Adequacy of Anesthesia Guidance for Combined General/Epidural Anesthesia in Patients Undergoing Open Abdominal Infrarenal Aortic Aneurysm Repair; Preliminary Report on Hemodynamic Stability and Pain Perception
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Stage 1
TEA Technique
4.3. Stage 2
4.4. Stage 3—OLIAAR
4.5. Stage 4—Post-Anesthesia Care Unit
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casas-Arroyave, F.D.; Osorno-Upegui, S.C.; Zamudio-Burbano, M.A. Therapeutic Efficacy of Intravenous Lidocaine Infusion Compared with Thoracic Epidural Analgesia in Major Abdominal Surgery: A Noninferiority Randomised Clinical Trial. Br. J. Anaesth. 2023, 131, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Block, B.M.; Liu, S.S.; Rowlingson, A.J.; Cowan, A.R.; Cowan, J.A.; Wu, C.L. Efficacy of Postoperative Epidural Analgesia: A Meta-Analysis. JAMA 2003, 290, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Bouman, E.A.; Theunissen, M.; Bons, S.A.; van Mook, W.N.; Gramke, H.-F.; van Kleef, M.; Marcus, M.A. Reduced Incidence of Chronic Postsurgical Pain after Epidural Analgesia for Abdominal Surgery. Pain. Pract. 2014, 14, E76–E84. [Google Scholar] [CrossRef] [PubMed]
- Salata, K.; Abdallah, F.W.; Hussain, M.A.; de Mestral, C.; Greco, E.; Aljabri, B.; Mamdani, M.; Mazer, C.D.; Forbes, T.L.; Verma, S.; et al. Short-Term Outcomes of Combined Neuraxial and General Anaesthesia versus General Anaesthesia Alone for Elective Open Abdominal Aortic Aneurysm Repair: Retrospective Population-Based Cohort Study. Br. J. Anaesth. 2020, 124, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Ma, J.; Chen, H.; Mu, D.; Kong, H.; Yu, L. Nociception Monitors vs. Standard Practice for Titration of Opioid Administration in General Anesthesia: A Meta-Analysis of Randomized Controlled Trials. Front. Med. 2022, 9, 963185. [Google Scholar] [CrossRef]
- De Jonckheere, J.; Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebé, P. Physiological Signal Processing for Individualized Anti-Nociception Management During General Anesthesia: A Review. Yearb. Med. Inform. 2015, 10, 95–101. [Google Scholar] [CrossRef]
- Laferrière-Langlois, P.; Morisson, L.; Jeffries, S.; Duclos, C.; Espitalier, F.; Richebé, P. Depth of Anesthesia and Nociception Monitoring: Current State and Vision For 2050. Anesth. Analg. 2024, 138, 295–307. [Google Scholar] [CrossRef]
- Ledowski, T. Objective Monitoring of Nociception: A Review of Current Commercial Solutions. Br. J. Anaesth. 2019, 123, e312–e321. [Google Scholar] [CrossRef]
- Colombo, R.; Raimondi, F.; Rech, R.; Castelli, A.; Fossali, T.; Marchi, A.; Borghi, B.; Corona, A.; Guzzetti, S. Surgical Pleth Index Guided Analgesia Blunts the Intraoperative Sympathetic Response to Laparoscopic Cholecystectomy. Minerva Anestesiol. 2015, 81, 837–845. [Google Scholar]
- Bergmann, I.; Göhner, A.; Crozier, T.A.; Hesjedal, B.; Wiese, C.H.; Popov, A.F.; Bauer, M.; Hinz, J.M. Surgical Pleth Index-Guided Remifentanil Administration Reduces Remifentanil and Propofol Consumption and Shortens Recovery Times in Outpatient Anaesthesia. Br. J. Anaesth. 2013, 110, 622–628. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, B.-M.; Jung, Y.-R.; Lee, Y.-H.; Bang, J.-Y.; Noh, G.-J. Evaluation of Surgical Pleth Index and Analgesia Nociception Index as Surrogate Pain Measures in Conscious Postoperative Patients: An Observational Study. J. Clin. Monit. Comput. 2020, 34, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on Cardiovascular Assessment and Management of Patients Undergoing Non-Cardiac Surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Gera, A.; Sharma, B.; Sood, J.; Chugh, P. Comparison of Surgical Pleth Index-Guided Analgesia Using Fentanyl versus Conventional Analgesia Technique in Laparoscopic Cholecystectomy. Minerva Anestesiol. 2019, 85, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Panaretou, V.; Toufektzian, L.; Siafaka, I.; Kouroukli, I.; Sigala, F.; Vlachopoulos, C.; Katsaragakis, S.; Zografos, G.; Filis, K. Postoperative Pulmonary Function after Open Abdominal Aortic Aneurysm Repair in Patients with Chronic Obstructive Pulmonary Disease: Epidural versus Intravenous Analgesia. Ann. Vasc. Surg. 2012, 26, 149–155. [Google Scholar] [CrossRef]
- Graf, B.M.; Abraham, I.; Eberbach, N.; Kunst, G.; Stowe, D.F.; Martin, E. Differences in Cardiotoxicity of Bupivacaine and Ropivacaine Are the Result of Physicochemical and Stereoselective Properties. Anesthesiology 2002, 96, 1427–1434. [Google Scholar] [CrossRef]
- Pirie, K.; Traer, E.; Finniss, D.; Myles, P.S.; Riedel, B. Current Approaches to Acute Postoperative Pain Management after Major Abdominal Surgery: A Narrative Review and Future Directions. Br. J. Anaesth. 2022, 129, 378–393. [Google Scholar] [CrossRef]
- Beverly, A.; Kaye, A.D.; Ljungqvist, O.; Urman, R.D. Essential Elements of Multimodal Analgesia in Enhanced Recovery After Surgery (ERAS) Guidelines. Anesthesiol. Clin. 2017, 35, e115–e143. [Google Scholar] [CrossRef]
- Stasiowski, M.J.; Kolny, M.; Zuber, M.; Marciniak, R.; Chabierska, E.; Jałowiecki, P.; Pluta, A.; Możdżyński, B. Randomised Controlled Trial of Analgesic Effectiveness of Three Different Techniques of Single-Shot Interscalene Brachial Plexus Block Using 20 mL of 0.5% Ropivacaine for Shoulder Arthroscopy. Anaesthesiol. Intensive Ther. 2017, 49, 215–221. [Google Scholar] [CrossRef]
- Ragavendran, S.; Raghu, C.; Prasad, S.R.; Arasu, T.; Nagaraja, P.S.; Singh, N.G.; Manjunath, N.; Muralikrishna, N.; Yogananth, N. Comparison of Epidural Analgesia with Ultrasound-Guided Bilateral Erector Spinae Plane Block in Aorto-Femoral Arterial Bypass Surgery. Ann. Card. Anaesth. 2022, 25, 26–33. [Google Scholar] [CrossRef]
- Aweke, Z.; Seyoum, F.; Shitemaw, T.; Doba, D.N. Comparison of Preemptive Paracetamol, Paracetamol-Diclofenac & Paracetamol-Tramadol Combination on Postoperative Pain after Elective Abdominal Surgery under General Anesthesia, Ethiopia: A Randomized Control Trial Study, 2018. BMC Anesthesiol. 2020, 20, 191. [Google Scholar] [CrossRef]
- Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review. Pain. Physician 2015, 18, 395–400. [Google Scholar] [PubMed]
- Koster, H.T.; Avis, H.J.; Stevens, M.F.; Hollmann, M.W. Metamizole in postoperative pain management. Ned. Tijdschr. Geneeskd. 2012, 156, A4323. [Google Scholar] [PubMed]
- Qureshi, I.; Abdulrashid, K.; Thomas, S.H.; Abdel-Rahman, M.E.; Pathan, S.A.; Harris, T. Comparison of Intravenous Paracetamol (Acetaminophen) to Intravenously or Intramuscularly Administered Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) or Opioids for Patients Presenting with Moderate to Severe Acute Pain Conditions to the ED: Systematic Review and Meta-Analysis. Emerg. Med. J. 2023, 40, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Konijnenbelt-Peters, J.; van der Heijden, C.; Ekhart, C.; Bos, J.; Bruhn, J.; Kramers, C. Metamizole (Dipyrone) as an Alternative Agent in Postoperative Analgesia in Patients with Contraindications for Nonsteroidal Anti-Inflammatory Drugs. Pain Pract. 2017, 17, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pogatzki-Zahn, E.; Chandrasena, C.; Schug, S.A. Nonopioid Analgesics for Postoperative Pain Management. Curr. Opin. Anaesthesiol. 2014, 27, 513–519. [Google Scholar] [CrossRef]
- Sener, M.; Kocum, A.; Caliskan, E.; Yilmaz, I.; Caylakli, F.; Aribogan, A. Administration of Paracetamol versus Dipyrone by Intravenous Patient-Controlled Analgesia for Postoperative Pain Relief in Children after Tonsillectomy. Braz. J. Anesthesiol. 2015, 65, 476–482. [Google Scholar] [CrossRef]
- Hearn, L.; Derry, S.; Moore, R.A. Single Dose Dipyrone (Metamizole) for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2016, 4, CD011421. [Google Scholar] [CrossRef]
- Boylan, J.F.; Katz, J.; Kavanagh, B.P.; Klinck, J.R.; Cheng, D.C.; DeMajo, W.C.; Walker, P.M.; Johnston, K.W.; Sandler, A.N. Epidural Bupivacaine-Morphine Analgesia versus Patient-Controlled Analgesia Following Abdominal Aortic Surgery: Analgesic, Respiratory, and Myocardial Effects. Anesthesiology 1998, 89, 585–593. [Google Scholar] [CrossRef]
- Guay, J.; Kopp, S. Epidural Pain Relief versus Systemic Opioid-Based Pain Relief for Abdominal Aortic Surgery. Cochrane Database Syst. Rev. 2016, 2016, CD005059. [Google Scholar] [CrossRef]
- Bardia, A.; Sood, A.; Mahmood, F.; Orhurhu, V.; Mueller, A.; Montealegre-Gallegos, M.; Shnider, M.R.; Ultee, K.H.J.; Schermerhorn, M.L.; Matyal, R. Combined Epidural-General Anesthesia vs General Anesthesia Alone for Elective Abdominal Aortic Aneurysm Repair. JAMA Surg. 2016, 151, 1116–1123. [Google Scholar] [CrossRef]
- Hughes, M.J.; Ventham, N.T.; McNally, S.; Harrison, E.; Wigmore, S. Analgesia after Open Abdominal Surgery in the Setting of Enhanced Recovery Surgery: A Systematic Review and Meta-Analysis. JAMA Surg. 2014, 149, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Dylczyk-Sommer, J.; Owczuk, R.; Wujtewicz, M.; Wojciechowski, J. Does Epidural Anaesthesia Reduce the Incidence of Postoperative Oxygen Desaturation Episodes in Patients Undergoing Open Abdominal Aortic Aneurysm Repair? Anaesthesiol. Intensive Ther. 2015, 47, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Hermanides, J.; Hollmann, M.W.; Stevens, M.F.; Lirk, P. Failed Epidural: Causes and Management. Br. J. Anaesth. 2012, 109, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.; Song, K.; Kim, J.; Kim, E.; Kim, S.-H. Comparison of the Analgesic Properties of Sevoflurane and Desflurane Using Surgical Pleth Index at Equi-Minimum Alveolar Concentration. Int. J. Med. Sci. 2017, 14, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Kawka, M.; Krawczyk, L.; Niewiadomska, E.; Dobrowolski, D.; Rejdak, R.; Król, S.; Żak, J.; et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina 2021, 57, 262. [Google Scholar] [CrossRef]
- Jiao, Y.; He, B.; Tong, X.; Xia, R.; Zhang, C.; Shi, X. Intraoperative Monitoring of Nociception for Opioid Administration: A Meta-Analysis of Randomized Controlled Trials. Minerva Anestesiol. 2019, 85, 522–530. [Google Scholar] [CrossRef]
- Won, Y.J.; Oh, S.K.; Lim, B.G.; Kim, Y.S.; Lee, D.Y.; Lee, J.H. Effect of Surgical Pleth Index-Guided Remifentanil Administration on Perioperative Outcomes in Elderly Patients: A Prospective Randomized Controlled Trial. BMC Anesthesiol. 2023, 23, 57. [Google Scholar] [CrossRef]
- Hung, K.-C.; Huang, Y.-T.; Kuo, J.-R.; Hsu, C.-W.; Yew, M.; Chen, J.-Y.; Lin, M.-C.; Chen, I.-W.; Sun, C.-K. Elevated Surgical Pleth Index at the End of Surgery Is Associated with Postoperative Moderate-to-Severe Pain: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2167. [Google Scholar] [CrossRef]
- Ledowski, T.; Burke, J.; Hruby, J. Surgical Pleth Index: Prediction of Postoperative Pain and Influence of Arousal. Br. J. Anaesth. 2016, 117, 371–374. [Google Scholar] [CrossRef]
- Bapteste, L.; Szostek, A.S.; Chassard, D.; Desgranges, F.P.; Bouvet, L. Can Intraoperative Surgical Pleth Index Values Be Predictive of Acute Postoperative Pain? Anaesth. Crit. Care Pain. Med. 2019, 38, 391–392. [Google Scholar] [CrossRef]
- Stasiowski, M.J.; Lyssek-Boroń, A.; Kawka-Osuch, M.; Niewiadomska, E.; Grabarek, B.O. Possibility of Using Surgical Pleth Index in Predicting Postoperative Pain in Patients after Vitrectomy Performed under General Anesthesia. Diagnostics 2024, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Park, M.H.; Kim, D.K.; Kim, B.J. Prediction of Postoperative Pain and Opioid Consumption Using Intraoperative Surgical Pleth Index After Surgical Incision: An Observational Study. J. Pain. Res. 2020, 13, 2815–2824. [Google Scholar] [CrossRef] [PubMed]
- Wesselink, E.M.; Kappen, T.H.; Torn, H.M.; Slooter, A.J.C.; van Klei, W.A. Intraoperative Hypotension and the Risk of Postoperative Adverse Outcomes: A Systematic Review. Br. J. Anaesth. 2018, 121, 706–721. [Google Scholar] [CrossRef] [PubMed]
- Krzych, Ł.J.; Pluta, M.P.; Putowski, Z.; Czok, M. Investigating Association between Intraoperative Hypotension and Postoperative Neurocognitive Disorders in Non-Cardiac Surgery: A Comprehensive Review. J. Clin. Med. 2020, 9, 3183. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, A.J.; Pluta, M.P.; Krzych, Ł.J. Clinical Practice on Intra-Operative Fluid Therapy in Poland: A Point Prevalence Study. Medicine 2020, 99, e19953. [Google Scholar] [CrossRef] [PubMed]
- Magder, S. Balanced versus Unbalanced Salt Solutions: What Difference Does It Make? Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 235–247. [Google Scholar] [CrossRef]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults. JAMA 2012, 308, 1566–1572. [Google Scholar] [CrossRef]
- Lurati Buse, G.A.; Mauermann, E.; Ionescu, D.; Szczeklik, W.; De Hert, S.; Filipovic, M.; Beck-Schimmer, B.; Spadaro, S.; Matute, P.; Bolliger, D.; et al. Risk Assessment for Major Adverse Cardiovascular Events after Noncardiac Surgery Using Self-Reported Functional Capacity: International Prospective Cohort Study. Br. J. Anaesth. 2023, 130, 655–665. [Google Scholar] [CrossRef]
- Van Lier, F.; Wesdorp, F.H.I.M.; Liem, V.G.B.; Potters, J.W.; Grüne, F.; Boersma, H.; Stolker, R.J.; Hoeks, S.E. Association between Postoperative Mean Arterial Blood Pressure and Myocardial Injury after Noncardiac Surgery. Br. J. Anaesth. 2018, 120, 77–83. [Google Scholar] [CrossRef]
- Sessler, D.I.; Meyhoff, C.S.; Zimmerman, N.M.; Mao, G.; Leslie, K.; Vásquez, S.M.; Balaji, P.; Alvarez-Garcia, J.; Cavalcanti, A.B.; Parlow, J.L.; et al. Period-Dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial. Anesthesiology 2018, 128, 317–327. [Google Scholar] [CrossRef]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.J.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between Intraoperative Hypotension and Hypertension and 30-Day Postoperative Mortality in Noncardiac Surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Bijker, J.B.; Persoon, S.; Peelen, L.M.; Moons, K.G.M.; Kalkman, C.J.; Kappelle, L.J.; van Klei, W.A. Intraoperative Hypotension and Perioperative Ischemic Stroke after General Surgery: A Nested Case-Control Study. Anesthesiology 2012, 116, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.Y.; Wijeysundera, D.N.; Tait, G.A.; Beattie, W.S. Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery. Anesthesiology 2015, 123, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.-Y.; Hirao, A.; Sieber, F. Association between Intraoperative Blood Pressure and Postoperative Delirium in Elderly Hip Fracture Patients. PLoS ONE 2015, 10, e0123892. [Google Scholar] [CrossRef] [PubMed]
- Czajka, S.; Putowski, Z.; Krzych, Ł.J. Post-Induction Hypotension and Intraoperative Hypotension as Potential Separate Risk Factors for the Adverse Outcome: A Cohort Study. J. Anesth. 2023, 37, 442–450. [Google Scholar] [CrossRef]
- Warrillow, S.J.; Weinberg, L.; Parker, F.; Calzavacca, P.; Licari, E.; Aly, A.; Bagshaw, S.; Christophi, C.; Bellomo, R. Perioperative Fluid Prescription, Complications and Outcomes in Major Elective Open Gastrointestinal Surgery. Anaesth. Intensive Care 2010, 38, 259–265. [Google Scholar] [CrossRef]
- Jia, F.-J.; Yan, Q.-Y.; Sun, Q.; Tuxun, T.; Liu, H.; Shao, L. Liberal versus Restrictive Fluid Management in Abdominal Surgery: A Meta-Analysis. Surg. Today 2017, 47, 344–356. [Google Scholar] [CrossRef]
- Czajka, S.; Marczenko, K.; Włodarczyk, M.; Szczepańska, A.J.; Olakowski, M.; Mrowiec, S.; Krzych, Ł.J. Fluid Therapy in Patients Undergoing Abdominal Surgery: A Bumpy Road Towards Individualized Management. Adv. Exp. Med. Biol. 2021, 1324, 63–72. [Google Scholar] [CrossRef]
- Aykanat, V.M.; Myles, P.S.; Weinberg, L.; Burrell, A.; Bellomo, R. Low-Concentration Norepinephrine Infusion for Major Surgery: A Safety and Feasibility Pilot Randomized Controlled Trial. Anesth. Analg. 2022, 134, 410–418. [Google Scholar] [CrossRef]
- Christensen, J.; Andersson, E.; Sjöberg, F.; Hellgren, E.; Harbut, P.; Harbut, J.; Sjövall, F.; von Bruhn Gufler, C.; Mårtensson, J.; Rubenson Wahlin, R.; et al. Adverse Events of Peripherally Administered Norepinephrine During Surgery: A Prospective Multicenter Study. Anesth. Analg. 2024, 138, 1242–1248. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Liu, S.; Yang, J.; Xu, S. The Efficacy and Safety of Norepinephrine and Its Feasibility as a Replacement for Phenylephrine to Manage Maternal Hypotension during Elective Cesarean Delivery under Spinal Anesthesia. Biomed. Res. Int. 2018, 2018, 1869189. [Google Scholar] [CrossRef] [PubMed]
- Cotten, M.D.; Pincus, S. Comparative Effects of a Wide Range of Doses of L-Epinephrine and of L-Norepinephrine on the Contractile Force of the Heart in Situ. J. Pharmacol. Exp. Ther. 1955, 114, 110–118. [Google Scholar] [PubMed]
- Feng, K.; Wang, X.; Feng, X.; Zhang, J.; Xiao, W.; Wang, F.; Zhou, Q.; Wang, T. Effects of Continuous Infusion of Phenylephrine vs. Norepinephrine on Parturients and Fetuses under LiDCOrapid Monitoring: A Randomized, Double-Blind, Placebo-Controlled Study. BMC Anesthesiol. 2020, 20, 229. [Google Scholar] [CrossRef] [PubMed]
- Muthukalai, S.; Bansal, S.; Chakrabarti, D.; Rao, G.U. Reliability of Analgesia Nociception Index (ANI) and Surgical Pleth Index (SPI) during Episodes of Bleeding—A Pilot Study. Indian J. Anaesth. 2022, 66, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Yu, P.; Niu, J.; Yu, S. Mechanisms and Efficacy of Intravenous Lipid Emulsion Treatment for Systemic Toxicity From Local Anesthetics. Front. Med. 2021, 8, 756866. [Google Scholar] [CrossRef]
- Graf, B.M. The Cardiotoxicity of Local Anesthetics: The Place of Ropivacaine. Curr. Top. Med. Chem. 2001, 1, 207–214. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Yang, Y.; Cao, Y.; Wang, E.; Dong, Z. A Retrospective Cohort Analysis for the Risk Factors of Intraoperative Hypotension. Int. J. Clin. Pract. 2020, 74, e13521. [Google Scholar] [CrossRef]
- Cook, T.; Counsell, D.; Wildsmith, J.A. Who Might Benefit from, or Be Harmed by, Epidural Anaesthesia and Analgesia? Anaesthesia 2009, 64, 216–217. [Google Scholar] [CrossRef]
- Moen, V.; Dahlgren, N.; Irestedt, L. Severe Neurological Complications after Central Neuraxial Blockades in Sweden 1990-1999. Anesthesiology 2004, 101, 950–959. [Google Scholar] [CrossRef]
- Ball, L.; Pellerano, G.; Corsi, L.; Giudici, N.; Pellegrino, A.; Cannata, D.; Santori, G.; Palombo, D.; Pelosi, P.; Gratarola, A. Continuous Epidural versus Wound Infusion plus Single Morphine Bolus as Postoperative Analgesia in Open Abdominal Aortic Aneurysm Repair: A Randomized Non-Inferiority Trial. Minerva Anestesiol. 2016, 82, 1296–1305. [Google Scholar]
- Stasiowski, M.; Missir, A.; Pluta, A.; Szumera, I.; Stasiak, M.; Szopa, W.; Błaszczyk, B.; Możdżyński, B.; Majchrzak, K.; Tymowski, M.; et al. Influence of Infiltration Anaesthesia on Perioperative Outcomes Following Lumbar Discectomy under Surgical Pleth Index-Guided General Anaesthesia: A Preliminary Report from a Randomised Controlled Prospective Trial. Adv. Med. Sci. 2020, 65, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Lyssek-Boroń, A.; Krysik, K.; Majer, D.; Zmarzły, N.; Grabarek, B.O. Evaluating the Efficacy of Pre-Emptive Peribulbar Blocks with Different Local Anesthetics or Paracetamol Using the Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries: A Preliminary Report. Biomedicines 2024, 12, 2303. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Starzewska, M.; Niewiadomska, E.; Król, S.; Marczak, K.; Żak, J.; Pluta, A.; Eszyk, J.; Grabarek, B.O.; Szumera, I.; et al. Adequacy of Anesthesia Guidance for Colonoscopy Procedures. Pharmaceuticals 2021, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Monk, T.G.; Saini, V.; Weldon, B.C.; Sigl, J.C. Anesthetic Management and One-Year Mortality after Noncardiac Surgery. Anesth. Analg. 2005, 100, 4–10. [Google Scholar] [CrossRef]
- Kumar, K.; Horner, F.; Aly, M.; Nair, G.S.; Lin, C. Why Do Thoracic Epidurals Fail? A Literature Review on Thoracic Epidural Failure and Catheter Confirmation. World J. Crit. Care Med. 2024, 13, 94157. [Google Scholar] [CrossRef]
- Feldheiser, A.; Aziz, O.; Baldini, G.; Cox, B.P.B.W.; Fearon, K.C.H.; Feldman, L.S.; Gan, T.J.; Kennedy, R.H.; Ljungqvist, O.; Lobo, D.N.; et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: Consensus statement for anaesthesia practice. Acta Anaesthesiol. Scand. 2016, 60, 289–334. [Google Scholar] [CrossRef]
- Liu, R.; Gutiérrez, R.; Mather, R.V.; Stone, T.A.D.; Santa Cruz Mercado, L.A.; Bharadwaj, K.; Johnson, J.; Das, P.; Balanza, G.; Uwanaka, E.; et al. Development and Prospective Validation of Postoperative Pain Prediction from Preoperative EHR Data Using Attention-Based Set Embeddings. npj Digit. Med. 2023, 6, 1–12. [Google Scholar] [CrossRef]
- Oh, S.K.; Won, Y.J.; Lim, B.G. Surgical Pleth Index Monitoring in Perioperative Pain Management: Usefulness and Limitations. Korean J. Anesthesiol. 2023, 77, 31–45. [Google Scholar] [CrossRef]
- Won, Y.J.; Lim, B.G.; Kim, Y.S.; Lee, M.; Kim, H. Usefulness of Surgical Pleth Index-Guided Analgesia during General Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Int. Med. Res. 2018, 46, 4386–4398. [Google Scholar] [CrossRef]
- Stasiowski, M.; Duława, A.; Szumera, I.; Marciniak, R.; Niewiadomska, E.; Kaspera, W.; Krawczyk, L.; Ładziński, P.; Grabarek, B.O.; Jałowiecki, P. Variations in Values of State, Response Entropy and Haemodynamic Parameters Associated with Development of Different Epileptiform Patterns during Volatile Induction of General Anaesthesia with Two Different Anaesthetic Regimens Using Sevoflurane in Comparison with Intravenous Induct: A Comparative Study. Brain Sci. 2020, 10, 366. [Google Scholar] [CrossRef]
- Khanna, A.; Saxena, R.; Dutta, A.; Ganguly, N.; Sood, J. Comparison of Ropivacaine with and without Fentanyl vs Bupivacaine with Fentanyl for Postoperative Epidural Analgesia in Bilateral Total Knee Replacement Surgery. J. Clin. Anesth. 2017, 37, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Owczuk, R. Guidelines for General Anaesthesia in the Elderly of the Committee on Quality and Safety in Anaesthesia, Polish Society of Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive Ther. 2013, 45, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Lyssek-Boroń, A.; Zmarzły, N.; Marczak, K.; Grabarek, B.O. The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole. Pharmaceuticals 2024, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Wenlan, L.; Zhongyuan, X.; Shaoqing, L.; Liying, Z.; Bo, Z.; Min, L. MiR-34a-5p Mediates Sevoflurane Preconditioning Induced Inhibition of Hypoxia/Reoxygenation Injury through STX1A in Cardiomyocytes. Biomed. Pharmacother. 2018, 102, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Minguet, G.; Joris, J.; Lamy, M. Preconditioning and Protection against Ischaemia-Reperfusion in Non-Cardiac Organs: A Place for Volatile Anaesthetics? Eur. J. Anaesthesiol. 2007, 24, 733–745. [Google Scholar] [CrossRef]
- Steinberg, R.B.; Liu, S.S.; Wu, C.L.; Mackey, D.C.; Grass, J.A.; Ahlén, K.; Jeppsson, L. Comparison of Ropivacaine-Fentanyl Patient-Controlled Epidural Analgesia with Morphine Intravenous Patient-Controlled Analgesia for Perioperative Analgesia and Recovery after Open Colon Surgery. J. Clin. Anesth. 2002, 14, 571–577. [Google Scholar] [CrossRef]
- Capdevila, X.; Moulard, S.; Plasse, C.; Peshaud, J.-L.; Molinari, N.; Dadure, C.; Bringuier, S. Effectiveness of Epidural Analgesia, Continuous Surgical Site Analgesia, and Patient-Controlled Analgesic Morphine for Postoperative Pain Management and Hyperalgesia, Rehabilitation, and Health-Related Quality of Life After Open Nephrectomy: A Prospective, Randomized, Controlled Study. Anesth. Analg. 2017, 124, 336–345. [Google Scholar] [CrossRef]
- Gruenewald, M.; Ilies, C. Monitoring the Nociception-Anti-Nociception Balance. Best. Pract. Res. Clin. Anaesthesiol. 2013, 27, 235–247. [Google Scholar] [CrossRef]
- Ilies, C.; Ludwigs, J.; Gruenewald, M.; Thee, C.; Hanf, J.; Hanss, R.; Steinfath, M.; Bein, B. The Effect of Posture and Anaesthetic Technique on the Surgical Pleth Index. Anaesthesia 2012, 67, 508–513. [Google Scholar] [CrossRef]
- Meng, L. Heterogeneous Impact of Hypotension on Organ Perfusion and Outcomes: A Narrative Review. Br. J. Anaesth. 2021, 127, 845–861. [Google Scholar] [CrossRef]
- Gola, W.; Bialka, S.; Zajac, M.; Misiolek, H. Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade. Int. J. Environ. Res. Public Health 2022, 19, 12223. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Niewiadomska, E.; Krawczyk, L.; Dobrowolski, D.; Grabarek, B.O.; Kawka, M.; Rejdak, R.; Szumera, I.; et al. Adequacy of Anaesthesia for Nociception Detection during Vitreoretinal Surgery. Life 2023, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Stasiowski, M.J.; Szumera, I.; Wardas, P.; Król, S.; Żak, J.; Missir, A.; Pluta, A.; Niewiadomska, E.; Krawczyk, L.; Jałowiecki, P.; et al. Adequacy of Anesthesia and Pupillometry for Endoscopic Sinus Surgery. J. Clin. Med. 2021, 10, 4683. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; Jacob, M.; Hofmann-Kiefer, K.; Conzen, P.; Rehm, M. A Rational Approach to Perioperative Fluid Management. Anesthesiology 2008, 109, 723–740. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.X.C.; George, R.B.; Beattie, W.S. Making Sense of the Impact of Intraoperative Hypotension: From Populations to the Individual Patient. Br. J. Anaesth. 2018, 121, 689–691. [Google Scholar] [CrossRef]
- Misiołek, H.; Cettler, M.; Woroń, J.; Wordliczek, J.; Dobrogowski, J.; Mayzner-Zawadzka, E. The 2014 Guidelines for Post-Operative Pain Management. Anaesthesiol. Intensive Ther. 2014, 46, 221–244. [Google Scholar] [CrossRef]
- Misiołek, H.; Zajączkowska, R.; Daszkiewicz, A.; Woroń, J.; Dobrogowski, J.; Wordliczek, J.; Owczuk, R. Postoperative Pain Management—2018 Consensus Statement of the Section of Regional Anaesthesia and Pain Therapy of the Polish Society of Anaesthesiology and Intensive Therapy, the Polish Society of Regional Anaesthesia and Pain Therapy, the Polish Association for the Study of Pain and the National Consultant in Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive Ther. 2018, 50, 173–199. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
Data | Total N = 57 (100%) | RPV Group N = 20 (35%) | BPV Group N = 19 (33%) | MT Group N = 18 (32%) | p-Value | |
---|---|---|---|---|---|---|
Gender N (%) | female | 10 (17.5%) | 5 (25%) | 3 (15.8%) | 2 (11.1%) | 0.5 NS |
male | 47 (82.5%) | 15 (75%) | 16 (84.2%) | 16 (88.9%) | ||
Age X ± SD Me (IQR) | years | 66.6 ± 6.7 66 (9) | 66.6 ± 6.8 67 (11) | 66.5 ± 7.1 66 (8) | 66.8 ± 6.4 66 (8.5) | 1.0 NS |
Height X ± SD Me (IQR) | centimeters | 172.3 ± 6.2 174 (6) | 171.8 ± 6.5 174 (11) | 171.5 ± 7 173 (7) | 173.7 ± 4.8 174 (6) | 0.7 NS |
Weight X ± SD Me (IQR) | kilograms | 77.8 ± 13.6 80 (17) | 76.9 ±11 81 (20) | 79.4 ± 18.3 82 (26) | 77.4 ± 11.8 78 (15) | 0.8 NS |
BMI X ± SD Me (IQR) | kilograms/meter2 | 26.2 ± 4.1 25.8 (4.6) | 26.1 ± 3.4 25.6 (4.5) | 26.8 ± 5.1 26 (7.2) | 25.7 ± 4 25.8 (4.1) | 0.7 NS |
DM N (%) | yes | 11 (19.3%) | 3 (15%) | 3 (15.8%) | 5 (27.8%) | 0.5 NS |
Parameter | Total N = 57 (100%) | RPV Group N = 20 (35%) | BPV Group N = 19 (33%) | MT Group N = 18 (32%) | p-Value | |
---|---|---|---|---|---|---|
Time of OLIAAR X ± SD Me (IQR) | min | 124.1 ± 44.8 113 (41) | 137.2 ± 44.4 131.5 (39.5) | 116.6 ± 51.5 108 (62) | 117.6 ± 35.8 108 (44) | 0.3 NS |
Number of patients requiring IROA administration using FNT | N (%) | 46 (81%) | 15 (75%) | 14 (74%) | 17 (94%) | 0.2 NS |
Intraoperative need for IROA administration using FNT X ± SD Me (IQR) | mcg | 196.5 ± 162.5 200 (200) | 137.5 ± 115.7 125 (150) | 147.4 ± 125.2 100 (300) | 313.9 ± 184.6 300 (250) | RPV vs. MT, p = 0.07 BPV vs. MT, p = 0.02 |
Intraoperative fluid therapy volume X ± SD Me (IQR) | mL | 4251 ± 925.3 4500 (1340) | 4208.2 ± 852.4 4540 (1000) | 4341.5 ± 1053.9 4500 (1500) | 4220 ± 949.2 4320 (1040) | 0.8 NS |
Demand for intraoperative red blood cell transfusion (red blood cell concentrate plus cell saver) X ± SD Me (IQR) | mL | 671 ± 671.3 477 (544) | 630.4 ± 659.6 454 (332) | 620.8 ± 593.8 500 (420) | 766.8 ± 784.2 462.5 (1048) | 0.9 NS |
Number of patients requiring intraoperative rescue atropine | N (%) | 13 (23%) | 3 (15%) | 6 (32%) | 4 (22%) | 0.5 NS |
Demand for intraoperative dose of rescue atropine X ± SD Me (IQR) | mcg | 569.2 ± 154.8 500 (0) | 533.3 ± 57.7 500 (100) | 633.3 ± 216 500 (300) | 500 ± 0 500 (0) | 0.4 NS |
Number of patients requiring intraoperative rescue ephedrine | N (%) | 29 (51%) | 12 (60%) | 10 (53%) | 7 (39%) | 0.5 NS |
Demand for intraoperative dose of rescue ephedrine X ± SD Me (IQR) | mg | 25.6 ± 14.4 25 (10) | 25.2 ± 13.8 25 (3.6) | 25.8 ± 13.9 25 (10) | 24.6 ± 17.8 15 (22.5) | 0.9 NS |
Number of patients requiring intraoperative rescue urapidil | N (%) | 10 (18%) | 3 (15%) | 3 (16%) | 4 (22%) | 0.8 NS |
Demand for intraoperative dose of rescue urapidil X ± SD Me (IQR) | mg | 16.3 ± 13.2 10 (10) | 13.3 ± 5.8 10 (10) | 24.2 ± 22.4 12.5 (40) | 12.5 ± 8.7 10 (10) | 0.5 NS |
Data | Total N = 57 (100%) | RPV Group N = 20 (35%) | BPV Group N = 19 (33%) | MT Group N = 18 (32%) | p-Value | |
---|---|---|---|---|---|---|
NPRS max X ± SD Me (IQR) | [1 ÷ 10] | 3.2 ± 3.3 3 (5.5) | 2 ± 2.4 0 (5) | 3.2 ± 3.5 2.5 (7) | 4.4 ± 3.6 5 (7) | 0.1 NS |
NPRS min X ± SD Me (IQR) | [1 ÷ 10] | 1.7 ± 1.9 0 (3) | 1.2 ± 1.6 0 (3) | 1.6 ± 2.1 0 (3) | 2.4 ± 1.9 3 (4) | 0.1 NS |
Type of first postoperative pain perception N (%) | mild | 29 (51%) | 14 (70%) | 9 (47%) | 6 (33%) | 0.07 NS |
moderate | 16 (28%) | 6 (30%) | 4 (21%) | 6 (33%) | 0.7 NS | |
acute | 12 (21%) | 0 (0%) | 6 (32%) | 6 (33%) | 1.0 NS | |
IPPP | 28 (49%) | 6 (30%) | 10 (52%) | 12 (67%) | 0.7 NS | |
PHHPS during mild pain perception | [1 ÷ 4] | 0.8 ± 0.6 1 (1) | 0.9 ± 0.4 1 (0) | 0.7 ± 0.6 1 (1) | 0.8 ± 0.9 1 (1) | 0.5 NS |
PHHPS during moderate pain perception | [1 ÷ 4] | 2.6 ± 0.6 3 (1) | 2.6 ± 0.5 3 (1) | 2.7 ± 0.5 3 (1) | 2.5 ± 0.7 3 (1) | 0.8 NS |
PHHPS during acute pain perception | [1 ÷ 4] | 3.6 ± 0.7 4 (1) | - | 3.6 ± 0.5 4 (1) | 3.7 ± 0.8 4 (0) | 1.0 NS |
Number of patients requiring postoperative rescue morphine in the PACU | N (%) | 28 (49%) | 6 (30%) | 10 (52%) | 12 (67%) | 0.7 NS |
Dose of postoperative morphine required in the PACU X ± SD Me (IQR) | mg | 7.9 ± 5.3 8 (8) | 4 ± 3.1 3 (2) | 7.7 ± 4.8 8 (8) | 10 ± 5.7 10 (9) | 0.1 NS |
Parameter X ± SD Me (IQR) | Total N = 57 (100%) | RPV Group N = 20 (35%) | BPV Group N = 19 (33%) | MT Group N = 18 (32%) | p-Value |
---|---|---|---|---|---|
Stage 1 | |||||
HR (beats/min) | 72.1 ± 12.9 69 (15) | 75 ± 10.3 74.5 (13.5) | 70.9 ± 16.9 67 (24) | 69.9 ± 10.5 67 (10) | 0.2 NS |
SAP (mmHg) | 151.7 ± 24 154 (37) | 153.7 ± 25.5 158 (38) | 153.2 ± 23.1 154 (47) | 148.1 ± 24.2 150 (38) | 0.8 NS |
MAP (mmHg) | 108 ±14.2 110 (22) | 109.2 ± 17.4 117 (24.5) | 108.6 ± 11.6 111 (20) | 106.2 ± 13.4 107 (18) | 0.5 NS |
DAP (mmHg) | 78.5 ± 10.5 77 (15) | 80.4 ± 12.8 80.5 (15) | 76.9 ± 8.4 76 (10) | 78.3 ± 9.9 80.5 (16) | 0.6 NS |
SE | 87.8 ± 7.2 89 (1.5) | 89.7 ± 1.2 90 (1.5) | 87.8 ± 4.4 89 (3) | 85.6 ± 12 89 (5) | 0.08 NS |
SPI | 61.6 ± 16.4 66 (23) | 63 ± 18.6 70 (30) | 60.3 ± 18.6 66 (24) | 61.4 ± 11.4 64 (18) | 0.7 NS |
Stage 2 | |||||
mean HR (beats/min) | 66.7 ± 12.7 64.8 (16.7) | 68.4 ± 9.6 69.4 (14.8) | 69.5 ± 16.7 68.5 (20.6) | 61.7 ± 9.7 60 (12.8) | 0.09 NS |
mean SAP (mmHg) | 116 ± 21.9 111 (27.5) | 119.6 ± 23.1 113.8 (39.2) | 121.2 ± 23.1 116.5 (36.5) | 106.4 ±16.7 104.5 (24) | 0.1 NS |
mean MAP (mmHg) | 84.9 ± 14.9 82 (17) | 89.2 ± 17.2 86.3 (21.1) | 87.2 ± 14.1 83.5 (19) | 77.6 ± 10.5 78.2 (14) | 0.05 NS |
mean DAP (mmHg) | 64 ± 11.3 64 (13.3) | 65.1 ± 8.1 65.4 (11.3) | 67.8 ± 14.9 64 (21.3) | 58.8 ± 8.3 57.7 (13) | 0.05 NS |
mean SE | 46.7 ± 7.4 48.3 (7.8) | 46.4 ± 9.1 47 (8.8) | 46.1 ± 6.9 46.4 (8.3) | 47.8 ± 6 49.6 (4.7) | 0.8 NS |
mean SPI | 33.4 ± 13.7 31.1 (16.4) | 35.8 ± 11.7 32.4 (12.2) | 35.9 ± 16.7 30.3 (23.5) | 28.1 ± 11.1 26.8 (17.2) | 0.2 NS |
mean FiAA | 2.2 ± 3.5 1.7 (0.3) | 3 ± 5.8 1.7 (0.9) | 1.7 ± 0.2 1.7 (0.2) | 1.8 ± 0.3 1.8 (0.2) | 0.4 NS |
mean FeAA | 1.4 ± 0.3 1.3 (0.4) | 1.4 ± 0.4 1.4 (0.6) | 1.3 ± 0.2 1.2 (0.3) | 1.4 ± 0.3 1.4 (0.2) | 0.2 NS |
mean MAC | 0.7 ± 0.1 0.7 (0.2) | 0.7 ± 0.2 0.7 (0.3) | 0.7 ± 0.1 0.6 (0.2) | 0.7 ± 0.1 0.7 (0.1) | 0.2 NS |
Stage 3—OLIAAR | |||||
mean HR (beats/min) | 65.4 ± 9.6 63 (11.7) | 66 ± 8 64.3 (10.5) | 65.5 ± 12.1 62 (8.3) | 64.7 ± 8.8 63.4 (16.8) | 0.5 NS |
mean SAP (mmHg) | 114.6 ± 18.7 113.8 (21.2) | 107.5 ± 12.9 106.1 (18.4) | 108.6 ± 19.2 106 (33.7) | 128.9 ± 16.2 123 (29.1) | RPV vs. MT, p = 0.001 BPV vs. MT, p = 0.004 |
mean MAP (mmHg) | 83.9 ± 11.4 83.7 (15.7) | 79.8 ± 8.5 80 (12.2) | 79.8 ± 11.5 79.4 (20.3) | 93 ± 9.3 90.3 (17.1) | RPV vs. MT, p = 0.001 BPV vs. MT, p = 0.002 |
mean DAP (mmHg) | 63.3 ± 9.3 63.8 (11.2) | 60.1 ± 8.1 60.8 (9.8) | 60.5 ± 9 62.6 (12.3) | 69.8 ± 7.6 67.3 (10.4) | RPV vs. MT, p = 0.002 BPV vs. MT, p = 0.007 |
mean SE | 43.5 ± 7.2 43.9 (7.7) | 44.5 ± 7.8 44.1 (4.1) | 44.2 ± 6.6 45.2 (9.4) | 41.6 ± 7.2 40.5 (10.8) | 0.4 NS |
mean SPI | 40.3 ± 11.6 40.5 (18.6) | 42.3 ± 11.5 43.4 (20.8) | 37.4 ± 10.8 35.9 (14.2) | 41.2 ± 12.5 41.7 (15.5) | 0.3 NS |
mean FiAA | 1.5 ± 0.3 1.5 (0.4) | 1.6 ± 0.3 1.6 (0.4) | 1.5 ± 0.3 1.5 (0.5) | 1.6 ± 0.3 1.5 (0.4) | 0.6 NS |
mean FeAA | 1.3 ±0.2 1.3 (0.3) | 1.3 ± 0.2 1.4 (0.4) | 1.3 ± 0.3 1.4 (0.4) | 1.3 ± 0.2 1.3 (0.3) | 0.9 NS |
mean MAC | 0.7 ± 0.2 0.7 (0.2) | 0.7 ± 0.1 0.7 (0.2) | 0.7 ± 0.3 0.6 (0.2) | 0.7 ± 0.1 0.7 (0.2) | 0.3 NS |
Stage 4—PACU | |||||
mean HR (beats/min) | 70.5 ± 14.9 68.9 (17.7) | 70.4 ± 12 69.9 (18.3) | 69.2 ± 16.9 67.5 (24) | 71.9 ± 16.1 68.1 (17.7) | 0.8 NS |
mean SAP (mmHg) | 130.9 ± 22.9 128.3 (27.9) | 125.7 ± 19.8 124.7 (29.3) | 123 ± 22.1 127 (31.3) | 145.1 ± 21.5 144.1 (24) | RPV vs. MT, p = 0.03 BPV vs. MT, p = 0.01 |
mean MAP (mmHg) | 94.2 ± 13.7 93.5 (14.9) | 92.4 ± 14.3 89.5 (16.6) | 90 ± 13.1 92.5 (18.4) | 100.5 ± 12.2 99.6 (13.4) | 0.05 NS |
mean DAP (mmHg) | 68.6 ± 11.1 68.3 (14) | 66 ± 11.7 67.4 (15.5) | 67.2 ± 10.9 68 (14.4) | 72.9 ± 10 71.8 (10.3) | 0.1 NS |
mean SPI | 56.9 ± 12.3 54.7 (15.9) | 54.5 ± 9.1 53 (14.9) | 55.1 ± 14.4 54.4 (14.2) | 61.6 ± 12.3 62.8 (20.7) | 0.2 NS |
Parameter X ± SD Me (IQR) | Total N = 57 (100%) | RPV Group N = 20 (35%) | BPV Group N = 19 (33%) | MT Group N = 18 (32%) | p-Value |
---|---|---|---|---|---|
Stage 2 | |||||
max HR (beats/min) | 79.4 ± 15.1 80 (23) | 82 ± 14.9 81 (24.5) | 83 ± 15.5 82 (22) | 72.7 ± 13.3 73 (20) | 0.1 NS |
max SAP (mmHg) | 135 ± 25.3 134 (37) | 138.8 ± 28.5 137.5 (45.5) | 137.1 ± 24.2 141 (38) | 128.8 ± 22.9 127 (26) | 0.4 NS |
max MAP (mmHg) | 96.8 ± 15.3 93 (22) | 99.8 ± 16 103 (26.5) | 98.2 ± 17.1 99 (21) | 92.1 ± 11.9 92.5 (14) | 0.2 NS |
max DAP (mmHg) | 74.1 ± 13.1 72 (16) | 74.7 ± 11.5 77 (19.5) | 76.7 ± 17.6 73 (19) | 70.8 ± 8.4 71 (7) | 0.6 NS |
max SE | 55 ± 11.2 55 (12) | 54.7 ± 10.2 56 (30) | 53.6 ± 11.1 54 (16) | 56.9 ± 12.7 54 (6) | 0.8 NS |
max SPI | 53.9 ± 17.9 53 (27) | 59.5 ± 18.8 59 (30) | 55.1 ± 16.1 54 (25) | 46.6 ± 17.1 47.5 (6) | 0.1 NS |
max FiAA | 2 ± 0.4 1.9 (0.5) | 2 ± 0.4 2.1 (0.7) | 1.9 ± 0.3 1.9 (0.3) | 2 ± 0.3 1.9 (0.2) | 0.4 NS |
max FeAA | 1.5 ± 0.3 1.5 (0.5) | 1.6 ± 0.4 1.7 (0.7) | 1.5 ± 0.3 1.5 (0.4) | 1.6 ± 0.2 1.5 (0.2) | 0.4 NS |
max MAC | 0.8 ± 0.1 0.8 (0.2) | 0.8 ± 0.2 0.9 (0.4) | 0.8 ± 0.1 0.7 (0.1) | 0.8 ± 0.1 0.8 (0.2) | 0.3 NS |
min HR (beats/min) | 59.9 ± 12.1 59 (14.3) | 60.4 ± 9.2 59.5 (10) | 63.9 ± 15.8 62 (42) | 55.1 ± 9 52.5 (13) | 0.1 NS |
min SAP (mmHg) | 101.6 ± 22.4 99 (31) | 103.5 ± 19 100.5 (26.5) | 109 ± 25.9 104 (42) | 91.7 ± 19.1 91.5 (30) | 0.1 NS |
min MAP (mmHg) | 74.1 ± 13.6 75 (17) | 76.2 ± 11.6 76.5 (17) | 78 ± 14.7 77 (28) | 67.8 ± 13 68.5 (17) | 0.1 NS |
min DAP (mmHg) | 55.9 ± 11.9 56 (14) | 56.7 ± 9 57 (13.5) | 60.5 ± 13.6 58 (25) | 50.3 ± 11.2 48.5 (15) | 0.1 NS |
min SE | 38.9 ± 9.1 40 (10) | 38.4 ± 10.2 42 (9) | 38.1 ± 9.1 38 (9) | 40.7 ± 8 41 (11) | 0.5 NS |
min SPI | 20.4 ± 11.8 17 (11) | 19.5 ± 6.7 18.5 (12) | 23.9 ± 16.5 17 (20) | 17.8 ± 10 14.5 (11) | 0.5 NS |
min FiAA | 1.6 ± 0.4 1.6 (0.5) | 1.6 ± 0.5 1.7 (0.9) | 1.5 ± 0.3 1.5 (0.3) | 1.7 ± 0.4 1.6 (0.3) | 0.4 NS |
min FeAA | 1.2 ± 0.3 1.2 (0.4) | 1.2 ± 0.4 1.3 (0.7) | 1.1 ± 0.2 1.1 (0.3) | 1.3 ± 0.3 1.3 (0.5) | 0.1 NS |
min MAC | 0.6 ± 0.2 0.6 (0.2) | 0.6 ± 0.2 0.7 (0.3) | 0.5 ± 0.1 0.6 (0.3) | 0.7 ± 0.1 0.7 (0.1) | 0.1 NS |
Stage 3—OLIAAR | |||||
max HR (beats/min) | 84.4 ± 15.5 82 (19) | 86.4 ± 15.6 83 (21.5) | 85.5 ± 18.2 78 (16) | 80.9 ± 12.1 82.5 (19) | 0.6 NS |
max SAP (mmHg) | 154.4 ± 28.3 152 (40) | 146.5 ± 25.1 147 (48) | 148.1 ± 27.2 150 (43) | 169.8 ± 27.8 169 (42) | 0.05 NS |
max MAP (mmHg) | 110.7 ± 18.1 109 (23) | 106.4 ± 16 107.5 (25.5) | 107.1 ± 17 104 (21) | 119.3 ± 19.2 115.5 (28) | 0.1 NS |
max DAP (mmHg) | 85.4 ± 14.6 84 (17) | 82.5 ± 13.7 85 (17) | 83.7 ± 15 79 (19) | 90.3 ± 14.7 86 (20) | 0.4 NS |
max SE | 58.7 ± 12.9 56 (12.5) | 60.1 ± 12.5 56 (11.5) | 58.6 ± 11.6 56 (11) | 57.2 ± 15 54 (15) | 0.5 NS |
max SPI | 73.1 ± 13.8 76 (16) | 74.3 ± 15.3 78.5 (12) | 72.3 ± 10.7 76 (10) | 72.7 ± 15.7 75 (25) | 0.5 NS |
max FiAA | 2 ± 0.4 2 (0.4) | 2.1 ± 0.3 2.1 (0.4) | 1.9 ± 0.4 2 (0.5) | 2.1 ± 0.4 2 (0.4) | 0.1 NS |
max FeAA | 1.7 ± 0.3 1.7 (0.4) | 1.7 ± 0.2 1.7 (0.3) | 1.6 ± 0.3 1.6 (0.5) | 1.7 ± 0.3 1.7 (0.5) | 0.4 NS |
max MAC | 0.9 ± 0.2 0.9 (0.2) | 0.9 ± 0.3 0.9 (0.2) | 0.9 ± 0.3 0.8 (0.3) | 0.9 ± 0.2 0.9 (0.2) | 0.6 NS |
min HR (beats/min) | 53.6 ± 9.7 53 (10) | 54 ± 6.3 53.5 (9) | 54.5 ± 13.6 54 (11) | 52.4 ± 8 50 (12) | 0.6 NS |
min SAP (mmHg) | 82.7 ± 17.4 80 (19) | 75.6 ± 10.9 77 (18.5) | 80.9 ± 17.2 80 (17) | 92.6 ± 19.6 91 (30) | RPV vs. MT, p = 0.01 |
min MAP (mmHg) | 62.2 ± 11.4 61 (15) | 57.9 ± 8.2 58 (9) | 60.1 ± 11.7 58 (13) | 69.4 ± 11.4 69 (14) | RPV vs. MT, p = 0.008 BPV vs. MT, p = 0.03 |
min DAP (mmHg) | 47.3 ± 8.5 46 (10) | 44.3 ± 6.5 44.5 (7) | 45.6 ± 8.2 46 (13) | 52.4 ± 8.8 51.5 (10) | RPV vs. MT, p = 0.008 |
min SE | 32.4 ± 8.3 32 (14) | 32 ± 8.9 31 (15) | 33.2 ± 7.7 37 (13) | 32.1 ± 8.5 33 (6) | 0.8 NS |
min SPI | 14.7 ± 7.8 13 (8) | 15.8 ± 6.1 15.5 (9) | 13.2 ± 9.7 11 (6) | 15.1 ± 7.3 12.5 (12) | 0.2 NS |
min FiAA | 1.2 ± 0.3 1.2 (0.4) | 1.2 ± 0.3 1.2 (0.4) | 1.2 ± 0.3 1.1 (0.6) | 1.2 ± 0.4 1.2 (0.5) | 0.9 NS |
min FeAA | 1 ± 0.3 1 (0.3) | 1 ± 0.2 1.1 (0.3) | 1 ± 0.3 0.9 (0.4) | 1 ± 0.3 1.1 (0.3) | 0.8 NS |
min MAC | 0.5 ± 0.1 0.5 (0.2) | 0.5 ± 1.1 0.6 (0.2) | 0.5 ± 0.1 0.5 (0.2) | 0.5 ± 0.2 0.5 (0.2) | 0.5 NS |
Stage 4—Post-Anesthesia Care Unit | |||||
max HR (beats/min) | 78.7 ± 15.9 75.3 (20) | 78.2 ± 14.9 79.5 (19.8) | 79.3 ± 18.4 75.3 (28.5) | 78.6 ± 14.9 72.3 (13.5) | 1.0 NS |
max SAP (mmHg) | 143.5 ± 23.4 142 (28.5) | 139.2 ± 21.7 139 (25.8) | 137.1 ± 24.6 137.7 (36) | 155.1 ± 20.8 157.8 (29) | 0.5 NS |
max MAP (mmHg) | 103.2 ± 14.5 105 (18.5) | 101.9 ± 16.4 103.3 (24.5) | 99.6 ± 13.7 101 (20.5) | 108.5 ± 12.1 108.8 (13) | 0.2 NS |
max DAP (mmHg) | 75.4 ± 11.9 75 (13) | 73.6 ± 13.8 72.5 (16.5) | 75 ± 11.4 75.5 (14) | 77.6 ± 10.3 77.1 (12) | 0.6 NS |
max SPI | 70.6 ± 12.8 71 (13) | 67.2 ± 9.3 67 (14.5) | 71.9 ± 17.2 74.3 (20) | 73.2 ± 10.4 71.8 (11.3) | 0.2 NS |
min HR (beats/min) | 64 ± 15 60 (18) | 64.2 ± 11.8 62 (19.3) | 60.7 ± 15.5 61 (23.5) | 67.3 ± 17.5 59 (20) | 0.4 NS |
min SAP (mmHg) | 119.2 ± 24.6 118 (32) | 112.7 ± 20.9 114 (27) | 109.4 ± 22 109 (29) | 136.6 ± 22.6 137.5 (20.5) | RPV vs. MT, p = 0.01; BPV vs. MT, p = 0.002 |
min MAP (mmHg) | 86.5 ± 14.6 86.5 (20) | 84.2 ± 14.9 82.5 (17.5) | 81.2 ± 13.6 80 (19) | 94.6 ± 12.3 95 (14.5) | BPV vs. MT, p = 0.02 |
min DAP (mmHg) | 61 ± 12.2 63.7 (18.5) | 55.5 ± 12.8 51.3 (18.5) | 60 ± 10.7 59 (13.5) | 68.1 ± 9.9 67.5 (6.8) | RPV vs. MT, p = 0.006 |
min SPI | 44.2 ± 14.1 43 (17) | 42.5 ± 10.3 43 (13.5) | 39.6 ± 15.6 41.3 (20) | 50.8 ± 14.4 50.8 (24) | 0.08 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiowski, M.J.; Król, S.; Wodecki, P.; Zmarzły, N.; Grabarek, B.O. Adequacy of Anesthesia Guidance for Combined General/Epidural Anesthesia in Patients Undergoing Open Abdominal Infrarenal Aortic Aneurysm Repair; Preliminary Report on Hemodynamic Stability and Pain Perception. Pharmaceuticals 2024, 17, 1497. https://doi.org/10.3390/ph17111497
Stasiowski MJ, Król S, Wodecki P, Zmarzły N, Grabarek BO. Adequacy of Anesthesia Guidance for Combined General/Epidural Anesthesia in Patients Undergoing Open Abdominal Infrarenal Aortic Aneurysm Repair; Preliminary Report on Hemodynamic Stability and Pain Perception. Pharmaceuticals. 2024; 17(11):1497. https://doi.org/10.3390/ph17111497
Chicago/Turabian StyleStasiowski, Michał Jan, Seweryn Król, Paweł Wodecki, Nikola Zmarzły, and Beniamin Oskar Grabarek. 2024. "Adequacy of Anesthesia Guidance for Combined General/Epidural Anesthesia in Patients Undergoing Open Abdominal Infrarenal Aortic Aneurysm Repair; Preliminary Report on Hemodynamic Stability and Pain Perception" Pharmaceuticals 17, no. 11: 1497. https://doi.org/10.3390/ph17111497
APA StyleStasiowski, M. J., Król, S., Wodecki, P., Zmarzły, N., & Grabarek, B. O. (2024). Adequacy of Anesthesia Guidance for Combined General/Epidural Anesthesia in Patients Undergoing Open Abdominal Infrarenal Aortic Aneurysm Repair; Preliminary Report on Hemodynamic Stability and Pain Perception. Pharmaceuticals, 17(11), 1497. https://doi.org/10.3390/ph17111497