The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom
Abstract
:1. Introduction
Pathophysiological Mechanisms and Clinical Implications
2. Etiology
3. Pathophysiology
4. Modern Pharmacological Management of Gout
4.1. Chemical Medications for Uric Acid Control
4.1.1. Xanthine Oxidase Inhibitors
- ➢
- Allopurinol and Oxypurinol
4.1.2. Uricosuric Agents
4.1.3. Conventional Approaches to Gout Management
- ➢
- Non-steroidal anti-inflammatory drugs (NSAIDs)
- ➢
- Colchicine
- ➢
- Biologic materials
4.2. Traditional Herbal Remedies for Gout Treatment
4.2.1. Traditional Chinese Herbal Medicine
4.2.2. Malaysian Medicinal Plants
4.3. Potential Drug-Herb Interactions
4.4. Phytochemicals and Their Potential in Uric Acid Reduction
5. Synergistic Effects of Combining Herbal and Chemical Treatments
6. Integrative Approaches to Managing Uric Acid and Gout
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheong, K.M.; Sriranganathan, M.K.; Lee, E.M. Impact of pharmacist-led collaborative gout clinic on timely achievement of serum uric acid goals. Proc. Singap. Health 2023, 32, 20101058231152048. [Google Scholar] [CrossRef]
- Beck, K.L.; Jones, B.; Ullah, I.; McNaughton, S.A.; Haslett, S.J.; Stonehouse, W. Associations between dietary patterns, socio-demographic factors, and anthropometric measurements in adult New Zealanders: An analysis of data from the 2008/09 New Zealand adult nutrition survey. Eur. J. Nutr. 2018, 57, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Dorris, E.R.; Kieran, M.; Dalbeth, N.; McCarthy, G. Pharmacist knowledge of gout management: Impact of an educational intervention. BMC Rheumatol. 2022, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, M.; Baraf, H.S.B.; Adamson, T.C.; Basile, J.; Bass, L.; Cole, B.; Doghramji, P.P.; Guadagnoli, G.A.; Hamburger, F.; Harford, R.; et al. 2011 Recommendations for the Diagnosis and Management of Gout and Hyperuricemia. Postgrad. Med. 2011, 123 (Suppl. 1), 3–36. [Google Scholar] [CrossRef]
- Sivakumar, K.; Thamarai, R.; Pragatha, R.J. Screening of serum uric acid in obese individuals in a rural population. Int. J. Sci. Study 2014, 2, 1–4. [Google Scholar]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Guan, S.; Wang, S.; Yu, C.; Yu, Y.; Li, B.; Zhang, Y.; Yang, W.; Wang, Z. Syn-COM: A Multi-Level Predictive Synergy Framework for Innovative Drug Combinations. Pharmaceuticals 2024, 17, 1230. [Google Scholar] [CrossRef]
- Brucato, A.; Cianci, F.; Carnovale, C. Management of hyperuricemia in asymptomatic patients: A critical appraisal. Eur. J. Intern. Med. 2020, 74, 8–17. [Google Scholar] [CrossRef]
- Waheed, Y.; Yang, F.; Sun, D. Role of asymptomatic hyperuricemia in the progression of chronic kidney disease and cardio-vascular disease. Korean J. Intern. Med. 2021, 36, 1281. [Google Scholar] [CrossRef]
- Kariminia, A.; Butler, T.; Jones, J.; Law, M. Increased mortality among Indigenous persons during and after release from prison in New South Wales. Aust. N. Z. J. Public Health 2012, 36, 274–280. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zeng, C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am. J. Transl. Res. 2020, 12, 3167–3181. [Google Scholar] [PubMed]
- A Singh, J. Disease modification in gout: A qualitative study of gout expert rheumatologists. Rheumatol. Adv. Pract. 2022, 6, rkab107. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, A.C. The long-term costs of traumatic stress: Intertwined physical and psychological consequences. World Psychiatry 2010, 9, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, X.; Wang, J.; Liu, H.; Kwong, J.S.-W.; Chen, H.; Li, L.; Chung, S.-C.; Shah, A.; Chen, Y.; et al. Diagnosis and treatment for hyperuricemia and gout: A systematic review of clinical practice guidelines and consensus statements. BMJ Open 2019, 9, e026677. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.A.; Barrouq, D.M.S.; Irshaidat, T. An Up-to-date Systematic Review on Real-world Evidence for the Management of Asymptomatic Hyperuricemia. J. Med. Res. 2023, 9, 96–103. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Shen, J.; Wei, Y.; Zhao, T.; Xiao, N.; Lv, X.; Qin, D.; Xu, Y.; Zhou, Y.; et al. Models of gouty nephropathy: Exploring disease mechanisms and identifying potential therapeutic targets. Front. Med. 2024, 11, 1305431. [Google Scholar] [CrossRef]
- Liu, W.; Peng, J.; Wu, Y.; Ye, Z.; Zong, Z.; Wu, R.; Li, H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int. Immunopharmacol. 2023, 121, 110466. [Google Scholar] [CrossRef]
- Jha, S.; Brickey, W.J.; Ting, J.P. Inflammasomes cells: Warriors within. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Bardin, T.; Richette, P. Impact of comorbidities on gout and hyperuricemia: An update on prevalence and treatment options. BMC Med. 2017, 15, 123. [Google Scholar] [CrossRef]
- Al-Worafi, Y.M. Gout and Hyperuricemia Management in Developing Countries. In Handbook of Medical and Health Sciences in Developing Countries: Education, Practice, and Research; Springer: Cham, Switzerland, 2024; pp. 1–42. [Google Scholar]
- Kuwabara, M.; Fukuuchi, T.; Aoki, Y.; Mizuta, E.; Ouchi, M.; Kurajoh, M.; Maruhashi, T.; Tanaka, A.; Morikawa, N.; Nishimiya, K.; et al. Exploring the Multifaceted Nexus of Uric Acid and Health: A Review of Recent Studies on Diverse Diseases. Biomolecules 2023, 13, 1519. [Google Scholar] [CrossRef] [PubMed]
- Gelber, A.C. Treatment Guidelines in Gout. Rheum. Dis. Clin. N. Am. 2022, 48, 659–678. [Google Scholar] [CrossRef] [PubMed]
- George, R.L.; Keenan, R.T. Genetics of Hyperuricemia and Gout: Implications for the Present and Future. Curr. Rheumatol. Rep. 2013, 15, 309. [Google Scholar] [CrossRef] [PubMed]
- Sulem, P.; Gudbjartsson, D.F.; Walters, G.B.; Helgadottir, H.T.; Helgason, A.; Gudjonsson, S.A.; Zanon, C.; Besenbacher, S.; Bjornsdottir, G.; Magnusson, O.T.; et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet. 2011, 43, 1127–1130. [Google Scholar] [CrossRef]
- Janardhan, S.; Dubovskaja, V.; Lagunin, A.; Rao, B.V.; Sastry, G.N.; Poroikov, V. Recent Advances in the Development of Pharmaceutical Agents for Metabolic Disorders: A Computational Perspective. Curr. Med. Chem. 2019, 25, 5432–5463. [Google Scholar] [CrossRef]
- Sakurai, H. Transporter-centric view of urate metabolism: From genome-wide association study to pathophysiology. J. Phys. Fit. Sports Med. 2012, 1, 413–422. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The Molecular Physiology of Uric Acid Homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, T.; Ci, X.; Zhao, F.; Sun, Y.; Li, Y.; Liu, R.; Wu, W.; Yi, X.; Liu, C. The effect of polymorphism of uric acid transporters on uric acid transport. J. Nephrol. 2019, 32, 177–187. [Google Scholar] [CrossRef]
- Zairol, A.; Azwan, F.A.; Ying, T.Y.; Mohd Tahir, N.A.; Saffian, S.M.; Makmor-Bakry, M.; Mohamed Said, M.S. A systematic review of single nucleotide polymorphisms affecting allopurinol pharmacokinetics and serum uric acid level. Pharmacogenomics 2024, 25, 479–494. [Google Scholar]
- Bruhn, O.; Cascorbi, I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1337–1354. [Google Scholar] [CrossRef]
- Yang, K.; Li, J.; Tao, L. Purine metabolism in the development of osteoporosis. Biomed. Pharmacother. 2022, 155, 113784. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: A leading actor in cardiovascular disease drama. Redox Biol. 2021, 48, 102195. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, M.; Polito, L.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: One enzyme for multiple physiological tasks. Redox Biol. 2021, 41, 101882. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.S. From Regulation of Secondary Metabolites to Increased Virulence under Sublethal Dosage of Antibiotics: An Unprecedented Role of Global Regulator, MftR, in Burkholderia thailandensis. Ph.D. Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2020. [Google Scholar]
- Lima, W.G.; Martins-Santos, M.E.S.; Chaves, V.E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015, 116, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng-Yuan, W.; Jian-Gang, D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front. Nutr. 2023, 10, 1186161. [Google Scholar] [CrossRef]
- Furuhashi, M. New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E827–E834. [Google Scholar] [CrossRef]
- Keebaugh, A.C.; Thomas, J.W. The Evolutionary Fate of the Genes Encoding the Purine Catabolic Enzymes in Hominoids, Birds, and Reptiles. Mol. Biol. Evol. 2010, 27, 1359–1369. [Google Scholar] [CrossRef]
- Song, D.; Zhao, X.; Wang, F.; Wang, G. A brief review of urate transporter 1 (URAT1) inhibitors for the treatment of hyperu-ricemia and gout: Current therapeutic options and potential applications. Eur. J. Pharmacol. 2021, 907, 174291. [Google Scholar] [CrossRef]
- Pasalic, D.; Marinkovic, N.; Feher-Turkovic, L. Uric acid as one of the important factors in multifactorial disorders—Facts and controversies. Biochem. Medica 2012, 22, 63–75. [Google Scholar] [CrossRef]
- Kumar, M.; Manley, N.; Mikuls, T.R. Gout Flare Burden, Diagnosis, and Management: Navigating Care in Older Patients with Comorbidity. Drugs Aging 2021, 38, 545–557. [Google Scholar] [CrossRef]
- Grassi, D.; Ferri, L.; Desideri, G.; Di Giosia, P.; Cheli, P.; Del Pinto, R.; Properzi, G.; Ferri, C. Chronic Hyperuricemia, Uric Acid Deposit and Cardiovascular Risk. Curr. Pharm. Des. 2013, 19, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Terkeltaub, R.; Zelman, D.; Scavulli, J.; Perez-Ruiz, F.; Lioté, F. Gout Study Group: Update on hyperuricemia and gout. Jt. Bone Spine 2009, 76, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Leskošek-Čukalović, I.J. Beer as an integral part of healthy diets: Current knowledge and perspective. In Emerging and Traditional Technologies for Safe, Healthy, and Quality Food; Springer: Cham, Switzerland, 2016; pp. 111–144. [Google Scholar]
- Zhou, J.; Tang, R.; Wang, X.; Ma, H.; Li, X.; Heianza, Y.; Qi, L. Frailty status, sedentary behaviors, and risk of incident bone fractures. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2024, 79, glae186. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, D.; Margină, D.; Tsarouhas, K.; Tekos, F.; Stan, M.; Nikitovic, D.; Kouretas, D.; Spandidos, D.A.; Tsatsakis, A. Obesity-a risk factor for increased COVID-19 prevalence, severity and lethality. Mol. Med. Rep. 2020, 22, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Ekpenyong, C.E.; Daniel, N. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. PharmaNutrition 2015, 3, 29–45. [Google Scholar] [CrossRef]
- Kuo, C.-F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef]
- Sabolová, M.; Kulma, M.; Petříčková, D.; Kletečková, K.; Kouřimská, L. Changes in purine and uric acid content in edible insects during culinary processing. Food Chem. 2023, 403, 134349. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, X.; Ma, L.; Zhou, S.; Li, K.; Wang, C.; Sun, W.; Li, C.; Chen, Y. Effect of low-purine diet on the serum uric acid of gout patients in different clinical subtypes: A prospective cohort study. Eur. J. Med Res. 2024, 29, 449. [Google Scholar] [CrossRef]
- Allegrini, S.; Garcia-Gil, M.; Pesi, R.; Camici, M.; Tozzi, M.G. The Good, the Bad and the New about Uric Acid in Cancer. Cancers 2022, 14, 4959. [Google Scholar] [CrossRef]
- Tripolino, C.; Ciaffi, J.; Ruscitti, P.; Giacomelli, R.; Meliconi, R.; Ursini, F. Hyperuricemia in Psoriatic Arthritis: Epidemiology, Pathophysiology, and Clinical Implications. Front. Med. 2021, 8, 737573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Sun, X.; Li, H.; Wang, Y.; Zhou, M.; Hua, L.; Li, B.; Li, X. Updated Evidence of the Association Between Elevated Serum Uric Acid Level and Psoriasis. Front. Med. 2021, 8, 645550. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, P.; Vivekanandan, S. Urate crystal deposition, prevention and various diagnosis techniques of GOUT arthritis disease: A comprehensive review. Health Inf. Sci. Syst. 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 163–182. [Google Scholar] [CrossRef]
- Nian, Y.-L.; You, C.-G. Susceptibility genes of hyperuricemia and gout. Hereditas 2022, 159, 30. [Google Scholar] [CrossRef]
- Su, M.; Zhang, T.; Zhao, T.; Li, F.; Ni, Y.; Wang, X.; Chen, T.; Zhao, A.; Qiu, Y.; Bao, Y.; et al. Human gouty arthritis is associated with a distinct serum trace elemental profile. Metallomics 2012, 4, 244–252. [Google Scholar] [CrossRef]
- Mahon, O.R.; Dunne, A. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets. Front. Immunol. 2018, 9, 1145. [Google Scholar] [CrossRef]
- Shi, Y.; Mucsi, A.D.; Ng, G. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 2010, 233, 203–217. [Google Scholar] [CrossRef]
- Skoczyńska, M.; Chowaniec, M.; Szymczak, A.; Langner-Hetmańczuk, A.; Maciążek-Chyra, B.; Wiland, P. Pathophysiology of hyperuricemia and its clinical significance—A narrative review. Rheumatology 2020, 58, 312–323. [Google Scholar] [CrossRef]
- Mei, Y.; Dong, B.; Geng, Z.; Xu, L. Excess Uric Acid Induces Gouty Nephropathy Through Crystal Formation: A Review of Recent Insights. Front. Endocrinol. 2022, 13, 911968. [Google Scholar] [CrossRef]
- da Cruz, R.M.; Mendonça-Junior, F.J.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.; de Almeida, R.N.; de Moura, R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals 2021, 14, 692. [Google Scholar] [CrossRef] [PubMed]
- Soskind, R.; Abazia, D.T.; Bridgeman, M.B. Updates on the treatment of gout, including a review of updated treatment guidelines and use of small molecule therapies for difficult-to-treat gout and gout flares. Expert Opin. Pharmacother. 2017, 18, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Szollosi, D.E.; Manzoor, M.K.; Aquilato, A.; Jackson, P.; Ghoneim, O.M.; Edafiogho, I.O. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases. J. Pharm. Pharmacol. 2018, 70, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Vella, M.; Hunter, T.; Farrugia, C.; Pearson, H.; Arwen, R.G. Purification and characterization of xanthine oxidoreductases from local bovids in Malta. Chem. Biol. Interact. 2000, 129, 195–208. [Google Scholar]
- Pritsos, C.A. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chem. Interactions 2000, 129, 195–208. [Google Scholar] [CrossRef]
- Coelho, C.; Foti, A.; Hartmann, T.; Santos-Silva, T.; Leimkühler, S.; Romão, M.J. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat. Chem. Biol. 2015, 11, 779–783. [Google Scholar] [CrossRef]
- Kusano, T.; Nishino, T.; Okamoto, K.; Hille, R.; Nishino, T. The mechanism and significance of the conversion of xanthine de-hydrogenase to xanthine oxidase in mammalian secretory gland cells. Redox Biol. 2023, 59, 102573. [Google Scholar] [CrossRef]
- Nishino, T.; Okamoto, K.; Kawaguchi, Y.; Hori, H.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: Identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J. Biol. Chem. 2005, 280, 24888–24894. [Google Scholar] [CrossRef]
- Cicero, A.F.; Fogacci, F.; Cincione, R.I.; Tocci, G.; Borghi, C. Clinical Effects of Xanthine Oxidase Inhibitors in Hyperuricemic Patients. Med Princ. Pract. 2021, 30, 122–130. [Google Scholar] [CrossRef]
- Ojha, R.; Singh, J.; Ojha, A.; Singh, H.; Sharma, S.; Nepali, K. An updated patent review: Xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011–2015). Expert Opin. Ther. Patents 2017, 27, 311–345. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Sharma, A.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Past, present and future of xanthine oxidase inhibitors: Design strategies, structural and pharmacological insights, patents and clinical trials. RSC Med. Chem. 2023, 14, 2155–2191. [Google Scholar] [CrossRef] [PubMed]
- Qaseem, A.; Harris, R.P.; Forciea, M.A. Management of Acute and Recurrent Gout: A Clinical Practice Guideline from the American College of Physicians. Ann. Intern. Med. 2017, 166, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Hill-McManus, D.; Soto, E.; Marshall, S.; Lane, S.; Hughes, D. Impact of non-adherence on the safety and efficacy of uric acid-lowering therapies in the treatment of gout. Br. J. Clin. Pharmacol. 2018, 84, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Ž. Comprehensive kinetic investigation of antiradical activity of urolithins and their potential inhibitory effect on Xanthine Dehydrogenase. J. Mol. Liq. 2024, 408, 125330. [Google Scholar] [CrossRef]
- Jung, S.W.; Kim, S.-M.; Kim, Y.G.; Lee, S.-H.; Moon, J.-Y. Uric acid and inflammation in kidney disease. Am. J. Physiol. Renal Physiol. 2020, 318, F1327–F1340. [Google Scholar] [CrossRef]
- Bobulescu, I.A.; Moe, O.W. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties. Adv. Chronic Kidney Dis. 2012, 19, 358–371. [Google Scholar] [CrossRef]
- Cabău, G.; Crișan, T.O.; Klück, V.; Popp, R.A.; Joosten, L.A.B. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 2020, 294, 92–105. [Google Scholar] [CrossRef]
- Tsoupras, A.; Gkika, D.A.; Siadimas, I.; Christodoulopoulos, I.; Efthymiopoulos, P.; Kyzas, G.Z. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals 2024, 17, 627. [Google Scholar] [CrossRef]
- Aringer, M.; Tektonidou, M.G.; Boumpas, D.; Houssiau, F. European League Against Rheumatism (EULAR) recommendations and EULAR/American College of Rheumatology criteria—Documenting progress in lupus. Rheumatology 2021, 60, 2976–2978. [Google Scholar] [CrossRef]
- Bernacki, R.E.; Block, S.D. Communication about serious illness care goals: A review and synthesis of best practices. JAMA Intern. Med. 2014, 174, 1994–2003. [Google Scholar] [CrossRef]
- Faki, Y.; Er, A. Different Chemical Structures and Physiological/Pathological Roles of Cyclooxygenases. Rambam Maimonides Med. J. 2021, 12, e0003. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. [Google Scholar] [CrossRef] [PubMed]
- Wehling, M. Non-steroidal anti-inflammatory drug use in chronic pain conditions with special emphasis on the elderly and patients with relevant comorbidities: Management and mitigation of risks and adverse effects. Eur. J. Clin. Pharmacol. 2014, 70, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Wasse, H.; Gillen, D.L.; Ball, A.M.; Kestenbaum, B.R.; Seliger, S.L.; Sherrard, D.; Stehman-Breen, C.O. Risk factors for upper gastrointestinal bleeding among end-stage renal disease patients. Kidney Int. 2003, 64, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Vasilyuk, V.; Syraeva, G.; Faraponova, M. Efficacy and safety of non-steroidal anti-inflammatory drugs for acute attack of gout. Russ. Med. Rev. 2021, 5, 96. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Shukla, A.; Makhal, P.N.; Kaki, V.R. Natural product-driven dual COX-LOX inhibitors: Overview of recent studies on the development of novel anti-inflammatory agents. Heliyon 2023, 9, e145692023. [Google Scholar] [CrossRef]
- Arfeen, M.; Srivastava, A.; Srivastava, N.; Khan, R.A.; Almahmoud, S.A.; Mohammed, H.A. Design, classification, and adverse effects of NSAIDs: A review on recent advancements. Bioorganic Med. Chem. 2024, 112, 117899. [Google Scholar] [CrossRef]
- Schellack, N.; Ncube, K. The use of nonsteroidal anti-inflammatory drugs in sports. SA Pharm. J. 2021, 88, 19–26. [Google Scholar]
- Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of Action of Colchicine in the Treatment of Gout. Clin. Ther. 2014, 36, 1465–1479. [Google Scholar] [CrossRef]
- El Hasbani, G.; Jawad, A.; Uthman, I. Colchicine: An Ancient Drug with Multiple Benefits. Curr. Pharm. Des. 2021, 27, 2917–2924. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ruhoy, I.S. Lower dose prescribing: Minimizing “side effects” of pharmaceuticals on society and the envi-ronment. Sci. Total Environ. 2013, 443, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Botson, J.K.; Saag, K.; Peterson, J.; Parikh, N.; Ong, S.; La, D.; LoCicero, K.; Obermeyer, K.; Xin, Y.; Chamberlain, J.; et al. A randomized, placebo-controlled study of methotrexate to increase response rates in patients with uncontrolled gout receiving pegloticase: Primary efficacy and safety findings. Arthritis Rheumatol. 2023, 75, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Falasca, G.F.; Dubchak, N. New and improved strategies for the treatment of gout. Int. J. Nephrol. Renov. Dis. 2010, 3, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Roman, Y.M. The Role of Uric Acid in Human Health: Insights from the Uricase Gene. J. Pers. Med. 2023, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 2011, 41, 1203–1217. [Google Scholar] [CrossRef]
- Ramírez, J.; Cañete, J.D. Anakinra for the treatment of rheumatoid arthritis: A safety evaluation. Expert Opin. Drug Saf. 2018, 17, 727–732. [Google Scholar] [CrossRef]
- Saliba, F.; Mourad, O.; Mina, J.; Haddadin, F.; Aoun, L.; Almardini, S.; Abu-Baker, S.; Sangaraju, K.; Di Pietro, G.; Gaballa, D.; et al. Treatment of Gout in Patients with CrCl ≤30 mL/min and/or on Hemodialysis: A Review. Rheumato 2024, 4, 49–62. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Liang, Z.; Li, M.; Fu, D.; Zhang, L.; Yang, X.; Guo, Y.; Ge, D.; Liu, Y.; et al. Monosodium urate crystals with controlled shape and aspect ratio for elucidating the pathological progress of acute gout. Biomater. Adv. 2022, 139, 213005. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Gong, S.; Zheng, Z.; Hu, J.; Ma, L.; Li, X.; Yu, H. Mechanisms of theaflavins against gout and strategies for improving bioavailability. Phytomedicine 2023, 114, 154782. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, Y.; Tang, J.; Zhu, X.; Wang, S.; Lu, M. Efficacy and Safety of Traditional Chinese Medicines as a Complementary Therapy Combined with Chemotherapy in the Treatment of Gastric Cancer: An Overview of Systematic Reviews and Meta-Analyses. Integr. Cancer Ther. 2024, 23, 15347354231225961. [Google Scholar] [CrossRef]
- Zhang, R.; Han, L.; Lin, W.; Ba, X.; Yan, J.; Li, T.; Yang, Y.; Huang, Y.; Huang, Y.; Qin, K.; et al. Mechanisms of NLRP3 in-flammasome in rheumatoid arthritis and osteoarthritis and the effects of traditional chinese medicine. J. Ethnopharmacol. 2023, 321, 117432. [Google Scholar] [CrossRef] [PubMed]
- Mickymaray, S. Efficacy and Mechanism of Traditional Medicinal Plants and Bioactive Compounds against Clinically Important Pathogens. Antibiotics 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Y.; Xu, Q.; Shikov, A.N.; Pozharitskaya, O.N.; Flisyuk, E.V.; Liu, M.; Li, H.; Vargas-Murga, L.; Duez, P. Flavonoids and Saponins: What have we got or missed? Phytomedicine 2023, 109, 154580. [Google Scholar] [CrossRef] [PubMed]
- Copur, S.; Demiray, A.; Kanbay, M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur. J. Intern. Med. 2022, 103, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Turaman, C. The potential uses of insect biochemicals in medical therapeutics. Am. J. Pharmacol. Ther. 2021, 6, 9–18. [Google Scholar]
- Khodadadi, S.; Rafieian-Kopaei, M. Herbs, health, and hazards; a nephrology viewpoint on current concepts and new trends. Ann. Res. Antioxid. 2016, 1, e05. [Google Scholar]
- Gadekallu, T.R.; Maddikunta, P.K.R.; Boopathy, P.; Deepa, N.; Chengoden, R.; Victor, N.; Wang, W.; Wang, W.; Zhu, Y.; Dev, K. XAI for Industry 5.0-Concepts, Opportunities, Challenges and Future Directions. IEEE Open J. Commun. Soc. 2024, 1. [Google Scholar] [CrossRef]
- Fokunang, C.; Fokunang, E.T.; Frederick, K.; Ngameni, B.; Ngadjui, B. Overview of non-steroidal anti-inflammatory drugs (NSAIDs) in resource-limited countries. Moj. Toxicol. 2018, 4, 5–13. [Google Scholar] [CrossRef]
- Stamp, L.K.; Horsley, C.; Karu, L.T.; Dalbeth, N.; Barclay, M. Colchicine: The good, the bad, the ugly and how to minimize the risks. Rheumatology 2023, 63, 936–944. [Google Scholar] [CrossRef]
- Lea, S.; Higham, A.; Beech, A.; Singh, D. How inhaled corticosteroids target inflammation in COPD. Eur. Respir. Rev. 2023, 32, 230084. [Google Scholar] [CrossRef]
- Doaré, E.; Robin, F.; Racapé, H.; Le Mélédo, G.; Orione, C.; Guggenbuhl, P.; Goupille, P.; Gervais, E.; Dernis, E.; Bouvard, B.; et al. Features and Outcomes of Microcrystalline Arthritis Treated by Biologics: A Retrospective Study. Rheumatol. Ther. 2021, 8, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Du, K.; Liang, C.; Wang, S.; Boadi, E.O.; Li, J.; Pang, X.; He, J.; Chang, Y.-X. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021, 279, 114368. [Google Scholar] [CrossRef] [PubMed]
- Karomah, A.H.; Ilmiawati, A.; Syafitri, U.D.; Septaningsih, D.A.; Adfa, M.; Rafi, M. LC-HRMS-based metabolomics of Sida rhombifolia and evaluation of its biological activity using different extracting solvent concentrations. South Afr. J. Bot. 2023, 161, 418–427. [Google Scholar] [CrossRef]
- Lin, N.; Dai, Q.; Zhang, Y.; Xu, L. Chinese classical decoction Wuwei Xiaodu Drink alleviates gout arthritis by suppressing NLRP3-Mediated inflammation. Front. Pharmacol. 2024, 15, 1388753. [Google Scholar] [CrossRef]
- Lu, J.Z.; Zhao, L.; Ren, J.P.; Cao, X.T.; Li, H.X.; Zhao, H. Preventive and therapeutic effects of chinese herbal medicine compound Zhuye Shigao granule in rats with radiation-induced esophagitis. J. Chin. Integr. Med. 2011, 9, 435–441. [Google Scholar] [CrossRef]
- Li, C.; Xue, Q.; Li, H.; Peng, Y.; Wu, Y.; Yuan, M.; Duan, Q.; Hong, X.; Chen, G.; Liao, F.; et al. Huangqin Qingre Chubi capsule improves rheumatoid arthritis accompanied depression through the Wnt1/β-catenin signaling pathway. Int. Immunopharmacol. 2024, 138, 112474. [Google Scholar] [CrossRef]
- Bibi, H.; Shahid, T.; Ain, Q. Search for the Natural Remedies for the Treatment of Gout. Phytopharm. Commun. 2022, 2, 193–204. [Google Scholar] [CrossRef]
- Alolga, R.N.; Wang, F.; Zhang, X.; Li, J.; Tran, L.-S.P.; Yin, X. Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants 2022, 11, 1281. [Google Scholar] [CrossRef]
- Wu, J.; Alhamoud, Y.; Lv, S.; Feng, F.; Wang, J. Beneficial properties and mechanisms of natural phytochemicals to combat and prevent hyperuricemia and gout. Trends Food Sci. Technol. 2023, 138, 355–369. [Google Scholar] [CrossRef]
- Endrini, S.; Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Marsiati, H. Phytochemical profiling, in vitro and in vivo xanthine oxidase inhibition and antihyperuricemic activity of Christia vespertilionis leaf. Biocatal. Agric. Biotechnol. 2023, 48, 102645. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Sun, X.; Liu, Z.-B.; Zhang, T.; Zhang, L.-L.; Wu, C.-J. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity. J. Pharm. Pharmacol. 2022, 74, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Cleeland, C.S.; Allen, J.D.; Roberts, S.A.; Brell, J.M.; Giralt, S.A.; Khakoo, A.Y.; Kirch, R.A.; Kwitkowski, V.E.; Liao, Z.; Skillings, J. Reducing the toxicity of cancer therapy: Recognizing needs, taking action. Nat. Rev. Clin. Oncol. 2012, 9, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and Traditional Chinese Medicine: A Comparative Overview. Evid. Based Complement. Altern. Med. 2005, 2, 465–473. [Google Scholar] [CrossRef]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef]
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; et al. Herbal Immunomodulators—A Remedial Panacea for Designing and Developing Effective Drugs and Medicines: Current Scenario and Future Prospects. Curr. Drug Metab. 2018, 19, 264–301. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Bnouham, M. Medicinal Plants as a Drug Alternative Source for the Antigout Therapy in Morocco. Scientifica 2020, 2020, 8637583. [Google Scholar] [CrossRef]
- Cecchini, S.; Rossetti, M.; Caputo, A.R.; Bavoso, A. Effect of dietary inclusion of a commercial polyherbal formulation on some physiological and immune parameters in healthy and stressed hens. Czech J. Anim. Sci. 2019, 64, 448–458. [Google Scholar] [CrossRef]
- Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front. Pharmacol. 2016, 7, 201. [Google Scholar] [CrossRef]
- Efferth, T.; Saeed, M.E.; Mirghani, E.; Alim, A.; Yassin, Z.; Saeed, E.; Khalid, H.E.; Daak, S. Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2017, 8, 50284–50304. [Google Scholar] [CrossRef]
- Rivera, J.O.; Loya, A.M.; Ceballos, R.J. Use of herbal medicines and implications for conventional drug therapy. Altern. Integ. Med. 2013, 2, 21–40. [Google Scholar]
- Wadden, T.A.; Webb, V.L.; Moran, C.H.; Bailer, B.A. Lifestyle modification for obesity: New developments in diet, physical activity, and behavior therapy. Circulation 2012, 125, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I.; Hudson, L.M. Drug–Nutrient Interactions: A Broad View with Implications for Practice. J. Acad. Nutr. Diet. 2012, 112, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Lau, D.C.W.; Erichsen, L.; Francisco, A.M.; Satylganova, A.; le Roux, C.W.; McGowan, B.; Pedersen, S.D.; Pietiläinen, K.H.; Rubino, D.; Batterham, R.L. Once-weekly cagrilintide for weight management in people with overweight and obesity: A multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 2021, 398, 2160–2172. [Google Scholar] [CrossRef]
Gene Function | Gene Name | Gene Product | Location |
---|---|---|---|
Production of uric acid | HPRT1 | Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) | Xq26.2-26.3 |
PRPS1 | Phosphoribosyl pyrophosphate synthetase 1 (PRPPS) | Xq22.3 | |
XOR | Xanthine oxidoreductase | 2p23.1 | |
ALDH16A1 | Aldehyde dehydrogenase 16 family A1 | 19q13.33 | |
Excretion/Transport/Anion exchange/Renal drug excretion | SLC22A11 | Organic anion transporter 4 (OAT4) | 11q13.1 |
UOX | Uricase (UOX) | 1p22.1 | |
SLC22A12 | Urate transporter 1 (URAT1) | 11q13.1 | |
SLC22A13 | Organic anion transporter 10 (OAT10) | 3p22.2 | |
SLC2A9 | Glucose transporter 9 (GLUT9) | 4p16.1 | |
ABCG2 | ATP-binding cassette subfamily G member 2 (BCRP) | 4q22.1 | |
ABCC4 | Multidrug resistance-associated protein 4 (MRP4) | 13q32.1 | |
SLC17A1 | Sodium-dependent phosphate transport protein 17A1 | 6p22.2 | |
SLC17A3 | Sodium-dependent phosphate transporter 17A3 | 6p22.2 | |
SLC17A4 | Sodium-dependent phosphate transporter 17A4 | 6p22.2 | |
SLC22A6 | Solute carrier family 22 member 6 (OAT1) | 11q13 | |
SLC22A8 | Organic anion transporter 3 (OAT3) | 11q13 |
Drug | Mechanism of Action | Indication | Dosage | Side Effects |
---|---|---|---|---|
Probenecid | Inhibits URAT1, reducing uric acid reabsorption in the kidneys. | Underexcretion of uric acid; adjunct to XOI if monotherapy is insufficient. | 500 mg twice daily | Gastrointestinal distress, nephrolithiasis (kidney stones), hypersensitivity reactions. |
Allopurinol | Xanthine oxidase inhibitor (XOI); reduces production of uric acid. | Hyperuricemia, gout, prevention of tumor lysis syndrome. | 100–300 mg daily | Rash, gastrointestinal upset, liver enzyme elevation, hypersensitivity reactions. |
Febuxostat | Xanthine oxidase inhibitor (XOI); reduces production of uric acid. | Chronic gout in patients who cannot tolerate allopurinol. | 40–80 mg daily | Liver enzyme elevation, rash, and cardiovascular events in some patients. |
Rasburicase | Uricase analog; converts uric acid into allantoin for easier excretion. | Hyperuricemia associated with tumor lysis syndrome. | 0.15–0.2 mg/kg IV | Hypersensitivity, fever, gastrointestinal symptoms, anaphylaxis in rare cases. |
Lesinurad | Inhibits URAT1 and OAT4 transporters, reducing uric acid reabsorption. | Used with XOI in patients not achieving target SU levels with XOI alone. | 200 mg daily | Increased serum creatinine, renal events (mainly if used as monotherapy), headache. |
Benzbromarone | Inhibits URAT1, promoting uric acid excretion. | Underexcretion of uric acid. | 50–100 mg daily | Hepatotoxicity, gastrointestinal discomfort, liver enzyme elevation. |
Arhalofenate | Dual action: Inhibits URAT1 and has anti-inflammatory effects via NLRP3 inflammasome inhibition. | Dual urate-lowering and anti-inflammatory prophylaxis. | 600–800 mg daily | Gastrointestinal issues, reduced flare rates in gout patients. |
Verinurad | Selective URAT1 inhibitor, used in combination with XOIs. | Adjunct to XOI therapy. | 2.5–20 mg daily | Renal events and elevated serum creatinine. |
Treatment Type | Preparation | Composition | Effects | Action | Combination with Conventional Drugs | Dosing Protocols | Efficacy Rates (p-Values, CI) | Adverse Effects and Evidence Base |
---|---|---|---|---|---|---|---|---|
Herbal Treatments | Simiao Powder | Dried leaves of the plant Cortex Phellodendri Amurensis, Semen Coicis, Radix Achyranthis Bidentatae, Rhizoma Atractylodis Lanceae | Uric acid-lowering, immunomodulatory, and anti-inflammatory | Reduces joint discomfort, encourages uric acid excretion, and inhibits TNF-α & IL-6. | Jiawei Simiao Powder, Tongfeng Decoction, and Danxi Tongfeng Decoction are among the modified formulae. | 2–3 g daily, divided doses | Efficacy Rate: 80% (p < 0.05) CI: 95% | Minor GI irritation reported; supported by trials (n = 100, 6 months) |
Wuwei Xiaodu Decoction | N/A (contains herbs that remove heat and are cleansing) | Eliminates heat, detoxifies, alleviates joint inflammation and discomfort | Enhances efficacy in treating acute gout arthritis when combined with colchicine | Combined with colchicine for improved efficacy against acute gout arthritis | 200 mL daily, divided doses | Efficacy Rate: 76% (p < 0.05) CI: 90% | Nausea, minor GI upset; meta-analysis data available (n = 120, 4 months) | |
Zhuye Shigao Decoction | N/A (used for clearing heat and nourishing yin) | Clears heat, nourishes yin | Significantly improves gout symptoms, reduces gastrointestinal side effects when combined with gout medications | Combined with colchicine and celecoxib to improve symptoms and reduce side effects | 200 mL/day | Efficacy Rate: 65% (p < 0.01) CI: 95% | Dizziness, GI discomfort; backed by smaller trials (n = 50, 3 months) | |
Qingre Chubi Decoction | Herba Aristolochiae Mollissimae, Radix Stephaniae Tetrandrae | Dispels wind, drains dampness, relieves pain | Reduces inflammatory markers, improves uric acid excretion | Combined with etoricoxib to treat acute gout, enhancing the therapeutic effect and reducing inflammation | 100 mL 2x/day | Efficacy Rate: 72% (p < 0.05) CI: 95% | GI effects; contraindicated in liver impairment (meta-analysis n = 90, 5 months) | |
Achyranthes Bidentata | Dried root | Uric acid-lowering, improves blood circulation | Enhances uric acid metabolism, reduces joint pain | Used alone or in combination with conventional medications | 2–5 g powder daily | Efficacy Rate: 70% (p < 0.01) CI: 95% | Rare GI side effects; data from RCT (n = 80, 3 months) | |
Gentiana Macrophylla | Root | Anti-inflammatory, relieves pain | Reduces joint inflammation, alleviates swelling, promotes uric acid excretion | Commonly used in combination with anti-gout medications | 4–6 g daily | Efficacy Rate: 68% (p < 0.01) CI: 90% | GI upset, rare allergic reactions; supported by trials (n = 60, 4 months) | |
Conventional Treatments | NSAIDs (e.g., Indomethacin, Naproxen) | Synthetic drugs | Pain relief, anti-inflammatory | Inhibits COX enzymes, reducing prostaglandin synthesis | Often first-line treatment, may be combined with colchicine or corticosteroids | Standard dosing per drug label | Efficacy Rate: 85% (p < 0.01) CI: 95% | GI, cardiovascular risks; meta-analysis data (n = 200, 6 months) |
Colchicine | Synthetic drug | Reduces inflammation, pain relief | Inhibits microtubule polymerization, reducing neutrophil migration | Used alone or with NSAIDs for acute attacks | Initial high dose, reduced maintenance | Efficacy Rate: 75% (p < 0.01) CI: 90% | Nausea, diarrhea, GI symptoms; large trials (n = 150, 5 months) | |
Corticosteroids | Synthetic drugs | Pain relief, anti-inflammatory | Inhibits inflammatory mediators and immune response | Sometimes combined with NSAIDs for severe cases | Standard dose adjustments per protocol | Efficacy Rate: 82% (p < 0.01) CI: 90% | Immunosuppression risks; meta-analysis (n = 180, 6 months) | |
Biologics (e.g., Anakinra, Canakinumab) | Synthetic IL-1 inhibitors | Reduces inflammation in refractory cases | Blocks IL-1-mediated inflammation pathways | Reserved for patients unresponsive to standard treatments | Administered per physician guidance | Efficacy Rate: 78% (p < 0.01) CI: 90% | Infection risk; limited data available, small trials (n = 30, 1 year) |
Class | Compound | Source Plant | Mechanism of Action | Effects on Uric Acid |
---|---|---|---|---|
Flavonoids | Quercetin | Allium cepa (onions), Malus domestica (apples) | Inhibits xanthine oxidase (XOD) and reduces inflammatory markers (IL-1β, NLRP3). | Lowers uric acid levels, IC50 of 2.74 µmol/L for XOD inhibition, a potential treatment for HUA. |
Kaempferol | Brassica oleracea (kale), Ginkgo biloba | It inhibits XOD and regulates uric acid transporters (URAT1). | Reduces serum uric acid levels and mitigates hyperuricemia symptoms. | |
Luteolin | Citrus spp. (citrus fruits), Apium graveolens (celery) | Competitive XOD inhibition with a high binding affinity (2.38 × 10−6 mol/L). | Effective in lowering uric acid levels in clinical trials and animal studies. | |
Isorhamnetin | Hippophae rhamnoides (sea buckthorn) | Inhibits hepatic XOD activity and reduces serum uric acid levels. | Significant uric acid reduction in animal models, potential therapeutic agent. | |
Phenolic Acids | Chlorogenic Acid | Coffea arabica (coffee), Eugenia uniflora (surinam cherry) | Inhibits XOD activity, reduces uric acid production, and modulates inflammatory pathways. | Decreases serum uric acid levels and inhibits XOD activity. |
Caffeic Acid | Salvia officinalis (sage), Coffea arabica (coffee) | Down-regulates URAT1 and GLUT9, up-regulates OAT1, competitive XOD inhibition. | Reduces uric acid levels and manages hyperuricemia through modulation | |
Saponins | Ginsenosides | Panax ginseng | Anti-inflammatory properties that may indirectly support uric acid reduction. | Indirectly influences uric acid levels through overall health improvement. |
Alkaloids | Vindoline | Vinca rosea (periwinkle) | Broader therapeutic actions that impact metabolic pathways. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Gupta, J.K.; Maqbool, M.; Kumar, K.; Sharma, A.; Wahi, N. The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom. Pharmaceuticals 2024, 17, 1507. https://doi.org/10.3390/ph17111507
Lin Z, Gupta JK, Maqbool M, Kumar K, Sharma A, Wahi N. The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom. Pharmaceuticals. 2024; 17(11):1507. https://doi.org/10.3390/ph17111507
Chicago/Turabian StyleLin, Zhijian, Jeetendra Kumar Gupta, Mohsin Maqbool, Krishan Kumar, Ayushi Sharma, and Nitin Wahi. 2024. "The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom" Pharmaceuticals 17, no. 11: 1507. https://doi.org/10.3390/ph17111507
APA StyleLin, Z., Gupta, J. K., Maqbool, M., Kumar, K., Sharma, A., & Wahi, N. (2024). The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom. Pharmaceuticals, 17(11), 1507. https://doi.org/10.3390/ph17111507