Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast
Abstract
:1. Introduction
2. Results and Discussion
Effect of the Stabilizer Concentrations on the Stability of the Lifitegrast Eyedrop Formulation
3. Materials and Methods
3.1. Materials
3.2. Preparation of Lifitegrast Eyedrop Formulations
3.3. Evaluation of Formulation Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, E.; Jang, E.; Jung, W.; Kim, W.; Lee, J.; Choi, D.H.; Shin, B.S.; Shin, S.; Kim, T.H. Establishment of an LC-MS/MS Method for Quantification of Lifitegrast in Rabbit Plasma and Ocular Tissues and Its Application to Pharmacokinetic Study. J. Chromatogr. B 2023, 1229, 123892. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Gadek, T.R.; Bui, M.; Shen, W.; Burnier, J.; Barr, K.J.; Hanan, E.J.; Oslob, J.D.; Yu, C.H.; Zhu, J.; et al. Discovery and Development of Potent LFA-1/ICAM-1 Antagonist SAR 1118 as an Ophthalmic Solution for Treating Dry Eye. Med. Chem. Lett. 2012, 3, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and Limitations of Drug Delivery Systems Formulated as Eye Drops. J. Control. Release 2020, 321, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.L.; Pflugfelder, S.C.; Zhang, S.; Shojaei, A.; Haque, R. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul. Surf. 2016, 14, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Donnenfeld, E.D.; Perry, H.D.; Nattis, A.S.; Rosenberg, E.D. Lifitegrast for the Treatment of Dry Eye Disease in Adults. Expert Opin. Pharmacother. 2017, 18, 1517–1524. [Google Scholar] [CrossRef]
- Product Monograph Including Patient Medication Information. Xiidra® Lifitegrast Ophthalmic Solution 5% (w/v). Available online: https://www.xiidra.ca/wp-content/uploads/2024/01/xiidra_scrip_e.pdf (accessed on 13 September 2024).
- Lollett, I.V.; Galor, A. Dry Eye Syndrome: Developments and Lifitegrast in Perspective. Clin. Ophthalmol. 2018, 12, 125–139. [Google Scholar] [CrossRef]
- Sheppard, J.D.; Torkildsen, G.L.; Lonsdale, J.D. Lifitegrast Ophthalmic Solution 5.0% for Treatment of Dry Eye Disease: Results of the OPUS-1 Phase 3 Study. Ophthalmology 2014, 121, 475–483. [Google Scholar] [CrossRef]
- Kumar, A.; Chalannavar, R.K. Characterization of Degradation Products of Lifitegrast by Mass Spectrometry: Development and Validation of a Stability-Indicating Reversed Phase HPLC Method. Anal. Chem. Lett. 2022, 12, 730–744. [Google Scholar] [CrossRef]
- Ugur, M.; Atici, E.B.; Ozkan, S.A. A Specific Chiral HPLC Method for Lifitegrast and Determination of Enantiomeric Impurity in Drug Substance, Ophthalmic Product, and Stressed Samples. J. Pharm. Biomed. Anal. 2024, 242, 116039. [Google Scholar] [CrossRef]
- Gabrič, A.; Hodnik, Ž.; Pajk, S. Oxidation of Drugs During Drug Product Development: Problems and Solutions. Pharmaceutics 2022, 14, 325. [Google Scholar] [CrossRef]
- Ryan, E.M.; Duryee, M.J.; Hollins, A.; Dover, S.K.; Pirruccello, S.; Sayles, H.; Real, K.D.; Hunter, C.; Thiele, G.M.; Mikuls, T.R. Antioxidant Properties of Citric Acid Interfere with the Uricase-Based Measurement of Circulating Uric Acid. J. Pharm. Biomed. Anal. 2019, 164, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Nangare, S.; Vispute, Y.; Tade, R.; Dugam, S.; Patil, P. Pharmaceutical Applications of Citric Acid. Futur. J. Pharm. Sci. 2021, 7, 54. [Google Scholar] [CrossRef]
- States Pharmacopeial Convention. The United States Pharmacopeia: USP 29: The National Formulary: NF 24; United States Pharmacopeial Convention: Rockville, MD, USA, 2006; pp. 523, 2222. [Google Scholar]
- Salomäki, M.; Marttila, L.; Kivelä, H.; Ouvinen, T.; Lukkari, J. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J. Phys. Chem. B 2018, 122, 6314–6327. [Google Scholar] [CrossRef]
- Snape, T.J.; Astles, A.; Davies, J. Understanding the Chemical Basis of Drug Stability and Degradation. Pharm. J. 2010, 285, 416–417. [Google Scholar]
- Namjoshi, S.; Dabbaghi, M.; Roberts, M.S.; Grice, J.E.; Mohammed, Y. Quality by Design: Development of the Quality Target Product Profile (QTPP) for Semisolid Topical Products. Pharmaceutics 2020, 12, 287. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Quality Considerations for Topical Ophthalmic Drug Products: Guidance for Industry. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), December 2023. Available online: https://www.fda.gov/media/172937/download (accessed on 14 October 2024).
- Silva, A.V.D.; Breitkreitz, M.C. Pharmaceutical Quality by Design (QbD) Overview and Major Elements. In Introduction to Quality by Design in Pharmaceutical Manufacturing and Analytical Development; Breitkreitz, M.C., Goicoechea, H., Eds.; Springer: Cham, Switzerland, 2023; Volume 10, pp. 3–27. [Google Scholar]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Design of Experiments for Pharmaceutical Product Development, Volume II: Applications and Practical Case Studies, 3rd ed.; Umetrics Academy: Umeå, Sweden, 2008; pp. 50–85. [Google Scholar]
- Kuk, D.-H.; Ha, E.-S.; Ha, D.-H.; Sim, W.-Y.; Lee, S.-K.; Jeong, J.-S.; Kim, J.-S.; Baek, I.-H.; Park, H.; Choi, D.H.; et al. Development of a Resveratrol Nanosuspension Using the Antisolvent Precipitation Method Without Solvent Removal, Based on a Quality by Design (QbD) Approach. Pharmaceutics 2019, 11, 688. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Q1A(R2): Stability Testing of New Drug Substances and Products. 2003. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-new-drug-substances-products-step-5_en.pdf (accessed on 13 September 2024).
- European Medicines Agency. ICH Q6A: Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances. 2000. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-test-procedures-and-acceptance-criteria-new-drug-substances-and-new-drug-products-chemical-substances-step-5_en.pdf (accessed on 13 September 2024).
- European Medicines Agency. ICH Q3B(R2): Impurities in New Drug Products. 2006. Available online: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf (accessed on 13 September 2024).
- Won, D.H.; Park, H.; Ha, E.-S.; Kim, H.-H.; Jang, S.W.; Kim, M.-S. Optimization of Bilayer Tablet Manufacturing Process for Fixed Dose Combination of Sustained Release High-Dose Drug and Immediate Release Low-Dose Drug Based on Quality by Design (QbD). Int. J. Pharm. 2021, 605, 120838. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Ha, E.-S.; Kim, J.-S.; Kim, M.-S. Injectable Sustained-Release Poly (Lactic-Co-Glycolic Acid) (PLGA) Microspheres of Exenatide Prepared by Supercritical Fluid Extraction of Emulsion Process Based on a Design of Experiment Approach. Bioeng. Transl. Med. 2021, 8, 10485. [Google Scholar] [CrossRef]
- Lee, S.-K.; Ha, E.-S.; Park, H.; Jeong, J.-S.; Ryu, H.-J.; Pyo, Y.-J.; Choi, D.H.; Kim, M.-S. Measurement and Correlation of Solubility of Lifitegrast in Four Mixtures of (Diethylene Glycol Monoethyl Ether, Glycerol, PEG 400, and Propylene Glycol + Water) from 288.15 K to 308.15 K. J. Mol. Liq. 2021, 340, 117181. [Google Scholar] [CrossRef]
- Shoghi, E.; Fuguet, E.; Bosch, E.; Ràfols, C. Solubility–pH Profiles of Some Acidic, Basic, and Amphoteric Drugs. Eur. J. Pharm. Sci. 2013, 48, 291–300. [Google Scholar] [CrossRef]
- Nemr, A.A.; El-Mahrouk, G.M.; Badie, H.A. Hyaluronic Acid-Enriched Bilosomes: An Approach to Enhance Ocular Delivery of Agomelatine via D-Optimal Design: Formulation, In Vitro Characterization, and In Vivo Pharmacodynamic Evaluation in Rabbits. Drug Deliv. 2022, 29, 2343–2356. [Google Scholar] [CrossRef] [PubMed]
- Warsi, M.H. Development and Optimization of Vitamin E TPGS Based PLGA Nanoparticles for Improved and Safe Ocular Delivery of Ketorolac. J. Drug Deliv. Sci. Technol. 2021, 61, 102121. [Google Scholar] [CrossRef]
- Hassan, N.; Mirza, M.A.; Aslam, M.; Mahmood, S.; Iqbal, Z. DOE Guided Chitosan-Based Nano-Ophthalmic Preparation Against Fungal Keratitis. Mater. Today Proc. 2021, 41, 19–29. [Google Scholar] [CrossRef]
QTPP Elements | Target | Justification |
---|---|---|
Dosage form | Ophthalmic solution | Common dosage form used for treating dry eye disease. |
Route of administration | Ocular route | Suitable route for treating inflammation on the ocular surface, the primary cause of dry eye disease. |
Efficacy | Treatment of dry eye disease | Lifitegrast treats the root cause of multifactorial dry eye disease, providing anti-inflammatory effects on the cornea and conjunctiva, improving symptoms [4,5]. |
Dosage strength | Twice daily, both eyes, 5% lifitegrast | Consistent with Xiidra® ophthalmic solution, ensuring therapeutic efficacy and safety [6]. |
Stability | Stable for at least 6 months under accelerated conditions (40 °C ± 2 °C, 75% relative humidity) | Ensures stability in terms of appearance and drug content, preventing degradation during long-term storage. |
Factors | Level | |
---|---|---|
Low (−1) | High (+1) | |
X1: Concentration of citric acid (mg/mL) | 0 | 5 |
X2: Concentration of tromethamine (mg/mL) | 0 | 5 |
Responses | Goal | |
Y1: Appearance | Clear solution | |
Y2: pH | 6.8–8.0 | |
Y3: Drug content (%) | 90.0–110.0 | |
Y4: Impurities (%) | <1.0 |
Run | Factors | Responses | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 Conc. of Citric Acid (mg/mL) | X2 Conc. of Tromethanine (mg/mL) | Y1 Appearance | Y2 pH | Y3 Drug Content (%) | Y4 Impurities (%) | |||||||||||||
Time (Months) | Time (Months) | Time (Months) | Time (Months) | |||||||||||||||
0 | 1 | 3 | 6 | 0 | 1 | 3 | 6 | 0 | 1 | 3 | 6 | 0 | 1 | 3 | 6 | |||
1 | 5 | 0 | Clear | Clear | Clear | Clear | 7.5 | 7.4 | 7.5 | 7.2 | 100.21 | 100.32 | 100.70 | 101.74 | 0.23 | 0.41 | 0.58 | 0.65 |
2 | 0 | 5 | Clear | Clear | Clear | Clear | 7.4 | 7.3 | 7.3 | 7.4 | 100.43 | 100.21 | 100.53 | 101.41 | 0.24 | 0.43 | 0.63 | 0.78 |
3 | 5 | 2 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.5 | 7.2 | 101.12 | 100.92 | 101.33 | 99.82 | 0.24 | 0.46 | 0.68 | 0.82 |
4 | 0.5 | 0 | Clear | Clear | Clear | Clear | 7.5 | 7.4 | 7.4 | 7.5 | 100.92 | 100.53 | 100.24 | 101.42 | 0.21 | 0.37 | 0.44 | 0.46 |
5 | 3 | 0.5 | Clear | Clear | Clear | Clear | 7.5 | 7.4 | 7.3 | 7.4 | 100.54 | 100.72 | 100.74 | 99.84 | 0.23 | 0.32 | 0.41 | 0.49 |
6 | 1 | 3 | Clear | Clear | Clear | Clear | 7.3 | 7.3 | 7.3 | 7.6 | 99.72 | 99.93 | 99.82 | 100.60 | 0.23 | 0.41 | 0.52 | 0.58 |
7 | 0.5 | 0.5 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.3 | 7.4 | 101.23 | 100.83 | 101.31 | 101.23 | 0.22 | 0.31 | 0.39 | 0.44 |
8 | 1 | 0 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.4 | 7.3 | 99.83 | 100.64 | 100.51 | 100.50 | 0.22 | 0.38 | 0.46 | 0.48 |
9 | 0 | 3 | Clear | Clear | Clear | Clear | 7.5 | 7.4 | 7.5 | 7.6 | 99.64 | 99.90 | 99.90 | 102.82 | 0.24 | 0.37 | 0.47 | 0.54 |
10 | 3 | 0 | Clear | Clear | Clear | Clear | 7.4 | 7.3 | 7.3 | 7.3 | 100.60 | 100.52 | 100.42 | 99.84 | 0.22 | 0.38 | 0.49 | 0.56 |
11 | 4 | 4 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.4 | 7.5 | 100.82 | 100.41 | 100.93 | 100.62 | 0.23 | 0.48 | 0.72 | 0.92 |
12 | 0 | 4 | Clear | Clear | Clear | Clear | 7.5 | 7.5 | 7.5 | 7.6 | 100.53 | 100.93 | 100.54 | 101.20 | 0.24 | 0.38 | 0.52 | 0.60 |
13 | 0 | 1 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.5 | 7.4 | 100.94 | 101.14 | 101.22 | 100.11 | 0.20 | 0.35 | 0.42 | 0.47 |
14 | 3 | 1 | Clear | Clear | Clear | Clear | 7.3 | 7.2 | 7.5 | 7.3 | 99.82 | 99.70 | 100.31 | 99.93 | 0.23 | 0.37 | 0.48 | 0.57 |
15 | 0.25 | 0 | Clear | Clear | Clear | Clear | 7.5 | 7.4 | 7.5 | 7.4 | 101.21 | 101.43 | 101.63 | 101.62 | 0.21 | 0.37 | 0.43 | 0.49 |
16 | 4 | 0 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.4 | 7.5 | 99.70 | 99.92 | 99.83 | 100.14 | 0.22 | 0.39 | 0.55 | 0.62 |
17 | 3 | 3 | Clear | Clear | Clear | Clear | 7.3 | 7.4 | 7.4 | 7.5 | 100.11 | 100.44 | 100.62 | 100.62 | 0.24 | 0.43 | 0.57 | 0.68 |
18 | 0.5 | 3 | Clear | Clear | Clear | Clear | 7.5 | 7.6 | 7.5 | 7.2 | 99.62 | 99.71 | 99.74 | 100.53 | 0.22 | 0.37 | 0.47 | 0.47 |
19 | 0.5 | 3 | Clear | Clear | Clear | Clear | 7.3 | 7.4 | 7.3 | 7.4 | 99.82 | 99.93 | 100.11 | 101.43 | 0.23 | 0.38 | 0.46 | 0.49 |
20 | 0.5 | 3 | Clear | Clear | Clear | Clear | 7.4 | 7.4 | 7.5 | 7.4 | 100.13 | 100.12 | 100.33 | 100.91 | 0.24 | 0.39 | 0.45 | 0.46 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|
Model | 0.3211 | 5 | 0.0642 | 50.01 | <0.0001 | significant | |
X1 | 0.2099 | 1 | 0.2099 | 163.50 | <0.0001 | ||
X2 | 0.1681 | 1 | 0.1681 | 130.89 | <0.0001 | ||
X1X2 | 0.0245 | 1 | 0.0245 | 19.08 | 0.0006 | ||
X12 | 0.0114 | 1 | 0.0114 | 8.86 | 0.0100 | ||
X22 | 0.0454 | 1 | 0.0454 | 35.37 | <0.0001 | ||
Residual | 0.0180 | 14 | 0.0013 | ||||
Lack of Fit | 0.0175 | 12 | 0.0015 | 6.25 | 0.1460 | not significant | |
Pure Error | 0.0005 | 2 | 0.0002 | ||||
Cor Total | 0.3391 | 19 | |||||
Standard Error: 0.0358 | Adjusted R-Squared: 0.9280 | ||||||
R-Squared: 0.9470 | Prediction R-Squared: 0.8604 | ||||||
Regression Equation of the Fitted Model | |||||||
Y4 = 0.4854 − 0.0195 X1 − 0.0685 X2 + 0.0139 X1X2 + 0.0121 X12 + 0.0246 X22 |
Time (min) | Mobile Phase A (%) | Mobile Phase B (%) |
---|---|---|
0.01 | 55 | 45 |
3 | 55 | 45 |
18 | 40 | 60 |
37 | 8 | 92 |
50 | 8 | 92 |
51 | 55 | 45 |
60 | 55 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-S.; Ha, E.-S.; Park, H.; Lee, S.-K.; Kang, H.-T.; Kim, M.-S. Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast. Pharmaceuticals 2024, 17, 1415. https://doi.org/10.3390/ph17111415
Jeong J-S, Ha E-S, Park H, Lee S-K, Kang H-T, Kim M-S. Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast. Pharmaceuticals. 2024; 17(11):1415. https://doi.org/10.3390/ph17111415
Chicago/Turabian StyleJeong, Ji-Su, Eun-Sol Ha, Heejun Park, Seon-Kwang Lee, Hui-Taek Kang, and Min-Soo Kim. 2024. "Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast" Pharmaceuticals 17, no. 11: 1415. https://doi.org/10.3390/ph17111415
APA StyleJeong, J. -S., Ha, E. -S., Park, H., Lee, S. -K., Kang, H. -T., & Kim, M. -S. (2024). Effect of Citric Acid and Tromethamine on the Stability of Eyedrops Containing Lifitegrast. Pharmaceuticals, 17(11), 1415. https://doi.org/10.3390/ph17111415