Cardiovascular Effects of a Glycosylated Flavonoids-Rich Leaf Extract from Brazilian Erythroxylum campestre: A Potential Health Bio-Input
Abstract
:1. Introduction
2. Results
2.1. Fractionation of the Crude Extract
2.2. The Evaluation of Cardiovascular Changes Induced by the Infusion of the Methanolic Fraction of E. campestre
2.3. Analysis of High-Performance Liquid Chromatography—HPLC/UV
2.4. Structural Elucidation
2.4.1. Structural Analysis by Mass Spectrometry
2.4.2. Structural Analysis by Hydrogen and Carbon Nuclear Magnetic Resonance
3. Discussion
4. Methods
4.1. Acquisition and Characterization of E. campestre Extract
4.1.1. Extraction Process
4.1.2. Isolation of the Organic Fraction by Chromatographic Techniques
4.1.3. Qualitative Analysis
4.1.4. Quantitative Analysis
4.1.5. Mass Spectrometry (MS)
4.1.6. Analysis by Nuclear Magnetic Resonance Spectroscopy (NMR)
4.2. In Vivo Experiments
4.2.1. Animals
4.2.2. Surgical Procedures
4.2.3. Recording of Cardiovascular Parameters
4.2.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Hou, J.; Xiao, W.; Zhang, Y.; Zhou, L.; Yuan, L.; Yin, X.; Chen, X.; Hu, Y. Chinese Medicinal Plants for the Potential Management of High-Altitude Pulmonary Oedema and Pulmonary Hypertension. Pharm. Biol. 2020, 58, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (Common Vervain)—A Review on the Investigations of This Medicinally Important Plant Species. Planta Med. 2020, 86, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Leão, D.F.L.; de Moura, C.S.; de Medeiros, D.S. Evaluation of Potential Drug Interactions in Primary Health Care Prescriptions in Vitória Da Conquista, Bahia (Brazil). Cien. Saude Colet. 2014, 19, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Mohebbati, R.; Kamkar-Del, Y.; Shafei, M.N.; Rakhshandeh, H.; Aghaei, A. Effects of Hydroalcoholic Extract of Saffron Petal on Blood Pressure and Heart Rate in Hypertension Induced by Angiotensin II and L-NAME in Anesthetized Rats. Vet. Res. Forum 2021, 12, 185–190. [Google Scholar] [CrossRef]
- Sharma, A.K.; Basu, I.; Singh, S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J. Altern. Complement. Med. 2018, 24, 243–248. [Google Scholar] [CrossRef]
- Fajemiroye, J.O.; Mourão, A.A.; Marques, S.M.; de Oliveira, L.P.; de Neto, J.R.O.; Elusiyan, A.C.; Pedrino, G.R.; Costa, E.A.; da Cunha, L.C.; Zjawiony, J.K. Preclinical Assessment of Cardiovascular Alterations Induced by Birch Polypore Mushroom, Piptoporus betulinus (Agaricomycetes). Int. J. Med. Mushrooms 2017, 19, 257–265. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Patient Safety Challenge. In Medication Without Harm; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Abbott, R.; Smith, D.E. The New Designer Drug Wave: A Clinical, Toxicological, and Legal Analysis. J. Psychoact. Drugs 2015, 47, 368–371. [Google Scholar] [CrossRef]
- Oga, E.F.; Sekine, S.; Shitara, Y.; Horie, T. Pharmacokinetic Herb-Drug Interactions: Insight into Mechanisms and Consequences. Eur. J. Drug. Metab. Pharmacokinet 2016, 41, 93–108. [Google Scholar] [CrossRef]
- Mello, J.C.P.; Santos, S.C.; Simões CM, O.; Schenkel, E.P.; Mello JC, P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia Do Produto Natural Ao Medicamento, 1st ed.; Artmed Editora: Porto Alegre, Brasil, 2017; Volume 1, ISBN 978-85-8271-359-4. [Google Scholar]
- Brandão, M.G.L.; Zanetti, N.N.S.; Oliveira, P.; Grael, C.F.F.; Santos, A.C.P.; Monte-Mór, R.L.M. Brazilian Medicinal Plants Described by 19th Century European Naturalists and in the Official Pharmacopoeia. J. Ethnopharmacol. 2008, 120, 141–148. [Google Scholar] [CrossRef]
- Nakamura, A.T. Morfologia e Anatomia Dos Frutos e Sementes de Três Espécies de Erythroxylum P. Browne (Erythroxylaceae). Biota Neotrop. 2005, 5, 205–206. [Google Scholar] [CrossRef]
- Brachet, A.; Muñoz, O.; Gupta, M.; Veuthey, J.L.; Christen, P. Alkaloids of Erythroxylum Lucidum Stem-Bark. Phytochemistry 1997, 46, 1439–1442. [Google Scholar] [CrossRef]
- Bieras, A.C.; das Sajo, M.G. Ontogenia Foliar de Três Espécies de Erythroxylum P. Browne (Erythroxylaceae) Ocorrentes No Cerrado. Braz. J. Bot. 2004, 27, 71–77. [Google Scholar] [CrossRef]
- González-García, K.; González Lavaut, J.A.; González-Guevara, J.; Prieto-González, S. Género Erythroxylum: Análisis de La Información Científica. Acta Farm. Bonaer. 2005, 24, 2. [Google Scholar]
- Hegnauer, R. Chemotaxonomy of Erythroxylaceae (Including Some Ethnobotanical Notes on Old World Species). J. Ethnopharmacol. 1981, 3, 279–292. [Google Scholar] [CrossRef]
- Khattak, K.F.; Atta-Ur-Rahman; Choudhary, M.I.; Hemalal, K.D.; Tillekeratne, L.M. New Tropane Alkaloids from Erythroxylum moonii. J. Nat. Prod. 2002, 65, 929–931. [Google Scholar] [CrossRef]
- Plowman, T.; Rivier, L. Cocaine and Cinnamoylcocaine Content of Erythroxylum Species. Ann. Bot. 1983, 51, 641–659. [Google Scholar] [CrossRef]
- Chaves, G.G.; Schapoval, E.E.S.; Zuanazzi, J.A.; Diehl, E.; De Siqueira, N.C.S.; Henriques, A.T. Erythroxylum argentinum: Assays for Anti-Inflammatory Activity. J. Ethnopharmacol. 1988, 22, 117–120. [Google Scholar] [CrossRef]
- de Barros, I.M.C.; Leite, B.H.M.; Leite, C.F.M.; Fagg, C.W.; Gomes, S.M.; Resck, I.S.; Fonseca-Bazzo, Y.M.; Magalhães, P.O.; Silveira, D. Chemical Composition and Antioxidant Activity of Extracts from Erythroxylum suberosum A. St. Hil. Leaves. J. Appl. Pharm. Sci. 2017, 7, 088–094. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Identificação Espectrométrica de Compostos Orgânicos, 6th ed.; LTC: Rio de Janeiro, Brasil, 2006; Volume 1. [Google Scholar]
- De Albuquerque, C.H.; Tavares, J.F.; De Oliveir, S.L.; Silva, T.S.; Gonçalves, G.F.; De Oliveira Costa, V.C.; De Fátima Agra, M.; De Luna Freire Pessôa, H.; Silva, M.S. Da Flavonoides Glicosilados de Erythroxylum pulchrum A. St.-Hil. (Erythroxylaceae). Quim. Nova 2014, 37, 663–666. [Google Scholar] [CrossRef]
- Restrepo, D.A.; Saenz, E.; Jara-Muñoz, O.A.; Calixto-Botía, I.F.; Rodríguez-Suárez, S.; Zuleta, P.; Chavez, B.G.; Sanchez, J.A.; D’Auria, J.C. Erythroxylum in Focus: An Interdisciplinary Review of an Overlooked Genus. Molecules 2019, 24, 3788. [Google Scholar] [CrossRef]
- Zuanazzi, J.A.S.; Tremea, V.; Limberger, R.P.; Sobral, M.; Henriques, A.T. Alkaloids of Erythroxylum (Erythroxylaceae) Species from Southern Brazil. Biochem. Syst. Ecol. 2001, 29, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.C.; Davisson, R.L. Redox Signaling in Central Neural Regulation of Cardiovascular Function. Prog. Biophys Mol. Biol. 2004, 84, 125–149. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.C.; Lazartigues, E.; Lang, J.A.; Sinnayah, P.; Ahmad, I.M.; Spitz, D.R.; Davisson, R.L. Superoxide Mediates the Actions of Angiotensin II in the Central Nervous System. Circ. Res. 2002, 91, 1038–1045. [Google Scholar] [CrossRef]
- Nishi, E.E.; Almeida, V.R.; Amaral, F.G.; Simon, K.A.; Futuro-Neto, H.A.; Pontes, R.B.; Cespedes, J.G.; Campos, R.R.; Bergamaschi, C.T. Melatonin Attenuates Renal Sympathetic Overactivity and Reactive Oxygen Species in the Brain in Neurogenic Hypertension. Hypertens. Res. 2019, 42, 1683–1691. [Google Scholar] [CrossRef]
- Potje, S.R.; Troiano, J.A.; Graton, M.E.; Ximenes, V.F.; Nakamune, A.C.M.S.; Antoniali, C. Hypotensive and Vasorelaxant Effect of Diapocynin in Normotensive Rats. Free Radic. Biol. Med. 2017, 106, 148–157. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Havsteen, B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Guerrero, M.F.; Puebla, P.; Carrón, R.; Martín, M.L.; Arteaga, L.; Román, L.S. Assessment of the Antihypertensive and Vasodilator Effects of Ethanolic Extracts of Some Colombian Medicinal Plants. J. Ethnopharmacol. 2002, 80, 37–42. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D. The Spectrometric Identification of Organic Compounds. J. Chem. Educ. 2012, 512, 546. [Google Scholar] [CrossRef]
- Da Silva Moura, A.C.; Vilegas, W.; Dos Santos, L.C. Identificação de Alguns Constituintes Químicos de Indigofera Hirsuta Linn. (Fabaceae) Por CLAE-IES-EM (TOF) e Avaliação Da Atividade Antirradicalar. Quim. Nova 2011, 34, 1136–1140. [Google Scholar] [CrossRef]
- Akkol, E.; Suntar, I.; Keleş, H.; Sezik, E.; Gürler, G. Bioassay-Guided Isolation and Characterization of Wound Healer Compounds from Morus nigra L. (Moraceae). Rec. Nat. Prod. 2015, 9, 484–495. [Google Scholar]
- Yonekura-Sakakibara, K.; Saito, K. Function, Structure, and Evolution of Flavonoid Glycosyltransferases in Plants. Recent Adv. Polyphen. Res. 2014, 4, 61–82. [Google Scholar] [CrossRef]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the Biotechnological Glycosylation of Valuable Flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Alighourchi, H.; Barzegar, M. Some Physicochemical Characteristics and Degradation Kinetic of Anthocyanin of Reconstituted Pomegranate Juice during Storage. J. Food Eng. 2009, 90, 179–185. [Google Scholar] [CrossRef]
- Mrázková, M.; Sumczynski, D.; Orsavová, J. Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants 2023, 12, 962. [Google Scholar] [CrossRef]
ECM Mass | Solvent | Mass Obtained (g) | % in Relation ECM | Code |
---|---|---|---|---|
Hexane | 5.28 | 2.65 | ECM-H | |
Dichloromethane | 0.80 | 0.40 | ECM-D | |
199.44 g | Ethyl acetate | 18.70 | 9.38 | ECM-A |
Precipitate | 58.73 | 29.45 | ECM-ppt | |
Residue | 115.93 | 58.12 | - |
ECM-ppt Mass | Solvent | Mass Obtained (g) | % in Relation ECFM | Code |
---|---|---|---|---|
Dichloromethane | 1.35 | 2.30 | ECM-ppt-D | |
Ethyl acetate | 4.36 | 7.42 | ECM-ppt-A | |
58.73 g | Methanol | 11.03 | 18.78 | ECM-ppt-M |
Residue | 41.99 | 71.50 | - |
Fraction | Molecular Ion m/z | Base Peak m/z | Ionic Fragments m/z |
---|---|---|---|
E1F | 1245.3102 | 634.1579 | 815.5211/771.4944/727.4685/ 551.3627/463.3088/303.0535/ 245.0883/139.0523 |
F1 | 1198.7095 | 595.3916 | 1122.7155/1024.7452/926.7677/ 828.7928/683.4451/639.4170 |
AM | 1272.3026 | 633.1480 | 903.5696/815.5190/727.4661/ 547.4085/501.3795/419.2803/ 303.0523/229.0937/175.0460/ 127.0252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, L.H.D.G.; Gomes, M.W.F.; Curado, T.S.d.S.; Naves, L.M.; Marques, S.M.; Oliveira, M.S.; Ogbu, J.I.; Menezes, A.C.S.; Vila Verde, G.M.; Fajemiroye, J.O.; et al. Cardiovascular Effects of a Glycosylated Flavonoids-Rich Leaf Extract from Brazilian Erythroxylum campestre: A Potential Health Bio-Input. Pharmaceuticals 2024, 17, 1456. https://doi.org/10.3390/ph17111456
de Lima LHDG, Gomes MWF, Curado TSdS, Naves LM, Marques SM, Oliveira MS, Ogbu JI, Menezes ACS, Vila Verde GM, Fajemiroye JO, et al. Cardiovascular Effects of a Glycosylated Flavonoids-Rich Leaf Extract from Brazilian Erythroxylum campestre: A Potential Health Bio-Input. Pharmaceuticals. 2024; 17(11):1456. https://doi.org/10.3390/ph17111456
Chicago/Turabian Stylede Lima, Letícia Henrique Dantas Gomes, Marcos Willian Francelino Gomes, Thays Siqueira de Sá Curado, Lara Marques Naves, Stefanne Madalena Marques, Marilene Silva Oliveira, John Ihayi Ogbu, Antonio Carlos Severo Menezes, Giuliana Muniz Vila Verde, James Oluwagbamigbe Fajemiroye, and et al. 2024. "Cardiovascular Effects of a Glycosylated Flavonoids-Rich Leaf Extract from Brazilian Erythroxylum campestre: A Potential Health Bio-Input" Pharmaceuticals 17, no. 11: 1456. https://doi.org/10.3390/ph17111456
APA Stylede Lima, L. H. D. G., Gomes, M. W. F., Curado, T. S. d. S., Naves, L. M., Marques, S. M., Oliveira, M. S., Ogbu, J. I., Menezes, A. C. S., Vila Verde, G. M., Fajemiroye, J. O., & Pedrino, G. R. (2024). Cardiovascular Effects of a Glycosylated Flavonoids-Rich Leaf Extract from Brazilian Erythroxylum campestre: A Potential Health Bio-Input. Pharmaceuticals, 17(11), 1456. https://doi.org/10.3390/ph17111456