Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Data Analysis
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leeb-Lundberg, L.M.; Marceau, F.; Müller-Esterl, W.; Pettibone, D.J.; Zuraw, B.L. International union of pharmacology. XLV. Classification of the kinin receptor family: From molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 2005, 57, 27–77. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.A. Novel potential treatment modalities for ocular hypertension: Focus on angiotensin and bradykinin system axes. J. Ocul. Pharmacol. Ther. 2015, 31, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Regoli, D.; Gobeil, F. Kinins and peptide receptors. Biol. Chem. 2016, 397, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.X.; Song, Q.; Hatcher, H.C.; Crouch, R.K.; Chao, L.; Chao, J. Expression and cellular localization of the kallikrein-kinin system in human ocular tissues. Exp. Eye Res. 1996, 63, 19–26. [Google Scholar] [CrossRef]
- Webb, J.G.; Husain, S.; Yates, P.W.; Crosson, C.E. Kinin modulation of conventional outflow facility in the bovine eye. J. Ocul. Pharmacol. Ther. 2006, 22, 310–316. [Google Scholar] [CrossRef]
- Webb, J.G. The kallikrein/kinin system in ocular function. J. Ocul. Pharmacol. Ther. 2011, 27, 539–543. [Google Scholar] [CrossRef]
- Wiernas, T.K.; Griffin, B.W.; Sharif, N.A. The expression of functionally coupled bradykinin receptors in human corneal epithelial cells and their pharmacological characterization with agonists and antagonists. Br. J. Pharmacol. 1997, 121, 649–656. [Google Scholar] [CrossRef]
- Sharif, N.A. Prospects of treating ocular hypertension and glaucoma with peptidic and non-peptide kinin mimetic drugs. JOJ Ophthalmol. 2017, 3, 555601. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Fernandes, V.S.; Martínez, M.P.; López-Oliva, M.E.; Barahona, M.V.; Recio, P.; Martínez, A.C.; Blaha, I.; Orensanz, L.M.; Bustamante, S.; et al. Pre-and post-junctional bradykinin B2 receptors regulate smooth muscle tension to the pig intravesical ureter. Neurourol. Urodynam. 2016, 35, 115–121. [Google Scholar] [CrossRef]
- Borsodi, K.; Balla, H.; Molnár, P.J.; Lénárt, Á.; Kenessey, I.; Horváth, A.; Keszthelyi, A.; Romics, M.; Majoros, A.; Nyirády, P.; et al. Signaling pathways mediating bradykinin-induced contraction in murine and human detrusor muscle. Front. Med. 2022, 8, 745638. [Google Scholar] [CrossRef]
- Masuda, H.; Goto, M.; Tamaoki, S.; Kamikawatoko, S.; Tokoro, T.; Azuma, H. M3-type muscarinic receptors predominantly mediate neurogenic quick contraction of bovine ciliary muscle. Gen. Pharmacol. 1998, 30, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, R.; Takai, Y.; Miyazu, M.; Ohinata, H.; Yoshida, A.; Takai, A. Agonist and antagonist sensitivity of non-selective cation channel currents evoked by muscarinic receptor stimulation in bovine ciliary muscle cells. Auton. Autacoid Pharmacol. 2006, 26, 285–292. [Google Scholar] [CrossRef]
- Lograno, M.D.; Daniele, E.; Trabucchi, M.; Govoni, S. Evidence for protein kinase C modulation of the ciliary muscle response to carbachol and desensitization. Eur. J. Pharmacol. 1991, 204, 49–53. [Google Scholar] [CrossRef]
- Ohia, S.E.; Njie-Mbye, Y.F.; Robinson, J.; Mitchell, L.; Mckoy, M.; Opere, C.A.; Sharif, N.A. Serotonin-2B/2C receptors-mediate bovine ciliary muscle contraction: Role in IOP regulation. J. Ocular Pharmacol. Ther. 2018, 34, 70–75. [Google Scholar] [CrossRef]
- Millar, C.; Poyer, J.F.; Gabelt, B.T.; Kaufman, P.L. Endothelin subtypes: Effect on isolated rhesus monkey ciliary muscle. J. Pharmacol. Exp. Ther. 1995, 275, 1143–1147. [Google Scholar]
- Wiederholt, M.; Schäfer, R.; Wagner, U.; Lepple-Wienhues, A. Contractile response of the isolated trabecular meshwork and ciliary muscle to cholinergic and adrenergic agents. Ger. J. Ophthalmol. 1996, 5, 146–153. [Google Scholar]
- Field, J.L.; Hall, J.M.; Morton, I.K. Bradykinin receptors in the guinea pig taenia caeci are similar to proposed BK3 receptors in the guinea pig trachea and are blocked by HOE 140. Br. J. Pharmacol. 1992, 105, 293–296. [Google Scholar] [CrossRef]
- Field, J.L.; Butt, S.K.; Morton, I.K.; Hall, J.M. Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of the guinea pig taenia caeci. Br. J. Pharmacol. 1994, 113, 607–613. [Google Scholar] [CrossRef]
- Butt, S.K.; Dawson, L.G.; Hall, J.M. Bradykinin B1 receptors in the rabbit urinary bladder: Induction of responses, smooth muscle contraction, and phosphatidylinositol hydrolysis. Br. J. Pharmacol. 1995, 114, 612–617. [Google Scholar] [CrossRef]
- Regoli, D.; Gobeil, F.; Nguyen, Q.T.; Jukic, D.; Seoane, P.R.; Salvino, J.M.; Sawutz, D.G. Bradykinin receptor types and B2 subtypes. Life Sci. 1994, 55, 735–749. [Google Scholar] [CrossRef]
- Wirth, K.J.; Schölkens, B.A.; Wiemer, G. The bradykinin B2 receptor antagonist WIN 64338 inhibits the effect of des-Arg9-bradykinin in endothelial cells. Eur. J. Pharmacol. 1994, 288, R1–R2. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.; Sales, V.M.; Merino, V.F.; Bader, M.; Feres, T.; Pesquero, J.B. Role of endothelial kinin B1 receptor on the membrane potential of transgenic rat aorta. Physiol. Res. 2022, 71, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Marceau, F.; Bachelard, H. A robust bioassay of the human bradykinin B2 receptor that extends molecular and cellular studies: The isolated umbilical vein. Pharmaceuticals 2021, 14, 177. [Google Scholar] [CrossRef]
- McLean, P.G.; Perretti, M.; Ahluwalia, A. Kinin B(1) receptors and the cardiovascular system: Regulation of expression and function. Cardiovasc. Res. 2000, 48, 194–210. [Google Scholar] [CrossRef]
- Meini, S.; Lecci, A.; Maggi, C.A. The longitudinal muscle of rat ileum as a sensitive monoreceptor assay for bradykinin B1 receptors. Br. J. Pharmacol. 1996, 117, 1619–1624. [Google Scholar] [CrossRef]
- Husain, S.; Abdel-Latif, A.A. Protein kinase C isoforms in iris sphincter smooth muscle: Differential effects of phorbol ester on contraction and cAMP accumulation are species specific. Curr. Eye Res. 1996, 15, 329–334. [Google Scholar] [CrossRef]
- Webb, R.C. Smooth muscle contraction and relaxation. Am. J. Physiol. Adv. Physiol. Educ. 2003, 27, 201–206. [Google Scholar] [CrossRef]
- Tamm, E.R.; Lütjen-Drecoll, E. Ciliary body. Microsc. Res. Tech. 1996, 33, 390–439. [Google Scholar] [CrossRef]
- Acott, T.S.; Vranka, J.A.; Keller, K.E.; Raghunathan, V.; Kelley, M.J. Normal and glaucomatous outflow regulation. Prog. Retin. Eye Res. 2021, 82, 100897. [Google Scholar] [CrossRef]
- Bynke, G.; Håkanson, R.; Hörig, J.; Leander, S. Bradykinin contracts the pupillary sphincter and evokes ocular inflammation through release of neuronal substance P. Eur. J. Pharmacol. 1983, 91, 469–475. [Google Scholar] [CrossRef]
- Sharif, N.A.; Choudry, N.; Chaudhry, S.D.; Abraham, A. Eye disease genetics and therapeutics. In Advances in Vision Research, Volume IV: From Basic to Translations Research—Developing Therapeutics and Diagnostics for Genetic Eye Diseases, Essentials in Ophthalmology; Prakash, G., Iwata, T., Eds.; Springer: Singapore, 2024; Chapter 15; pp. 225–255. [Google Scholar] [CrossRef]
- Sharif, N.A.; Katoli, P.; Scott, D.; Li, L.; Kelly, C.R.; Xu, S.; Husain, S.; Toris, C.; Crosson, C. FR-190997, a non-peptide bradykinin B2-receptor partial agonist, is a potent and efficacious intraocular pressure lowering agent in ocular hypertensive cynomolgus monkeys. Drug Dev. Res. 2014, 5, 211–223. [Google Scholar] [CrossRef] [PubMed]
Kinin Agonist | Reported Receptor Selectivity [1,2,3,18,20] | Max. Tension Generated During Contraction (gm Tension) | Functional Contractile Activity Potency (EC50) | |
---|---|---|---|---|
High Affinity and Potency Phase | Low Affinity and Potency Phase | |||
Bradykinin (BK) | B2 > B1 | 0.07 ± 0.01 | 0.9 ± 0.3 nM | 100 ± 2.4 nM |
Met-Lys-BK | B2 > B1 | 0.06 ± 0.01 | 1.0 ± 0.1 nM | 100 ± 8.2 nM |
Lys-BK | B2 ≥ B1 | 0.06 ± 0.01 | 0.7 ± 0.1 nM | 500 ± 12.8 nM |
Hyp3-BK | B2 > B1 | 0.04 ± 0.01 | 1.0 ± 0.2 nM | 150 ± 9.0 nM |
RMP-7 | B2 > B1 | 0.07 ± 0.01 | 3.5 ± 0.5 nM | N/A |
Des-Arg9-BK | B1 > B2 | 0.06 ± 0.01 | 30 ± 1.9 nM | 3000 ± 72.0 nM |
Functional Potency Values in Various Tissues and Cells | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | BCM | GPTC | GPT | HUV | RUT | RWB | M/H BSTP | RI | hCM/hTM Cells | |||||||||
HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | HP Site | LP Site | |
BK | 0.9 nM | 100 nM | 3 nM | 1000 nM | 20 nM | 4000 nM | 9 nM | N/A | 3 nM | N/A | 90 nM | N/A | 1200/ 5100 nM | N/A | 4890 nM | N/A | 2.4/1 nM | N/A |
Des-Arg9-BK | 30 nM | 3000 nM | N/A | N/A | N/A | N/A | >1000 nM | N/A | >1000 nM | N/A | ND | ND | ND | ND | 18.6 nM | N/A | 4200/3600 nM | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharif, N.A.; Kulkarni-Chitnis, M.; Okolie, A.; Njie-Mbye, Y.F.; Ohia, S.E. Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction. Pharmaceuticals 2024, 17, 1501. https://doi.org/10.3390/ph17111501
Sharif NA, Kulkarni-Chitnis M, Okolie A, Njie-Mbye YF, Ohia SE. Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction. Pharmaceuticals. 2024; 17(11):1501. https://doi.org/10.3390/ph17111501
Chicago/Turabian StyleSharif, Najam A., Madura Kulkarni-Chitnis, Anthonia Okolie, Ya Fatou Njie-Mbye, and Sunny E. Ohia. 2024. "Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction" Pharmaceuticals 17, no. 11: 1501. https://doi.org/10.3390/ph17111501
APA StyleSharif, N. A., Kulkarni-Chitnis, M., Okolie, A., Njie-Mbye, Y. F., & Ohia, S. E. (2024). Kinin B1- and B2-Receptor Subtypes Contract Isolated Bovine Ciliary Muscle: Their Role in Ocular Lens Function and Intraocular Pressure Reduction. Pharmaceuticals, 17(11), 1501. https://doi.org/10.3390/ph17111501