef]
- Sheehan, R.; Strydom, A.; Brown, E.; Marston, L.; Hassiotis, A. Association of Focused Medication Review with Optimization of Psychotropic Drug Prescribing: A Systematic Review and Meta-analysis. JAMA Netw. Open 2018, 1, e183750. [Google Scholar] [CrossRef]
- Beach, S.R.; Celano, C.M.; Noseworthy, P.A.; Januzzi, J.L.; Huffman, J.C. QTc Prolongation, Torsades de Pointes, and Psychotropic Medications. Psychosomatics 2013, 54, 1–13. [Google Scholar] [CrossRef]
- Beach, S.R.; Celano, C.M.; Sugrue, A.M.; Adams, C.; Ackerman, M.J.; Noseworthy, P.A.; Huffman, J.C. QT Prolongation, Torsades de Pointes, and Psychotropic Medications: A 5-Year Update. Psychosomatics 2018, 59, 105–122. [Google Scholar] [CrossRef]
- Heemskerk, C.P.M.; Pereboom, M.; Van Stralen, K.; Berger, F.A.; van den Bemt, P.M.; Kuijper, A.F.; van der Hoeven, R.T.; Mantel-Teeuwisse, A.K.; Becker, M.L. Risk factors for QTc interval prolongation. Eur. J. Clin. Pharmacol. 2018, 74, 183–191. [Google Scholar] [CrossRef]
- Volberg, W.A.; Koci, B.J.; Su, W.; Lin, J.; Zhou, J. Blockade of Human Cardiac Potassium Channel Human Ether-a-go-go- Related Gene (HERG) by Macrolide Antibiotics. J. Pharmacol. Exp. Ther. 2002, 302, 320–327. [Google Scholar] [CrossRef]
- Yap, Y.G. Drug induced QT prolongation and torsades de pointes. Heart 2003, 89, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, W. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: Clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Eur. Heart J. 2000, 21, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Vandael, E.; Vandenberk, B.; Vandenberghe, J.; Willems, R.; Foulon, V. Risk factors for QTc-prolongation: Systematic review of the evidence. Int. J. Clin. Pharm. 2017, 39, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Hollenberg, N.K.; Poole-Wilson, P.A.; Robertson, J.I.S. Diuretic-induced potassium and magnesium deficiency: Relation to drug-induced QT prolongation, cardiac arrhythmias and sudden death. J. Hypertens. 1992, 10, 301–316. [Google Scholar] [CrossRef]
- Home: Crediblemeds. Woosley RL, Heise CW , Gallo T, Woosley RD, Lambson J and Romero KA, www.CredibleMeds.org, QTdrugs List, AZCERT, Inc. 1457 E. Desert Garden Dr., Tucson, AZ 85718. Available online: https://crediblemeds.org/ (accessed on 19 June 2024).
- Ryan, K.; Benz, P.; Zosel, A.; Farkas, A.; Theobald, J. QTc Prolongation in Poison Center Exposures to CredibleMeds List of Substances with “Known Risk of Torsades de Pointes”. Cardiovasc. Toxicol. 2022, 22, 866–877. [Google Scholar] [CrossRef]
- Ross, S.; Peselow, E. Co-Occurring Psychotic and Addictive Disorders: Neurobiology and Diagnosis. Clin. Neuropharmacol. 2012, 35, 235–243. [Google Scholar] [CrossRef]
- Ehret, G.B.; Voide, C.; Gex-Fabry, M.; Chabert, J.; Shah, D.; Broers, B.; Piguet, V.; Musset, T.; Gaspoz, J.M.; Perrier, A.; et al. Drug-Induced Long QT Syndrome in Injection Drug Users Receiving Methadone: High Frequency in Hospitalized Patients and Risk Factors. Arch. Intern. Med. 2006, 166, 1280. [Google Scholar] [CrossRef]
- Taylor, D. Cocaine induced prolongation of the QT interval. Emerg. Med. J. 2004, 21, 252–253. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, X.; Liu, Y.; Sun, G.; Sun, Y.; Guan, Y.; Zhu, G.; Abraham, M.R. Relation of Heavy Alcohol Consumption to QTc Interval Prolongation. Am. J. Cardiol. 2016, 118, 1201–1206. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F. Systemic inflammation and arrhythmic risk: Lessons from rheumatoid arthritis. Eur. Heart J. 2017, 38, 1717–1727. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Laghi-Pasini, F.; Boutjdir, M.; Capecchi, P.L. Cardioimmunology of arrhythmias: The role of autoimmune and inflammatory cardiac channelopathies. Nat. Rev. Immunol. 2019, 19, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Åström-Lilja, C.; Odeberg, J.M.; Ekman, E.; Hägg, S. Drug-induced torsades de pointes: A review of the Swedish pharmacovigilance database. Pharmacoepidemiol. Drug 2008, 17, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Fanoe, S.; Kristensen, D.; Fink-Jensen, A.; Jensen, H.K.; Toft, E.; Nielsen, J.; Videbech, P.; Pehrson, S.; Bundgaard, H. Risk of arrhythmia induced by psychotropic medications: A proposal for clinical management. Eur. Heart J. 2014, 35, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Drew, B.J.; Ackerman, M.J.; Funk, M.; Gibler, W.B.; Kligfield, P.; Menon, V.; Philippides, G.J.; Roden, D.M.; Zareba, W. Prevention of Torsade de Pointes in Hospital Settings. J. Am. Coll. Cardiol. 2010, 55, 934–947. [Google Scholar] [CrossRef]
- Glassman, A.H.; Bigger, J.T. Antipsychotic Drugs: Prolonged QTc Interval, Torsade de Pointes, and Sudden Death. Am. J. Psychiatry 2001, 158, 1774–1782. [Google Scholar] [CrossRef]
- Ray, W.A.; Chung, C.P.; Murray, K.T.; Hall, K.; Stein, C.M. Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death. N. Engl. J. Med. 2009, 360, 225–235. [Google Scholar] [CrossRef]
- Straus, S.M.; Kors, J.A.; De Bruin, M.L.; van der Hooft, C.S.; Hofman, A.; Heeringa, J.; Deckers, J.W.; Kingma, J.H.; Sturkenboom, M.C.; Stricker, B.H.; et al. Prolonged QTc Interval and Risk of Sudden Cardiac Death in a Population of Older Adults. J. Am. Coll. Cardiol. 2006, 47, 362–367. [Google Scholar] [CrossRef]
- Beach, S.R.; Kostis, W.J.; Celano, C.M.; Januzzi, J.L.; Ruskin, J.N.; Noseworthy, P.A.; Huffman, J.C. Meta-Analysis of Selective Serotonin Reuptake Inhibitor–Associated QTc Prolongation. J. Clin. Psychiatry 2014, 75, e441–e449. [Google Scholar] [CrossRef]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Lancet 2019, 394, 939–951. [Google Scholar] [CrossRef]
- Van Noord, C.; Straus, S.M.J.M.; Sturkenboom, M.C.J.M.; Hofman, A.; Aarnoudse, A.J.; Bagnardi, V.; Kors, J.A.; Newton-Cheh, C.; Witteman, J.C.; Stricker, B.H. Psychotropic Drugs Associated with Corrected QT Interval Prolongation. J. Clin. Psychopharmacol. 2009, 29, 9–15. [Google Scholar] [CrossRef]
- Abbas, R.; Riley, S.; LaBadie, R.R.; Bachinsky, M.; Chappell, P.B.; Crownover, P.H.; Damle, B. A Thorough QT Study to Evaluate the Effects of a Supratherapeutic Dose of Sertraline on Cardiac Repolarization in Healthy Subjects. Clin. Pharm. Drug Dev. 2020, 9, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Research C for DE and. FDA Drug Safety Communication: Revised Recommendations for Celexa (Citalopram Hydrobromide) Related to a Potential Risk of Abnormal Heart Rhythms with High Doses. FDA. 2019. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-revised-recommendations-celexa-citalopram-hydrobromide-related (accessed on 19 June 2024).
- Weeke, P.; Jensen, A.; Folke, F.; Gislason, G.H.; Olesen, J.B.; Andersson, C.; Fosbøl, E.L.; Larsen, J.K.; Lippert, F.K.; Nielsen, S.L.; et al. Antidepressant Use and Risk of Out-of-Hospital Cardiac Arrest: A Nationwide Case–Time–Control Study. Clin. Pharmacol. Ther. 2012, 92, 72–79. [Google Scholar] [CrossRef]
- Danielsson, B.; Collin, J.; Nyman, A.; Bergendal, A.; Borg, N.; Bergfeldt, L.; Fastbom, J. Drug use and torsades de pointes cardiac arrhythmias in Sweden: A nationwide register-based cohort study. BMJ Open 2020, 10, e034560. [Google Scholar] [CrossRef]
- Isbister, G.K.; Bowe, S.J.; Dawson, A.; Whyte, I.M. Relative Toxicity of Selective Serotonin Reuptake Inhibitors (SSRIs) in Overdose. J. Toxicol. Clin. Toxicol. 2004, 42, 277–285. [Google Scholar] [CrossRef]
- Leonard, C.E.; Bilker, W.B.; Newcomb, C.; Kimmel, S.E.; Hennessy, S. Antidepressants and the risk of sudden cardiac death and ventricular arrhythmia. Pharmacoepidemiol. Drug 2011, 20, 903–913. [Google Scholar] [CrossRef]
- Jolly, K.; Gammage, M.D.; Cheng, K.K.; Bradburn, P.; Banting, M.V.; Langman, M.J.S. Sudden death in patients receiving drugs tending to prolong the QT interval. Brit. J. Clin. Pharmacol. 2009, 68, 743–751. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, M. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly The Rotterdam Study. Eur. Heart J. 1999, 20, 278–284. [Google Scholar] [CrossRef]
- Rabkin, S.W.; Cheng, X.B.J.; Thompson, D.J. Detailed analysis of the impact of age on the QT interval. J. Geriatr. Cardiol. 2016, 13, 740–748. [Google Scholar] [CrossRef]
- Gregory, C.; McKenna, P. Pharmacological Management of Schizophrenia in Older Patients. Drugs Aging 1994, 5, 254–262. [Google Scholar] [CrossRef]
- Salvati, B.; Miola, A.; Toffanin, T.; Pigato, G.; Pavan, C.; Favaro, A.; Sambataro, F.; Solmi, M. Prevalence and Risk Factors for QTc Prolongation in Acute Psychiatric Hospitalization. Prim. Care Companion CNS Disord. 2022, 24, 39696. [Google Scholar] [CrossRef]
- Khatib, R.; Sabir, F.R.N.; Omari, C.; Pepper, C.; Tayebjee, M.H. Managing drug-induced QT prolongation in clinical practice. Postgrad. Med. J. 2021, 97, 452–458. [Google Scholar] [CrossRef] [PubMed]
- pro.medicin.dk—Information om Medicin. Available online: https://pro.medicin.dk/ (accessed on 19 June 2024).
- ATCDDD—ATC/DDD Index. Available online: https://atcddd.fhi.no/atc_ddd_index/ (accessed on 19 June 2024).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 1 October 2024).
Characteristic | N 1 | All Patients | QT ÷ Risk (N = 316) | QT + Risk (N = 483) | p-Value 2 |
---|---|---|---|---|---|
Age, Median (IQR) | 774 | 49 (34–64) | 55 (40–72) | 45 (32–58) | <0.001 |
Unknown | 25 | 8 | 17 | ||
Gender, n (%) | 686 | 0.34 | |||
Female | 343 (43) | 136 (43) | 207 (43) | ||
Male | 343 (43) | 142 (45) | 201 (42) | ||
Unknown | 113 (14) | 38 (12) | 75 (16) | ||
Height (centimeters), Median (IQR) | 564 | 171 (165–180) | 171 (164–180) | 172 (165–180) | 0.20 |
Unknown | 235 | 95 | 140 | ||
Weight (kilograms), Median (IQR) | 382 | 80 (66–94) | 78 (62–92) | 80 (66–96) | 0.13 |
Unknown | 417 | 157 | 260 | ||
BMI (cm/kg2), Median (IQR) | 382 | 27 (23–31) | 26 (23–30) | 27 (23–32) | 0.27 |
Unknown | 417 | 157 | 260 | ||
Smoker, n (%) | 574 | 0.087 | |||
No | 212 (27) | 92 (29) | 120 (25) | ||
Yes | 362 (45) | 128 (41) | 234 (48) | ||
Unknown | 225 (28) | 96 (30) | 129 (27) | ||
Drug or substance abuse, n (%) | 579 | 0.62 | |||
No | 406 (51) | 163 (52) | 243 (50) | ||
Yes | 173 (22) | 63 (20) | 110 (23) | ||
Unknown | 220 (28) | 90 (28) | 130 (27) | ||
Alive at present day, n (%) | 689 | <0.001 | |||
No | 143 (21) | 77 (28) | 66 (16) | ||
Yes | 546 (79) | 202 (72) | 344 (84) | ||
Unknown | 110 | 37 | 73 | ||
Diastolic blood pressure (mmHg), Median (IQR) | 348 | 84 (76–93) | 85 (76–94) | 83 (75–91) | 0.12 |
Unknown | 451 | 172 | 279 | ||
Systolic blood pressure (mmHg), Median (IQR) | 348 | 136 (122–148) | 139 (125–154) | 133 (121–145) | 0.009 |
Unknown | 451 | 172 | 279 |
Characteristic | All Patients, N = 799 | QT ÷ Risk (N = 316) | QT + Risk (N = 483) | p-Value 1 |
---|---|---|---|---|
Affective disorder, n (%) | 180 (23) | 85 (27) | 95 (20) | 0.017 |
Cancer, n (%) | 17 (2.1) | 13 (4.1) | 4 (0.8) | 0.002 |
Cardiovascular comorbidity, n (%) | 125 (16) | 63 (20) | 62 (13) | 0.007 |
Diabetes, n (%) | 48 (6.0) | 26 (8.2) | 22 (4.6) | 0.033 |
Nephrological disease, n (%) | 9 (1.1) | 5 (1.6) | 4 (0.8) | 0.33 |
Pacemaker, n (%) | 10 (1.3) | 6 (1.9) | 4 (0.8) | 0.21 |
Thyroid disease, n (%) | 29 (3.6) | 15 (4.7) | 14 (2.9) | 0.17 |
Psychotic disorder, n (%) | 188 (24) | 53 (17) | 135 (28) | <0.001 |
2 ADHD, n (%) | 29 (3.6) | 10 (3.2) | 19 (3.9) | 0.57 |
Anxiety, n (%) | 56 (7.0) | 35 (11) | 21 (4.3) | <0.001 |
Total number of diseases, Median (IQR) | 2 (1–3) | 2 (1–4) | 2 (2–3) | 0.43 |
Unknown | 320 | 121 | 199 |
Characteristic | N | All Patients, N = 799 | QT ÷ Risk, N = 316 | QT + Risk, N = 483 |
---|---|---|---|---|
Number of prescription drugs, Median (IQR) | 799 | 9 (6–12) | 8 (5–11) | 9 (6–12) |
Cummulative DDDs of QT-prolonging drugs according to CredibleMeds© (2024), Median (IQR) | 739 | 3.00 (1.88–4.76) | 2.19 (1.25–3.68) | 3.75 (2.28–5.33) |
Patients with no data | 60 | 26 | 34 | |
Number of psychotropic drugs associated with QT prolongation according to CredibleMeds© (2024), n (%) | 765 | |||
1 | 137 (18) | 112 (39) | 25 (5.2) | |
2 | 210 (27) | 100 (35) | 110 (23) | |
3 | 211 (28) | 51 (18) | 160 (33) | |
4 | 122 (16) | 14 (4.9) | 108 (23) | |
5 | 54 (7.1) | 5 (1.8) | 49 (10) | |
6 | 16 (2.1) | 0 (0) | 16 (3.3) | |
7 | 11 (1.4) | 2 (0.7) | 9 (1.9) | |
8 | 3 (0.4) | 1 (0.4) | 2 (0.4) | |
11 | 1 (0.1) | 0 (0) | 1 (0.2) | |
Patients with no data | 34 | 32 | 2 | |
Number of somatic drugs associated with QT prolongation according to CredibleMeds© (2024), n (%) | 386 | |||
1 | 229 (59) | 99 (61) | 130 (58) | |
2 | 98 (25) | 37 (23) | 61 (27) | |
3 | 44 (11) | 21 (13) | 23 (10) | |
4 | 10 (2.6) | 5 (3.1) | 5 (2.2) | |
5 | 4 (1.0) | 0 (0) | 4 (1.8) | |
6 | 1 (0.3) | 0 (0) | 1 (0.4) | |
Patients with no data | 413 | 155 | 258 | |
Cummulative DDDs of antidepressants (N06A), Median (IQR) | 369 | 1.50 (1.00–2.25) | 1.50 (1.00–2.38) | 1.50 (1.00–2.25) |
Patients with no data | 430 | 181 | 249 | |
Cummulative DDDs of antiepileptics (N03A), Median (IQR) | 258 | 0.67 (0.38–1.00) | 0.67 (0.40–1.00) | 0.67 (0.33–1.00) |
Patients with no data | 541 | 230 | 311 | |
Cummulative DDDs of antipsychotics (N05A, including lithium), Median (IQR) | 665 | 1.78 (0.75–3.00) | 1.17 (0.50–2.25) | 2.02 (1.00–3.38) |
Patients with no data | 134 | 98 | 36 | |
Cummulative DDDs of anxiolytics incl. benzodiazepines (N05B), Median (IQR) | 139 | 1.5 (0.9–3.5) | 1.5 (0.9–5.5) | 1.3 (0.7–2.7) |
Patients with no data | 660 | 269 | 391 | |
Cummulative DDDs of hypnotics excl. benzodiazepines (N05C), Median (IQR) | 195 | 1.00 (1.00–2.00) | 1.00 (1.00–1.50) | 1.00 (1.00–2.00) |
Patients with no data | 604 | 229 | 375 | |
Number of Antidepressants (N06A), n (%) patients are exposed to | 369 | |||
0 | 430 (54) | 181 (57) | 249 (52) | |
1 | 256 (32) | 94 (30) | 162 (34) | |
2 | 97 (12) | 39 (12) | 58 (12) | |
3 | 14 (1.8) | 2 (0.6) | 12 (2.5) | |
4 | 2 (0.3) | 1 (0.3) | 1 (0.2) | |
Number of Antiepileptics (N03A), n (%), n (%) patients are exposed to | 258 | |||
0 | 540 (68) | 230 (73) | 310 (64) | |
1 | 184 (23) | 56 (18) | 128 (27) | |
2 | 55 (6.9) | 25 (7.9) | 30 (6.2) | |
3 | 19 (2.4) | 6 (1.9) | 13 (2.7) | |
4 | 1 (0.1) | 0 (0) | 1 (0.2) | |
Number of Antipsychotics (N05A, including lithium), n (%) patients are exposed to | 690 | |||
0 | 109 (14) | 92 (29) | 17 (3.5) | |
1 | 169 (21) | 106 (33) | 63 (13) | |
2 | 244 (31) | 78 (25) | 166 (34) | |
3 | 161 (20) | 32 (10) | 129 (27) | |
4 | 74 (9.3) | 4 (1.3) | 70 (15) | |
5 | 29 (3.6) | 2 (0.6) | 27 (5.6) | |
6 | 5 (0.6) | 0 (0) | 5 (1.0) | |
7 | 7 (0.9) | 3 (0.9) | 4 (0.8) | |
11 | 1 (0.1) | 0 (0) | 1 (0.2) | |
Number of Hypnotics excl. benzodiazepines (N05C), n (%) patients are exposed to | 196 | |||
0 | 604 (76) | 229 (72) | 375 (78) | |
1 | 173 (22) | 77 (24) | 96 (20) | |
2 | 19 (2.4) | 9 (2.8) | 10 (2.1) | |
3 | 2 (0.3) | 1 (0.3) | 1 (0.2) | |
4 | 1 (0.1) | 1 (0.3) | 0 (0) | |
Number of Anxiolytics incl. benzodiazepines (N05B), n (%) patients are exposed to | 144 | |||
0 | 655 (82) | 268 (85) | 387 (80) | |
1 | 121 (15) | 37 (12) | 84 (17) | |
2 | 17 (2.1) | 8 (2.5) | 9 (1.9) | |
3 | 6 (0.8) | 4 (1.3) | 2 (0.4) |
Characteristic | Patients Included: | All Patients (N = 799) | 95% CI 1 | QT ÷ Risk (N = 316) | 95% CI 1 | QT + Risk (N = 483) | 95% CI 1 | p-Value 2 |
---|---|---|---|---|---|---|---|---|
Mean Pulse (beats per minute) (SD 3, Minimum, Maximum) | 480 | 80 (15, 43, 127) | 79, 82 | 78 (14, 43, 127) | 76, 80 | 82 (15, 49, 126) | 80, 84 | 0.008 |
Unknown Mean Fridericia (milliseconds) (SD, Minimum, Maximum) | 480 | 319 419 (24, 363, 506) | 417, 421 | 127 418 (26, 363, 506) | 414, 421 | 192 419 (22, 366, 486) | 417, 422 | 0.4 |
Unknown Mean Bazetts (ms) (SD, Minimum, Maximum) | 480 | 319 438 (25, 354, 520) | 436, 440 | 127 435 (27, 354, 520) | 431, 438 | 192 440 (24, 382, 508) | 437, 443 | 0.031 |
Unknown Number of patients with QTc > 480 ms n/N(%) Unknown | 480 | 319 33/480 (6.9%) 319 | 4.8%, 9.6% | 127 14/190 (7.4%) 127 | 4.2%, 12% | 192 19/290 (6.6%) 192 | 4.1%, 10% | 0.7 |
Unadjusted | Adjusted | ||||
---|---|---|---|---|---|
Characteristic | All Patients = 480 1 | OR (95% CI) 2 | p-Value | OR (95% CI) 2 | p-Value |
Female | 480 | 1.43 (0.70 to 3.00) | 0.34 | 1.86 (0.38 to 11.3) | 0.46 |
Elderly (>65 years) | 480 | 3.27 (1.60 to 6.84) | 0.001 | 1.84 (0.33 to 13.0) | 0.50 |
Cummulative DDDs of QT prolonging agents according to CredibleMeds© 2024 | 437 | 1.06 (0.90 to 1.24) | 0.45 | 1.22 (0.83 to 1.79) | 0.30 |
Hyponatremia (<135 mmol/L) | 422 | 2.39 (0.77 to 6.25) | 0.10 | 4.36 (0.51 to 29.4) | 0.14 |
Hypocalcemia (<2.20 mmol/L) | 375 | 1.46 (0.41 to 4.06) | 0.50 | 1.92 (0.09 to 16.2) | 0.59 |
High alkaline phosphatase (>1.75 µkat/L) | 409 | 1.48 (0.53 to 3.54) | 0.42 | 1.90 (0.23 to 11.5) | 0.50 |
Hypertension (Systolic BP >135 mmHg) | 310 | 0.56 (0.22 to 1.34) | 0.20 | 0.68 (0.12 to 3.24) | 0.64 |
Smoker | 452 | ||||
No | Ref | Ref | |||
Yes | 0.50 (0.24 to 1.04) | 0.064 | 0.36 (0.04 to 2.55) | 0.32 | |
Cardiovascular comorbidity | 480 | 3.53 (1.71 to 7.29) | <0.001 | 1.83 (0.38 to 8.95) | 0.44 |
Hypokalemia (<3.5 mmol/L) | 419 | 0.48 (0.08 to 1.65) | 0.32 | 0.29 (0.01 to 2.29) | 0.32 |
Overweight (BMI > 25 cm/kg2) | 308 | 2.62 (0.93 to 9.32) | 0.092 | 6.73 (1.03 to 138) | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, J.F.M.M.; Jürgens-Lahnstein, J.H.; Iljazi, A.; Andersen, S.E.; Dahl, M.; Jürgens, G. Assessing the Risk of QT Prolongation in a Psychiatric Inpatient Cohort: A Retrospective Cross-Sectional Study. Pharmaceuticals 2024, 17, 1373. https://doi.org/10.3390/ph17101373
Christensen JFMM, Jürgens-Lahnstein JH, Iljazi A, Andersen SE, Dahl M, Jürgens G. Assessing the Risk of QT Prolongation in a Psychiatric Inpatient Cohort: A Retrospective Cross-Sectional Study. Pharmaceuticals. 2024; 17(10):1373. https://doi.org/10.3390/ph17101373
Chicago/Turabian StyleChristensen, Johan Frederik Mebus Meyer, Jonathan Hugo Jürgens-Lahnstein, Afrim Iljazi, Stig Ejdrup Andersen, Morten Dahl, and Gesche Jürgens. 2024. "Assessing the Risk of QT Prolongation in a Psychiatric Inpatient Cohort: A Retrospective Cross-Sectional Study" Pharmaceuticals 17, no. 10: 1373. https://doi.org/10.3390/ph17101373
APA StyleChristensen, J. F. M. M., Jürgens-Lahnstein, J. H., Iljazi, A., Andersen, S. E., Dahl, M., & Jürgens, G. (2024). Assessing the Risk of QT Prolongation in a Psychiatric Inpatient Cohort: A Retrospective Cross-Sectional Study. Pharmaceuticals, 17(10), 1373. https://doi.org/10.3390/ph17101373