The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control
Abstract
:1. Introduction
2. Materials and Methods
3. Species Distribution
4. Traditional Uses of Myrrh
4.1. Non-Medicinal Use
4.2. Medicinal Use
5. Phytochemistry
5.1. Terpenoids
5.2. Lignans
5.3. Steroids
5.4. Miscellaneous
6. Pharmacology
6.1. Anti-Inflammatory and Antioxidant Activities
6.2. Anti-Cancer Activities
6.3. Antimicrobial Activities
6.4. Hypolipidemic Activities
6.5. Neuroprotective Activities
6.6. Hepatoprotective Activities
6.7. Analgesic Activities
6.8. Others
7. Quality Control
7.1. Species Origin
7.2. Identification of Characters
7.3. Qualitative Analysis
7.4. Determination of Content
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
AChE | Acetylcholinesterase | LLC | Lewis Lung Carcinoma |
AD | Anti-Alzheimer’s Disease | LPS | Lipopolysaccharide |
AKT | Protein Kinase B | MDA | Malondialdehyde |
ARE | Antioxidant Response Elements | MAPK | Mitogen-Activated Protein Kinase |
ARP | Atherogenic Risk Predictor | MIA | Monosodium Iodoacetate |
Bak | Bcl-2 Homologous Antagonist/Killer | NF-κB | Nuclear Factor Kappa-B |
Bax | Bcl-2 Associated X Protein | Nrf2 | Nuclear Factor-Erythroid 2-Related Factor 2 |
Bcl-2 | B-cell Lymphoma-2 | NSCLC | Non-Small Cell Lung Cancer |
CCl4 | Carbon Tetrachloride | OA | Osteoarthritis |
CE | Critically Endangered | p38 | Mitogen-Activated Protein Kinase p38 |
ChP | Chinese Pharmacopoeia | PB | Phenobarbital |
COX-1 | Cyclooxygenase-1 | PD-1 | Programmed Cell Death Protein 1 |
COX-2 | Cyclooxygenase-2 | PD-L1 | Programmed Death-Ligand 1 |
CPT1 | Carnitine Palmitoyltransferase I | PGs | Prostaglandins |
DD | Data Deficient | PGE2 | Prostaglandin E2 |
DEN | Diethylnitrosamine | PLA2 | Phospholipase A2 |
DOX | Doxorubicin | PPARα | Peroxisome Proliferator-Activated Receptor Alpha |
EP | European Pharmacopoeia | PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
ERK | Extracellular Signal-Regulated Protein Kinase | PTEN | Phosphatase and Tensin Homolog |
FXR | Farnesoid X Receptor | ROI | Reactive Oxygen Intermediates |
GC-MS | Gas Chromatography-Mass Spectrometry | ROS | Reactive Oxygen Species |
GPx | Glutathione Peroxidase | SOD | Superoxide Dismutase |
GSH | Glutathione | ST | Smokeless Tobacco |
HMEEC | Human Middle Ear Epithelial Cells | STAT | Signal Transducer and Activator of Transcription |
HNSCC | Head and Neck Squamous Cell Carcinoma | STZ | Streptozotocin |
HO-1 | Heme Oxygenase-1 | TCF-4 | Transcription Factor 4 |
HPLC | High-performance liquid chromatography | TF | Tissue Factor |
IC50 | Half Maximal Inhibitory Concentration | TGF-β | Transforming Growth Factor Beta |
IFN-γ | Interferon-gamma | TLC | Thin Layer Chromatography |
IL-1β | Interleukin-1β | TMA | Trimethylamine |
IL-6 | Interleukin-6 | TMAO | Trimethylamine N-Oxide |
IL-10 | Interleukin-10 | TNF-α | Tumor Necrosis Factor Alpha |
IL-17 | Interleukin-17 | USP | United States Pharmacopeia |
IL-23 | Interleukin-23 | VEGF | Vascular Endothelial Growth Factor |
iNOS | Inducible Nitric Oxide Synthase | VEGF-R2 | VEGF Receptor 2 |
IP | Indian Pharmacopoeia | VLDL | Very Low-Density Lipoprotein |
JNK | c-Jun N-terminal Kinase | α-SMA | Alpha-Smooth Muscle Actin |
LDL | Low-Density Lipoprotein | β-Catenin | Beta-Catenin |
References
- Alsherif, E.A. Ecological studies of Commiphora genus (myrrha) in Makkah region, Saudi Arabia. Heliyon 2019, 5, e01615. [Google Scholar] [CrossRef] [PubMed]
- Soromessa, T. Ecological Phytogeography: A Case Study of Commiphora Species. Star J. 2013, 2, 93–104. [Google Scholar] [CrossRef]
- Shan, F.; Li, L.; Bi, Y.; Wang, W.; Amu, G.; Li, M.; Yao, R. Exotic medicinal plants from the Silk Road promote the diversification of traditional Chinese medicines. Pharmacol. Res. 2024, 205, 107243. [Google Scholar] [CrossRef] [PubMed]
- Hanus, L.O.; Rezanka, T.; Dembitsky, V.M.; Moussaieff, A. Myrrh—Commiphora chemistry. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005, 149, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Lou, H.-X. Bioactive constituents of myrrh and frankincense, two simultaneously prescribed gum resins in chinese traditional medicine. Chem. Biodivers. 2008, 5, 540–553. [Google Scholar] [CrossRef]
- Shen, T.; Li, G.-H.; Wang, X.-N.; Lou, H.-X. The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2012, 142, 319–330. [Google Scholar] [CrossRef]
- Garang, Z.; Feng, Q.; Luo, R.; La, M.; Zhang, J.; Wu, L.; Wang, Z.; Zeweng, Y.; Jiangyong, S.A. Commiphora mukul (Hook. ex Stocks) Engl.: Historical records, application rules, phytochemistry, pharmacology, clinical research, and adverse reaction. J. Ethnopharmacol. 2023, 317, 116717. [Google Scholar] [CrossRef]
- Touwaide, A.; Appetiti, E. Knowledge of Eastern materia medica (Indian and Chinese) in pre-modern Mediterranean medical traditions: A study in comparative historical ethnopharmacology. J. Ethnopharmacol. 2013, 148, 361–378. [Google Scholar] [CrossRef]
- Barnett, J.R.; Langenheim, J.H. Plant resins: Chemistry, evolution, ecology and ethnobotany. Ann. Bot. 2004, 93, 784–785. [Google Scholar] [CrossRef]
- Rüdiger, A.L.; Siani, A.C.; Junior, V.F.V. The Chemistry and Pharmacology of the South America genus Protium Burm. f. (Burseraceae). Pharmacogn. Rev. 2007, 1, 93–104. [Google Scholar]
- Shalabi, L.F.; Otaif, F.S. Commiphora Jacq (Burseraceae) in Saudi Arabia, Botanical, Phytochemical and Ethnobotanical Notes. Ecologies 2022, 3, 38–57. [Google Scholar] [CrossRef]
- Mahr, D. Commiphora: An Introduction to the Genus. Cactus Succul. J. 2012, 84, 140–154. [Google Scholar] [CrossRef]
- Jiang, J.W. A Quick-Consultative Dicitionary of World Medicinal Plants; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Cunningham, A.B.; Brinckmann, J.A.; Kulloli, R.N.; Schippmann, U. Rising trade, declining stocks: The global gugul (Commiphora wightii ) trade. J. Ethnopharmacol. 2018, 223, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Saini, L.S. Non-destructive harvesting of oleo-gum resin in Commiphora wightii (Arnott) Bhandari—A critically endangered plant. Ind. Crops Prod. 2018, 113, 259–265. [Google Scholar] [CrossRef]
- Reddy, C.S.; Meena, S.L.; Krishna, P.H.; Charan, P.D.; Sharma, K.C. Conservation Threat Assessment of Commiphora wightii (Arn.) Bhandari—An Economically Important Species. Taiwania 2012, 57, 288–289. [Google Scholar]
- Ved, D.; Saha, D. Commiphora wightii. Available online: www.iucnredlist.org (accessed on 15 October 2024).
- Kulhari, A.; Sheorayan, A.; Kalia, S.; Chaudhury, A.; Kalia, R.K. Problems, progress and future prospects of improvement of Commiphora wightii (Arn.) Bhandari, an endangered herbal magic, through modern biotechnological tools: A review. Genet. Resour. Crop Evol. 2012, 59, 1223–1254. [Google Scholar] [CrossRef]
- Yadav, B.B.L.; Billore, K.V.; Joseph, J.G.; Chaturvedy, D.D. Cultivation of GUGGULU. Central Council for Research in Ayurveda and Siddha; Central Council in Ayurveda and Siddha (Ayush): New Delhi, India, 1999; pp. 1–87. [Google Scholar]
- Jain, A.; Rout, G.R.; Raina, S.N. Somatic embryogenesis and plant regeneration from callus cultures of Phlox paniculata Linn. Sci. Hortic. 2002, 94, 137–143. [Google Scholar] [CrossRef]
- Kumar, S.; Mathur, M.; Jain, A.K.; Ramawat, K.G. Somatic embryo proliferation in Commiphora wightii and evidence for guggulsterone production in culture. Indian J. Biotechnol. 2006, 5, 217–222. [Google Scholar]
- Ramawat, K.G.; Mathur, M.; Dass, S.; Suthar, S. Guggulsterone:a potent natural hypolipidemic agent from Commiphora wightii—Problems, preservence, and prospects. Bioact. Mol. Med. Plants 2008, 101–121. [Google Scholar]
- Kumar, S.; Suri, S.S.; Sonie, K.C.; Ramawat, K.G. Establishment of embryonic cultures and somatic embryogenesis in callus culture of guggul-Commiphora wightii (Arnott.) Bhandari. Indian J. Exp. Biol. 2003, 41, 69–77. [Google Scholar]
- González-Minero, F.J.; Bravo-Díaz, L. The Use of Plants in Skin-Care Products, Cosmetics and Fragrances: Past and Present. Cosmetics 2018, 5, 50. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Moreno-Toral, E. Pharmacy and Fragrances: Traditional and Current Use of Plants and Their Extracts. Cosmetics 2023, 10, 157. [Google Scholar] [CrossRef]
- Oumeish, O.Y. The Philosophical, Cultural, and Historical Aspects of Complementary, Alternative, Unconventional, and Integrative Medicine in the Old World. Arch. Dermatol. 1998, 134, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Small, E. 55. Frankincense and Myrrh—Imperilled divine symbols of religion’s duty to conserve biodiversity. Biodiversity 2017, 18, 219–234. [Google Scholar] [CrossRef]
- Thompson, S. Spiritual practice and essential oil therapy: Exploring the history and individual preferences among specific plant sources. Int. J. Aromather. 2003, 13, 108–113. [Google Scholar] [CrossRef]
- Hassan, B.A.; Glover, E.K.; Luukkanen, O.; Kanninen, M.; Jamnadass, R. Boswellia and Commiphora Species as a Resource Base for Rural Livelihood Security in the Horn of Africa: A Systematic Review. Forests 2019, 10, 551. [Google Scholar] [CrossRef]
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Wise, E. An “Odor of Sanctity”: The Iconography, Magic, and Ritual of Egyptian Incense. Available online: https://scholarsarchive.byu.edu/studiaantiqua/vol7/iss1/8 (accessed on 15 October 2024).
- Food and Agriculture Organization. Flavours and Fragrances of Plant Origin; Food and Agriculture Organization: Rome, Italy, 1995; Non-Wood Forest Products 1. [Google Scholar]
- Council of Europe. Partial Agreement in the Social and Public Health Field: Flavouring Substances and Natural Sources of Flavourings; Editeur Maisonneuve: Strasbourg, France, 1981; List N2, No. 150. [Google Scholar]
- Shang, J. Theory of Medicinal Properties; Anhui Science & Technology Publishing House: Anhui, China, 2006. [Google Scholar]
- Hu, C.; Wang, P. Bencao Tujing Collected Edition; Fujian Science & Technology Publishing House: Fuzhou, China, 1988. [Google Scholar]
- Li, Z. Compendium of Materia Medica; People’s Medical Publishing House: Beijing, China, 2005. [Google Scholar]
- Yutuo, Y.G. Rgyud Bzhi; Tibet people’s Publishing House: Lasa, China, 2006. [Google Scholar]
- Zhanbu, L.E. Wu Meng Yao Jian; Inner Mongolia People’s Publishing House: Huhehaote, China, 2007. [Google Scholar]
- Luo, B. Meng Yao Xue; Inner Mongolia Ethnic Publishing House: Huhehaote, China, 2008. [Google Scholar]
- Gawu, D. Zang Yao Jing Ben Cao; Nationalities Publishing House: Beijing, China, 2018. [Google Scholar]
- Gujral, M.L.; Sareen, K.; Tangri, K.K.; Amma, M.K.; Roy, A.K. Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron mukul Hook). Indian J. Physiol. Pharmacol. 1960, 4, 267–273. [Google Scholar]
- Medica, N.A. Zhong Hua Materia Medica Uygur Medicine; Shanghai Scientific and Technical Publishers: Shanghai, China, 2005. [Google Scholar]
- Joshi, V.K.; Joshi, A.; Dhiman, K.S. The Ayurvedic Pharmacopoeia of India, development and perspectives. J. Ethnopharmacol. 2017, 197, 32–38. [Google Scholar] [CrossRef]
- Deng, R. Therapeutic Effects of Guggul and Its Constituent Guggulsterone: Cardiovascular Benefits. Cardiovasc. Drug Rev. 2007, 25, 375–390. [Google Scholar] [CrossRef]
- Satyavati, G.V.; Dwarakanath, C.; Tripathi, S.N. Experimental studies on the hypocholesterolemic effect of Commiphora mukul. Engl. (Guggul). Indian J. Med. Res. 1969, 57, 1950–1962. [Google Scholar] [PubMed]
- Sarup, P.; Bala, S.; Kamboj, S. Pharmacology and Phytochemistry of Oleo-Gum Resin of Commiphora wightii (Guggulu). Scientifica 2015, 138039. [Google Scholar] [CrossRef]
- Mahmood, Z.A.; Sualeh, M.; Mahmood, S.B.Z.; Karim, M.A. Herbal treatment for cardiovascular disease the evidence based therapy. Pak J. Pharm. Sci. 2010, 23, 119–124. [Google Scholar] [PubMed]
- Carroll, J.F.; Maradufu, A.; Warthen, J.D. An extract of Commiphora erythraea: A repellent and toxicant against ticks. Entomol. Exp. Appl. 1989, 53, 111–116. [Google Scholar] [CrossRef]
- Bin Mokaizh, A.A.; Nour, A.H.; Yunus, R.M. Extraction and characterization of phenolic compounds from Commiphora gileadensis bark using ultrasonic-assisted extraction. Pharmacol. Res. Nat. Prod. 2024, 4, 100066. [Google Scholar] [CrossRef]
- Khan, A.; Asaf, S.; Khan, A.L.; Al-Harrasi, A.; Al-Sudairy, O.; AbdulKareem, N.M.; Shinwari, Z.K. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 2019, 14, e0208511. [Google Scholar] [CrossRef]
- Bouslama, L.; Kouidhi, B.; Alqurashi, Y.M.; Chaieb, K.; Papetti, A. Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis. Planta Med. 2019, 85, 1225–1232. [Google Scholar] [CrossRef]
- Abukhader, R. Amazing Benefits of Myrrh. Int. J. Pharm. Res. 2021, 13, 303–308. [Google Scholar] [CrossRef]
- Dinku, W.; Park, S.B.; Jeong, J.B.; Jung, C.; Dekebo, A. Chemical composition and anti-inflammatory activity of essential oils from resin of Commiphora sp. Bull. Chem. Soc. Ethiop. 2022, 36, 399–415. [Google Scholar] [CrossRef]
- Dudai, N.; Shachter, A.; Satyal, P.; Setzer, W.N. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). RI A.Medicines 2017, 4, 66. [Google Scholar] [CrossRef]
- Fraternale, D.; Sosa, S.; Ricci, D.; Genovese, S.; Messina, F.; Tomasini, S.; Montanari, F.; Marcotullio, M.C. Anti-inflammatory, antioxidant and antifungal furanosesquiterpenoids isolated from Commiphora erythraea (Ehrenb.) Engl. resin. Fitoterapia 2011, 82, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-L.; Shi, Y.-P. Cycloartane-type triterpenoids and sesquiterpenoids from the resinous exudates of Commiphora opobalsamum. Phytochemistry 2012, 76, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Wan, W.-Z.; Wang, X.-N.; Sun, L.-M.; Yuan, H.-Q.; Wang, X.-L.; Ji, M.; Lou, H.-X. Sesquiterpenoids from the Resinous Exudates of Commiphora opobalsamum (Burseraceae). Helv. Chim. Acta. 2008, 91, 881–887. [Google Scholar] [CrossRef]
- Yu, Y.F.; Liu, Y.H.; Chen, X.H.; Zhi, D.J.; Qi, F.M.; Zhang, Z.P.; Fei, D.Q. Cadinane-type sesquiterpenes from the resinous exudates of Commiphora myrrha and their anti-Alzheimer’s disease bioactivities. Fitoterapia 2020, 142, 104536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Chen, Y. Study of the chemical constituents of myrrh extracted by SFE-CO2 and GC-MS. Chin. Tradit. Herbal Drugs 2005, 36, 3. [Google Scholar] [CrossRef]
- Dekebo, A.; Dagne, E.; Sterner, O. Furanosesquiterpenes from Commiphora sphaerocarpa and related adulterants of true myrrh. Fitoterapia 2002, 73, 48–55. [Google Scholar] [CrossRef]
- Dong, L.; Luo, Q.; Cheng, L.-Z.; Yan, Y.-M.; Cheng, Y.-X.; Wang, S.-M. New terpenoids from Resina Commiphora. Fitoterapia 2017, 117, 147–153. [Google Scholar] [CrossRef]
- Francis, J.A.; Raja, S.N.; Nair, M.G. Bioactive Terpenoids and Guggulusteroids from Commiphora mukul Gum Resin of Potential Anti-Inflammatory Interest. Chem. Biodivers. 2004, 1, 1842–1853. [Google Scholar] [CrossRef]
- Su, S.-L.; Duan, J.-A.; Tang, Y.-P.; Zhang, X.; Yu, L.; Jiang, F.-R.; Zhou, W.; Luo, D.; Ding, A.-W. Isolation and Biological Activities of Neomyrrhaol and Other Terpenes from the Resin of Commiphora myrrha. Planta Med. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Dong, L.; Cheng, L.-Z.; Yan, Y.-M.; Wang, S.-M.; Cheng, Y.-X. Commiphoranes A–D, Carbon Skeletal Terpenoids from Resina Commiphora. Org. Lett. 2017, 19, 286–289. [Google Scholar] [CrossRef]
- Manguro, L.O.; Ugi, I.; Lemmen, P. Further bisabolenes and dammarane triterpenes of Commiphora kua resin. Chem Pharm. Bull. 2003, 51, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Provan, G.J.; Waterman, P.G. Major triterpenes from the resins of Commiphora incisa and C. kua and their potential chemotaxonomic significance. Phytochemistry 1988, 27, 3841–3843. [Google Scholar] [CrossRef]
- Dekebo, A.; Dagne, E.; Hansen, L.K.; Gautun, O.R.; Aasen, A.J. Two octanordammarane triterpenes from Commiphora kua. Phytochemistry 2002, 59, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Zhang, T.; Zhou, S. Seasonal Variation in the Essential Oil Yield and Composition of Cinnamomum parthenoxylon (Jack) Meisner. Chem. Biodivers. 2022, 19, e202200594. [Google Scholar] [CrossRef]
- Dekebo, A.; Lang, M.; Polborn, K.; Dagne, E.; Steglich, W. Four Lignans from Commiphora erlangeriana. J. Nat. Prod. 2002, 65, 1252–1257. [Google Scholar] [CrossRef]
- Craveiro, A.; Corsano, S.; Proietti, G.; Strappaghetti, G. Constituents of Essential Oil of Commiphora guidotti. Planta Med. 1983, 48, 97–98. [Google Scholar] [CrossRef]
- Mothana, R.A.; Al-Rehaily, A.J.; Schultze, W. Chemical Analysis and Biological Activity of the Essential Oils of Two Endemic Soqotri Commiphora Species. Molecules 2010, 15, 689–698. [Google Scholar] [CrossRef]
- Abegaz, B.M.; Dagne, E.; Bates, C.; Waterman, P.G. Monoterpene-rich resins from two ethiopian species of Commiphora. Flavour Fragr. J. 1989, 4, 99–101. [Google Scholar] [CrossRef]
- Sheehama, J.T. Chemical Characterisation of the Volatile Constituents of Essential oil from Commiphora Wildii (Omumbiri) Resin. Ph.D. Thesis, University of Namibia, Windhoek, Namibia, 2017. [Google Scholar]
- Yeo, S.K.; Ali, A.Y.; Hayward, O.A.; Turnham, D.; Jackson, T.; Bowen, I.D.; Clarkson, R. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax ( Commiphora guidottii ), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother. Res. 2016, 30, 418–425. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alhawassi, T.; Qamar, W.; El-Gamal, A. Cytotoxic Evaluation and Anti-Angiogenic Effects of Two Furano-Sesquiterpenoids from Commiphora myrrh Resin. Molecules 2020, 25, 1318. [Google Scholar] [CrossRef]
- Cavanagh, I.S.; Cole, M.D.; Cavanagh, I.S.; Gibbons, S.; Gray, A.I.; Provan, G.J.; Waterman, P.G. A novel sesquiterpene, 1,2-epoxyfurano-10(15)-germacren-6-one, from the resin of Commiphora holtziana Engl. Flavour Fragr. J. 1993, 8, 39–41. [Google Scholar] [CrossRef]
- Zhu, N.; Sheng, S.; Sang, S.; Rosen, R.T.; Ho, C. Isolation and characterization of several aromatic sesquiterpenes from Commiphora myrrha. Flavour Fragr. J. 2003, 18, 282–285. [Google Scholar] [CrossRef]
- Greve, H.L.; Kaiser, M.; Schmidt, T.J. Investigation of Antiplasmodial Effects of Terpenoid Compounds Isolated from Myrrh. Planta Med. 2020, 86, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Ayyad, S.E.N.; Hoye, T.R.; Alarif, W.M.; Al Ahmadi, S.A.M.; Basaif, S.A.; Ghandourah, M.A.; Badria, F.A. Differential cytotoxic activity of the petroleum ether extract and its furanosesquiterpenoid constituents from Commiphora molmol resin. Z Naturforsch C J Biosci. 2015, 70, 87–92. [Google Scholar] [CrossRef]
- Heinz Brieskorn, C.; Noble, P. Furanosesquiterpenes from the essential oil of myrrh. Phytochemistry 1983, 22, 1207–1211. [Google Scholar] [CrossRef]
- Maradufu, A.; Warthen, J.D. Furanosesquiterpenoids from Commiphora myrrh oil. Plant Sci. 1988, 57, 181–184. [Google Scholar] [CrossRef]
- Zhu, N.; Kikuzaki, H.; Sheng, S.; Sang, S.; Rafi, M.M.; Wang, M.; Nakatani, N.; DiPaola, R.S.; Rosen, R.T.; Ho, C.-T. Furanosesquiterpenoids of Commiphora myrrha. J. Nat. Prod. 2001, 64, 1460–1462. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, G.; Li, D.; Li, X.; Li, Z.; Bai, J.; Liu, X.; Hua, H. Two New Sesquiterpenes from Myrrh. Helv. Chim. Acta 2015, 98, 1332–1336. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Y.; Li, Y.; Zhao, P.; Liu, C.; Ma, Y.; Gao, J.; Hou, W.; Zhang, T. Sesquiterpenoids from the Resinous Exudates of Commiphora myrrha and Their Neuroprotective Effects. Planta Med. 2011, 77, 2023–2028. [Google Scholar] [CrossRef]
- Shen, T.; Wan, W.; Yuan, H.; Kong, F.; Guo, H.; Fan, P.; Lou, H. Secondary metabolites from Commiphora opobalsamum and their antiproliferative effect on human prostate cancer cells. Phytochemistry 2007, 68, 1331–1337. [Google Scholar] [CrossRef]
- Provan, G.J.; Gray, A.I.; Waterman, P.G. Sesquiterpenes from the myrrh-type resins of some kenyan Commiphora species. Flavour Fragr. J. 1987, 2, 109–113. [Google Scholar] [CrossRef]
- Kuck, K.; Jürgenliemk, G.; Lipowicz, B.; Heilmann, J. Sesquiterpenes from Myrrh and Their ICAM-1 Inhibitory Activity In Vitro. Molecules 2020, 26, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.S.; Qin, D.P.; Wang, S.X.; Yang, C.; Li, G.P.; Cheng, Y.X. Commipholactam A, a cytotoxic sesquiterpenoidal lactam from Resina Commiphora. Fitoterapia 2019, 134, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guo, Y.; Zhao, P.; Guo, P.; Ma, Y.; Xie, C.; Jin, D.; Gui, L. Four new sesquiterpenes from Commiphora myrrha and their neuroprotective effects. Fitoterapia 2012, 83, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Wan, W.; Wang, X.; Yuan, H.; Ji, M.; Lou, H. A triterpenoid and sesquiterpenoids from the resinous exudates of Commiphora myrrha. Helv. Chim. Acta 2009, 92, 645–652. [Google Scholar] [CrossRef]
- Ge, C.-Y.; Zhang, J.-L. Bioactive sesquiterpenoids and steroids from the resinous exudates of Commiphora myrrha. Nat. Prod. Res. 2019, 33, 309–315. [Google Scholar] [CrossRef]
- Zhu, S.S.; Liu, J.W.; Yan, Y.M.; Liu, Y.; Mao, Z.; Cheng, Y.X. Terpenoids from Resina Commiphora Regulating Lipid Metabolism via Activating PPARα and CPT1 Expression. Org Lett. 2020, 22, 3428–3432. [Google Scholar] [CrossRef]
- Claeson, P.; Andersson, R.; Samuelsson, G. T-Cadinol: A pharmacologically active constituent of scented myrrh: Introductory pharmacological characterization and high field 1H- and 13C-NMR data. Planta Med. 1991, 57, 352–356. [Google Scholar] [CrossRef]
- Rahman, M.M.; Garvey, M.; Piddock, L.J.V.; Gibbons, S. Antibacterial terpenes from the oleo-resin of Commiphora molmol (Engl.). Phytother. Res. 2008, 22, 1356–1360. [Google Scholar] [CrossRef]
- Hu, B.-Y.; Qin, D.-P.; Wang, S.-X.; Qi, J.-J.; Cheng, Y.-X. Novel terpenoids with potent cytotoxic activities from Resina Commiphora. Molecules 2018, 23, 3239. [Google Scholar] [CrossRef]
- Li, S.G. Chemical constituents from Myrrha and their antitumor activities. Chin. Tradit. Herb. Drugs 2017, 48, 853–858. [Google Scholar]
- Ahmed, F.; Ali, M.; Singh, O. New compounds from Commiphora myrrha (Nees) Engl. ChemInform. 2006, 37, chin.200652186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-Z.; Hu, B.-Y.; Liu, J.-W.; Cai, Y.; Chen, X.-C.; Qin, D.-P.; Cheng, Y.-X.; Zhang, Z.-D. Anti-Mycobacterium tuberculosis terpenoids from Resina Commiphora. Molecules 2019, 24, 1475. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guo, Y.; Zhao, P.; Xie, C.; Jin, D.; Hou, W.; Zhang, T. Neuroprotective cadinane sesquiterpenes from the resinous exudates of Commiphora myrrha. Fitoterapia 2011, 82, 1198–1201. [Google Scholar] [CrossRef]
- Maradufu, A. Furanosesquiterpenoids of Commiphora erythraea and C. myrrh. Phytochemistry 1982, 21, 677–680. [Google Scholar] [CrossRef]
- Manguro, L.; Mukonyi, K.; Githiomi, J. Bisabolenes and furanosesquiterpenoids of Kenyan Commiphora kua resin. Planta Med. 1996, 62, 84–85. [Google Scholar] [CrossRef]
- Bai, S.; Jain, M. 1H and 13C assignments of five cembrenes from guggul. Magn. Reason. Chem. 2008, 46, 791–793. [Google Scholar] [CrossRef]
- Matsuda, H.; Morikawa, T.; Ando, S.; Oominami, H.; Murakami, T.; Kimura, I.; Yoshikawa, M. Absolute stereostructures of polypodane- and octanordammarane-type triterpenes with nitric oxide production inhibitory activity from guggul-gum resins. Bioorg. Med. Chem. 2004, 12, 3037–3046. [Google Scholar] [CrossRef]
- Manguro, L.O.A.; Ugi, I.; Lemmen, P. Dammarane triterpenes of Commiphora confusa resin. Chem. Pharm. Bull. 2003, 51, 483–486. [Google Scholar] [CrossRef]
- Gao, W.; Su, X.; Dong, X.; Chen, Y.; Zhou, C.; Xin, P.; Yu, C.; Wei, T. Cycloartan-24-ene-1α,2α,3β-triol, a cycloartane-type triterpenoid from the resinous exudates of Commiphora myrrha, induces apoptosis in human prostatic cancer PC-3 cells. Oncol. Rep. 2015, 33, 1107–1114. [Google Scholar] [CrossRef]
- Shen, T.; Yuan, H.-Q.; Wan, W.-Z.; Wang, X.-L.; Wang, X.-N.; Ji, M.; Lou, H.-X. Cycloartane-type triterpenoids from the resinous exudates of Commiphora opobalsamum. J. Nat. Prod. 2008, 71, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Wang, Y.-H.; Ali, Z.; Smillie, T.; Khan, I. HPLC method for chemical fingerprinting of guggul (Commiphora wightii)—Quantification of E- and Z-guggulsterones and detection of possible adulterants. Planta Med. 2015, 82, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Morikawa, T.; Ando, S.; Oominami, H.; Murakami, T.; Kimura, I.; Yoshikawa, M. Absolute stereostructures of polypodane-type triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resin (the resin of Balsamodendron mukul). Chem. Pharm. Bull. 2004, 52, 1200–1203. [Google Scholar] [CrossRef] [PubMed]
- Meselhy, M.R. Inhibition of LPS-induced NO production by the oleogum resin of Commiphora wightii and its constituents. Phytochemistry 2003, 62, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Cytotoxic and cytostatic activity of erlangerins from Commiphora erlangeriana. Toxicon 2003, 41, 723–727. [Google Scholar] [CrossRef]
- Sultana, N.; Atta-ur-Rahman; Jahan, S. Studies on the constituents of Commiphora mukul. Z. Naturforsch. B 2005, 60, 1202–1206. [Google Scholar] [CrossRef]
- El-Mekkawy, S.; Meselhy, M.R.; Nkobole, N.; Lall, N. Three new α-glucosidase inhibitors from guggul, the oleogum resin of Commiphora wightii. Nat. Prod. Res. 2013, 27, 146–154. [Google Scholar] [CrossRef]
- Patil, V.D.; Nayak, U.R.; Dev, S. Chemistry of Ayurvedic crude drugs—I. Tetrahedron 1972, 28, 2341–2352. [Google Scholar] [CrossRef]
- Patil, V.D.; Nayak, U.R.; Dev, S. Chemistry of Ayurvedic crude drugs—III. Tetrahedron 1973, 29, 1595–1598. [Google Scholar] [CrossRef]
- Bajaj, A.G.; Dev, S. Chemistry of Ayurvedic crude drugs—V. Tetrahedron 1982, 38, 2949–2954. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Wasef, L.; Teibo, J.O.; Shaheen, H.M.; Zakariya, A.M.; Akinfe, O.A.; Teibo, T.K.A.; Al-kuraishy, H.M.; Al-Garbee, A.I.; Alexiou, A.; et al. Commiphora myrrh: A phytochemical and pharmacological update. Naunyn. Schmiedebergs Arch. Pharmacol. 2023, 396, 405–420. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, A.A.; Al-Massarani, S.M.; Abdel-Mageed, W.M.; El-Shaibany, A.; Al-Mahbashi, H.M.; Basudan, O.A.; Badria, F.A.; Al-Said, M.S.; Abdel-Kader, M.S. Prenylated flavonoids from Commiphora opobalsamum stem bark. Phytochemistry 2017, 141, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Dahi, A.; Abdellahi, B.M.-L.; Deida, M.F.; Hucher, N.; Malhiac, C.; Renou, F. Chemical and physicochemical characterizations of the water-soluble fraction of the Commiphora africana exudate. Food Hydrocolloids 2019, 86, 2–10. [Google Scholar] [CrossRef]
- Bhatia, A.; Bharti, S.K.; Tripathi, T.; Mishra, A.; Sidhu, O.P.; Roy, R.; Nautiyal, C.S. Metabolic profiling of Commiphora wightii (guggul) reveals a potential source for pharmaceuticals and nutraceuticals. Phytochemistry 2015, 110, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Bae, G.-S.; Choi, S.-B.; Jo, I.-J.; Shin, J.-Y.; Lee, S.-K.; Kim, M.-J.; Kim, M.-J.; Jeong, H.-W.; Choi, C.-M.; et al. Guggulsterone attenuates cerulein-induced acute pancreatitis via inhibition of ERK and JNK activation. Int. Immunopharmacol. 2015, 26, 194–202. [Google Scholar] [CrossRef]
- Song, J.-J.; Kwon, S.K.; Cho, C.G.; Park, S.-W.; Chae, S.-W. Guggulsterone suppresses LPS-induced inflammation of human middle ear epithelial cells (HMEEC). Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 1384–1387. [Google Scholar] [CrossRef]
- Gebhard, C.; Stämpfli, S.F.; Gebhard, C.E.; Akhmedov, A.; Breitenstein, A.; Camici, G.G.; Holy, E.W.; Lüscher, T.F.; Tanner, F.C. Guggulsterone, an anti-inflammatory phytosterol, inhibits tissue factor and arterial thrombosis. Basic Res. Cardiol. 2009, 104, 285–294. [Google Scholar] [CrossRef]
- Campbell, N.K.; Fitzgerald, H.K.; Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 2021, 21, 411–425. [Google Scholar] [CrossRef]
- Almazari, I.; Park, J.-M.; Park, S.-A.; Suh, J.-Y.; Na, H.-K.; Cha, Y.-N.; Surh, Y.-J. Guggulsterone induces heme oxygenase-1 expression through activation of Nrf2 in human mammary epithelial cells: PTEN as a putative target. Carcinogenesis 2012, 33, 368–376. [Google Scholar] [CrossRef]
- Singh, B.B.; Mishra, L.C.; Vinjamury, S.P.; Aquilina, N.; Singh, V.J.; Shepard, N. The effectiveness of Commiphora mukul for osteoarthritis of the knee: An outcomes study. Altern. Ther. Health Med. 2003, 9, 74–79. [Google Scholar]
- Al-Salmi, A.A.; Alim, M.A.; Ahmad, S.A.; Khan, L.M. An experimental exploratory study for the mechanism of anti-inflammatory action of Mecca myrrh (Commiphora opobalsamum). J. Pharm. Res. Int. 2021, 33, 152–165. [Google Scholar] [CrossRef]
- Yang, B.; Xu, L.-L.; Chen, F.-Y.; Luo, Y.-M. Study on chemical constituents and anti-inflammatory activity of Myrrha. Chin. Tradit. Herb. Drugs 2023, 54, 2716–2721. [Google Scholar] [CrossRef]
- Bellezza, I.; Mierla, A.; Grottelli, S.; Marcotullio, M.C.; Messina, F.; Roscini, L.; Cardinali, G.; Curini, M.; Minelli, A. Furanodien-6-one from Commiphora erythraea inhibits the NF-κB signaling and attenuates LPS-induced neuroinflammation. Mol. Immunol. 2013, 54, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wang, T.; Duan, J.-A.; Zhou, W.; Hua, Y.-Q.; Tang, Y.-P.; Yu, L.; Qian, D.-W. Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J. Ethnopharmacol. 2011, 134, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Compaoré, M.; Meda, R.N.-T.; Bakasso, S.; Vlase, L.; Kiendrebeogo, M. Antioxidative, anti-inflammatory potentials and phytochemical profile of Commiphora africana (A. Rich.) Engl. (Burseraceae) and Loeseneriella africana (Willd.) (Celastraceae) stem leaves extracts. Asian Pac. J. Trop. Biomed. 2016, 6, 665–670. [Google Scholar] [CrossRef]
- Lee, D.; Ju, M.-K.; Kim, H. Commiphora extract mixture ameliorates monosodium iodoacetate-induced osteoarthritis. Nutrients 2020, 12, 1477. [Google Scholar] [CrossRef]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha and Boswellia carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef]
- Singh, S.V.; Zeng, Y.; Xiao, D.; Vogel, V.G.; Nelson, J.B.; Dhir, R.; Tripathi, Y.B. Caspase-dependent apoptosis induction by guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, in PC-3 human prostate cancer cells is mediated by Bax and Bak. Mol. Cancer Ther. 2005, 4, 1747–1754. [Google Scholar] [CrossRef]
- Singh, S.V.; Choi, S.; Zeng, Y.; Hahm, E.-R.; Xiao, D. Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate-dependent activation of c-Jun NH2-terminal kinase. Cancer Res. 2007, 67, 7439–7449. [Google Scholar] [CrossRef]
- Xiao, D.; Singh, S.V. z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol. Cancer Ther. 2008, 7, 171–180. [Google Scholar] [CrossRef]
- Jiang, G.; Xiao, X.; Zeng, Y.; Nagabhushanam, K.; Majeed, M.; Xiao, D. Targeting beta-Catenin signaling to induce apoptosis in human breast cancer cells by z-Guggulsterone and Gugulipid extract of Ayurvedic medicinal plant Commiphora mukul. BMC Complement. Altern. Med. 2013, 13, 203. [Google Scholar] [CrossRef] [PubMed]
- Macha, M.A.; Matta, A.; Chauhan, S.S.; Siu, K.W.M.; Ralhan, R. Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-κB and STAT3 pathways in head and neck cancer cells. Carcinogenesis 2011, 32, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Sarfaraz, S.; Siddiqui, I.A.; Syed, D.N.; Afaq, F.; Mukhtar, H. Guggulsterone modulates MAPK and NF-κB pathways and inhibits skin tumorigenesis in SENCAR mice. Carcinogenesis 2008, 29, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Gui, Y.; Wei, Y.; Shang, B.; Sun, J.; Ma, S.; You, W.; Jiang, S. Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer. Int. Immunopharmacol. 2021, 93, 107395. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Xu, H.-B.; Shen, Z.-L.; Fu, J.; Xu, L.-Z. Reversal of doxorubicin resistance by guggulsterone of Commiphora mukul in vivo. Phytomedicine 2014, 21, 1221–1229. [Google Scholar] [CrossRef]
- Yao, Y.-Q.; Ding, X.; Jia, Y.-C.; Huang, C.-X.; Wang, Y.-Z.; Xu, Y.-H. Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett. 2008, 264, 127–134. [Google Scholar] [CrossRef]
- Su, S.; Wang, T.; Chen, T.; Duan, J.; Yu, L.; Tang, Y. Cytotoxicity activity of extracts and compounds from Commiphora myrrha resin against human gynecologic cancer cells. J. Med. Plant Res. 2014, 5, 211–224. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Zaki, A.R.; Hassan, M.E.; Mostafa-Hedeab, G. Commiphora molmol resin attenuates diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis by modulating oxidative stress, inflammation, angiogenesis and Nrf2/ARE/HO-1 signaling. Chem. Biol. Interact. 2017, 270, 41–50. [Google Scholar] [CrossRef]
- Paraskava, M.P.; Van Vuuren, S.F.; Van Zyl, R.L.; Davids, H.; Viljoen, A.M. The in vitro biological activity of selected South African Commiphora species. J. Ethnopharmacol. 2008, 119, 673–679. [Google Scholar] [CrossRef]
- Dolara, P.; Corte, B.; Ghelardini, C.; Pugliese, A.; Cerbai, E.; Menichetti, S.; Lo Nostro, A. Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med. 2000, 66, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.H. Pharmacological action and clinical use of frankincense and myrrh. Clin. J. Anhui Tradit. Chin. Med. 2003, 15, 264–265. [Google Scholar]
- Adam, M.; Selim, S. Antimicrobial activity of essential oil and methanol extract from Commiphora molmol (Engl.) resin. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 1–6. [Google Scholar]
- Alhazmi, A.; Aldairi, A.F.; Alghamdi, A.; Alomery, A.; Mujalli, A.; Obaid, A.A.; Alghamdi, A. Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules 2022, 27, 3320. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kaul, S.; Chander, R.; Kapoor, N.K. Stimulation of low density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmacol. Res. 1990, 22, 37–44. [Google Scholar] [CrossRef]
- Sharma, B.; Salunke, R.; Srivastava, S.; Majumder, C.; Roy, P. Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem. Toxicol. 2009, 47, 2631–2639. [Google Scholar] [CrossRef]
- Gautam, A.; Paudel, Y.; Abidin, S.; Bhandari, U. Guggulsterone, a farnesoid X receptor antagonist lowers plasma trimethylamine-N-oxide levels: An evidence from in vitro and in vivo studies. Hum. Exp. Toxicol. 2019, 38, 356–370. [Google Scholar] [CrossRef]
- Yu, B.Z.; Kaimal, R.; Bai, S.; El Sayed, K.A.; Tatulian, S.A.; Apitz, R.J.; Berg, O.G. Effect of guggulsterone and cembranoids of Commiphora mukul on pancreatic phospholipase A(2): Role in hypocholesterolemia. J. Nat. Prod. 2009, 72, 24–28. [Google Scholar] [CrossRef]
- Saxena, G.; Singh, S.P.; Pal, R.; Singh, S.; Pratap, R.; Nath, C. Gugulipid, an extract of Commiphora wightii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol. Biochem. Behav. 2007, 86, 797–805. [Google Scholar] [CrossRef]
- Kim, B.H.; Yoon, J.; Yang, J.I.; Myung, S.J.; Lee, J.; Jung, E.U.; Yu, S.J.; Kim, Y.J.; Lee, H.; Kim, C.Y. Guggulsterone attenuates activation and survival of hepatic stellate cells by inhibiting nuclear factor kappa B activation and inducing apoptosis. J. Gastroenterol. Hepatol. 2013, 28, 1859–1868. [Google Scholar] [CrossRef]
- Alahmari, A.S.; El-Mekkawy, H.I.; Al-Doaiss, A.A.; Alduwish, M.A. Effect of natural Commiphora myrrha extract against hepatotoxicity induced by alcohol intake in rat model. Toxins 2022, 10, 729. [Google Scholar] [CrossRef] [PubMed]
- Gowri Shankar, N.L.; Manavalan, R.; Venkappayya, D.; David Raj, C. Hepatoprotective and antioxidant effects of Commiphora berryi (Arn) Engl bark extract against CCl4-induced oxidative damage in rats. Food Chem. Toxicol. 2008, 46, 3182–3185. [Google Scholar] [CrossRef] [PubMed]
- Al-Howiriny, T.A.; Al-Yahya, M.A.; Al-Said, M.S.; El-Tahir, K.E.; Rafatullah, S. Studies on the pharmacological activities of an ethanol extract of Balessan (Commiphora opobalsamum). Pak. J. Biol. Sci. 2004, 7, 1933–1936. [Google Scholar] [CrossRef]
- Dolara, P.; Luceri, C.; Ghelardini, C.; Monserrat, C.; Aiolli, S.; Luceri, F.; Lodovici, M.; Menichetti, S.; Romanelli, M.N. Analgesic effects of myrrh. Nature 1996, 379, 29. [Google Scholar] [CrossRef] [PubMed]
- Akram, A.A.S.; Mai, A.A.A.S.; Lateef, M.K.; Sameer, E.A.H. Comparative study of analgesic and anti-inflammatory effects of Commiphora opobalsamum with diclofenac in rodents. Afr. J. Pharm. Pharmacol. 2015, 9, 806–817. [Google Scholar] [CrossRef]
- Madia, V.N.; Angelis, M.D.; Vita, D.D.; Messore, A.; Leo, A.D.; Ialongo, D.; Tudino, V.; Saccoliti, F.; Chiara, G.D.; Garzoli, S.; et al. Investigation of Commiphora myrrha (Nees) Engl. oil and its main components for antiviral activity. Pharmaceuticals 2021, 14, 243. [Google Scholar] [CrossRef]
- Mansouri, R.A.; Ahmad, A.; Roushdy, M.M.; Alshaibi, H.F.; Ragab, M. Pharmacological studies on the antidiabetic, antioxidant, and antimicrobial efficacies of Commiphora myrrha resin in streptozotocin-induced diabetes in rats: A preclinical study. J. Diabetes Res. 2023, 5478267. [Google Scholar] [CrossRef]
- Shokoohi, R.; Kianbakht, S.; Faramarzi, M.; Rahmanian, M.; Nabati, F.; Mehrzadi, S.; Huseini, H.F. Effects of an herbal combination on glycemic control and lipid profile in diabetic women: A randomized, double-blind, placebo-controlled clinical trial. J. Evid. Based Complement. Altern. Med. 2017, 22, 798–804. [Google Scholar] [CrossRef]
- Al-Romaiyan, A.; Huang, G.C.; Jones, P.; Persaud, S. Commiphora myrrha stimulates insulin secretion from mouse and human islets of Langerhans. J. Ethnopharmacol. 2021, 264, 113075. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (ChP 2020); China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- United States Pharmacopoeia Commission. United States Pharmacopoeia (USP 2024–NF 42); United States Pharmacopoeial Convention: Rockville, MD, USA, 2024. [Google Scholar]
- European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia (EP 11.0); Council of Europe: Strasbourg, France, 2023. [Google Scholar]
- Medicines and Healthcare Products Regulatory Agency. British Pharmacopoeia (BP 2024); The Stationery Office: London, UK, 2024. [Google Scholar]
- Indian Pharmacopoeia Commission. Indian Pharmacopoeia (IP 2020); Indian Pharmacopoeia Commission: Ghaziabad, India, 2020. [Google Scholar]
Species | Area | Application |
---|---|---|
Commiphora abyssinica | China, East Africa, Ethiopia | Stem skin: treat scorpion sting. Preparation of oleo-gum-resin: dissipate blood stasis and pain, detumescence and muscle, convergence, drive wind, sweating, strong, diuretic, dispel phlegm, meridian. Used for hemostasis swelling pain, chest pain, ulcer, and soreness. |
Commiphora Africana (A.Rich) Engler | Gambia, Ethiopia, Sub-saharan Africa | Tree exudate preparation of oleo-gum-resin: for spices, convergence, wind, diaphoresis, diuresis, expectorant, meridian. Roots: Used in Tanzania for mastitis, hernia |
Commiphora agallocha Engler | India | Resin: Used as a substitute for myrrh |
Commiphora berryi (Arn) Engl | India, Jordan, Egypt | Bark extracts: wound healing and inflammation |
Commiphora caudate (Wight & Arn.) Engl | India, Sri Lanka | Resin: arthritis, hyperlipidemia, pain, healing of wounds, coronary artery, and gynecological diseases, and also widely used to treat painful inflammatory conditions. |
Commiphora boiviana Engler | Somalia | Stem skin, root: oral decoction for lactation, aphrodisiesis, insect repellent, dysentery. |
Commiphora campestris Engler | Somalia | Stem bark: Used orally to treat hemorrhoids |
Commiphora cf. africana (A.Rich.) Engler | Tanzania | Stem skin, root: oral decoction for fever, cold, stomach disease, colic, swelling, malaria, leprosy, plum poison, poisonous snake bite. |
Commiphora cf. boiviana Engler | Ethiopia | Root and stem skin: oral decoction for prolactin, aphrodisiac, dysentery, gonorrhea. |
Commiphora dalzielii Hutch | Northern Nigeria | Stem bark: used for anti-inflammatory, analgesic, senile diseases. |
Commiphora erlangeriana | Somalia, Ethiopia | Resin: Toxic to humans and animals, historically used as curare in Africa. |
Commiphora erythraea | India, Somalia | Resin: used to protect livestock from ticks and to treat diseases related to inflammation. |
Commiphora gileadensis | Djibouti, Ethiopia, Kenya, Somalia, Sudan | Tincture of ground balsam bark: used to treat skin diseases The leaves and flowers of the plant: used as analgesic, laxative, and diuretic agents |
Commiphora guidotti | Somalia | Gum: Oral for stomach disease, diarrhea, maternal displacement of placenta, newborn Robust. |
Commiphora guillauminiperr | Sudan, Kenya | The plant of Kenyan myrrh. |
Commiphora holtziana | Eastern Africa | Resin: heal wounds, oral medicines, and perfumery substances, against the cattle tick |
Commiphora habessinica (O.Berg) Engl. | Uganda | Medicinal plants for veterinary use. Exudate: for scabies. |
Commiphora incisa Chiov. | India, East Africa, Ethiopia | The plant of Ethiopian medicine myrrh |
Commiphora kataf (Forssk), Engler | Saudi Arabia | Medicinal plants of the Arabian region. Resin: Used as a substitute for myrrh. |
Commiphora kua (R.Brown ex Royle) Vollesen | Yemen | Medicinal plants of Yemen. Leaf: Used for cough, bronchitis, disinfection, oral sterilization. |
Commiphora leptophloeos (Mart.) J.B. Gillett | Brazil | Brazilian medicinal plants. Stem skin: Decoction orally used to treat cough, bronchitis, influenza. |
Commiphora madagascariensis Jacq. | Madagascar | Root and fruit: Oral infusion for fever, toothache, abdominal pain, menorrhagia. |
Commiphora marlothii Engler | South Africa | Plant: Burning inhaling smoke to treat epilepsy. |
Commiphora merkeri | East Africa | Stem bark extracts: anti-cancer, analgesic, antifungal, acaricidal, mosquito larvicidal activities |
Commiphora molmol | Somalia, Arab region, Ethiopia | The resin produced is called colloidal myrrh |
Commiphora mossambicensis Oliver | Zambia | Medicinal plants of Zambia. Root: Used to treat infectious diseases and wounds. |
Commiphora mukul (Hook.ex Stocks) Engler | Somalia, India | Resin is used as a spice and myrrh substitute |
Commiphora multifoliolata Gilet | Somalia | Medicinal plants of Somalia. Fresh stem bark, gum: Infusion orally used to treat cholera. |
Commiphora opobalsamum Engler | Egypt, Saudi Arabia | Bark: Exudates from cuts to make myrrh. |
Commiphora parvifolia Engler | Yemen | Medicinal plants of Yemen. Bark: used for embalming, diarrhea, dysentery, menstruation, uterine stimulation. |
Commphora pendiculata | Nigeria | Medicinal plants of Nigeria. Stem bark: used as an incense-burning agent. |
Commiphora pilosa Engler | Tanzania | Medicinal plants of Tanzania. Stem skin, root: boiled after oral treatment of epilepsy. |
Commiphora pterleifolia Engler | Tanzania | Medicinal plants of Tanzania. Root: The decoction is used orally for the treatment of headache, internal swelling of women, cervical cancer, oral candidiasis, skin fungal infection. |
Commiphora pyracanthoides Engler | East Africa | East African myrrh source |
Commiphora resiniflua Martelli | Ethiopia | Medicinal plants of Ethiopia. Resin: Used for strengthening liver function, repelling worms (tapeworms) and skin damage |
Commiphora rostrota | Arab region | Plant of origin for the Arabian and Ethiopian medicine myrrh. Stem skin: liniment oral treatment for sore throat, cough, sore throat, eye disease. |
Commiphora wighti (Arn.) Bhandari | India, Pakistan | Traditional medicinal plants of Pakistan. Resin: topically wash the parasitic rule of law head. |
Commiphora zimmermanii Engler | Tanzania | Medicinal plants of Tanzania. Branch, leaf, stem skin: decoction or infusion oral for fever, toothache, stomach pain, abdominal pain, constipation, menorrhagia, postpartum bleeding, snake bite. |
Name | Ingredients | Actions | Indications |
---|---|---|---|
Qili Powder | Draconis Sanguis; Olibanum (processed); Myrrha (processed); Carthami flcis; Catechu; Borneolum Syntheticum; Moschus artifactus; Cinnabaris. | To resolve stasis, disperse swelling, relieve pain, and stop bleeding. | Traumatic injuries, blood stasis pain, and transient bleeding. |
Xihuang Pills | Bovis Calculus or Bovis Calculus Sativus; Moschus or Moschus Artifactus; Olibanum (processed with vinegar); Myrrha (processed with vinegar). | To clear heat, remove toxins, disperse swelling, and dissipate cold. | Abscesses, cellulitis, deep-rooted boil toxin, scrofula, deep multiple abscesses, and tumor swelling due to exuberant heat toxins. |
Niuhuang Huadu Tablets | Arisaematis Rhizoma Preparatum; Forsythiae Fructus; Lonicerae Japonicae Flos; Angelicae Dahuricae Radix; Glycyrrhizae Radix et Rhizoma; Olibanum; Myrrha; Bovis Calculus Artifactus. | To remove toxins, alleviate swelling, dissipate cold, and relieve pain. | Swelling, reddening, and pain in skin infections or acute mastitis. |
Xiaohuoluo Wan | Arisaema cum Bile; Aconiti Radix Cocta; Aconiti Kusnezoffii Radix Cocta; Pheretima; Olibanum (processed); Myrrha (processed). | To dispel wind, dissipate cold, resolve stasis, eliminate dampness, activate blood, and relieve pain. | Disorders due to wind–cold–dampness obstruction and phlegm stasis obstructing the collaterals, manifested as pain in the joints and limbs, either cold pain, stabbing pain, or pain worsening at night, with inhibited bending and stretching, numbness, and convulsions of the joints. |
Gutongling Liquid | Aconiti Brachypodi Radix; ZingiberisRhizoma; Dracaenae Resinalg; Olibanum; Myrrha; Borneolum Syntheticum. | To warm the meridians, dissipate cold, dispel wind, activate blood, unblock the collaterals, and relieve pain. | Lumbar and cervical vertebrae osteoproliferation, osteoarthritis, shoulder periarthritis, and rheumatic arthritis. |
Compounds | Species | Type | Ref |
---|---|---|---|
α-Pinene | C.quadricincta, C. sphaerocarpa C. holtziana C. kataf | monoterpenoids | [68,69] |
camphene | C.africana, C. campesiris, C. ogadensis | monoterpenoids | [70] |
β-Pinene | C.africana, C. campesiris, C. ogadensis | monoterpenoids | [70] |
7-Methyl-3-methylene-1,6-octadiene | C. sphaerocarpa, C. africana, C. ogadensis | monoterpenoids | [70] |
limonene | C. africana, C. campesiris, C. ogadensis, C. terebinthina, C. cyclophylla | monoterpenoids | [71,72] |
3,7-dimethylocta-1,3,7-triene | C. wildii | monoterpenoids | [73,74] |
borneol | C. ornifolia, C. parvifolia. | monoterpenoids | [71] |
β-elemene | C. myrrha, C. sphaerocarpa, C. holtziana, C. kataf | monoterpenoids | [69] |
2-methoxyfuranodiene | C. myrrha, C. molmol, C. erythraea | Germacrane | [75,76,77,78,79] |
2-acetoxyfuranodiene | C. myrrha, C. molmol, C. erythraea | Germacrane | [75,79,80] |
furanodiene | C. myrrha, C. guidotti, ResinaCommiphora | Germacrane | [69,70,78,79,81] |
4,5-dihydrofuranodiene-6-one | C. molmol | Germacrane | [80] |
1,2-epoxyfurano-l0(15)-germamen-6-one | C. myrrha, C. holtziana, C. opobalsamum, Resina Commiphora | Germacrane | [57,76,78,81,82] |
(1E)-8,12epoxygermacra-1,7,10,11-tetraen-6-one | C. sphaerocarpa | Germacrane | [69] |
(1E)-3-methoxy-8,12-epoxygermacra-1,7,10,11-tetraen-6 one | C. opobalsamum, C. erythraea, C. sphaerocarpa, C. holtziana | Germacrane | [55,57,69,76] |
2-methoxy-5-acetoxy-fruranogermacr-1(10)-en-6-one | C. myrrha, C. opobalsamum | Germacrane | [63,76,83,84,85] |
[1(10)E,2R*,4R*]-2-methoxy-8,12-epoxygermacra-1(10),7,11-trien-6-one | C. myrrha, C. opobalsamum, C. sphaerocarpa, C. erythraea, C. holtziana, Resina Commiphora | Germacrane | [55,69,76,78,82,83,85] |
epicurzerenone | C. myrrha | Germacrane | [77] |
furanodieneone | C. myrrha, C. molmol, C. guidotti, C. erythraea, C. sphaerocarpa, Resina Commiphora | Germacrane | [55,78,79,81,82] |
2-acetyloxyglechomanolide | Resina Commiphora | Germacrane | [78] |
8-epi-2-acetyloxyglechomanolide | Resina Commiphora | Germacrane | [78] |
rel-2R-methyl-5S-acetoxy-4R-furanogermacr-1(10)Z-en-6 one | C. myrrha, Resina Commiphora | Germacrane | [78,82] |
2-hydroxy-11,12-dihydrofuranodiene | C. molmol | Germacrane | [79] |
2-hydroxy-furanodiene | C. molmol | Germacrane | [79] |
rel-(1S,2S,3R,4S)-1,2-epoxy-3-methoxyfuranogermacr-10 (15)-en-6-one | C. opobalsamum | Germacrane | [83] |
2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien 12,8-olide | C. opobalsamum | Germacrane | [56,83] |
2α-methoxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide | C. opobalsamum | Germacrane | [57] |
myrrhterpenoid B | C. myrrha | Germacrane | [84] |
myrrhterpenoid C | C. myrrha | Germacrane | [84] |
myrrhterpenoid D | C. myrrha | Germacrane | [84] |
myrrhterpenoid E | C. myrrha | Germacrane | [84] |
myrrhterpenoid F | C. myrrha | Germacrane | [84] |
germacrone | C. myrrha, C. holtziana | Germacrane | [86] |
1β,8β-epoxy-2α-methoxy-6-oxogermacra-9(10),7(11)-dien 8,12-olide | C. opobalsamum | Germacrane | [56] |
1β,8β-epoxy-2α-methoxy-12α-hydroxy-6-oxogermacra-9 (10),7(11)-dien-8,12-olide | C. opobalsamum | Germacrane | [56] |
1β,8β-epoxy-2α-methoxy-12β-hydroxy-6-oxogermacra-9 (10),7(11)-dien-8,12-olide | C. opobalsamum | Germacrane | [56] |
eudesm-4(15)-ene-1β,6α-diol | C. myrrha, C. opobalsamum | Eudesmane | [56,77] |
isohydroxylindestrenolide | C. myrrha, ResinaCommiphora | Eudesmane | [78,87] |
hydroxylindestrenolide | C. myrrha, ResinaCommiphora | Eudesmane | [79,87] |
5-αH,8-βH-eudesma-1,3,7(11)-trien-8,12-olide | C. molmol | Eudesmane | [79] |
furanoeudesma-1,3-diene | C. myrrha, C. molmol | Eudesmane | [1,79,81] |
furanoeudesma-1,4-diene-6-one | C. molmol | Eudesmane | [1] |
myrrhterpenoid A | C. myrrha | Eudesmane | [84] |
chlorantene C | C. myrrha | Eudesmane | [84] |
chlomultin B | C. myrrha | Eudesmane | [84] |
eudesmane-1β,5α,11-triol | C. opobalsamum | Eudesmane | [85] |
β-selinene | C. holtziana | Eudesmane | [86] |
11-hydroxy-4α-methoxy-selinane | C. opobalsamum | Eudesmane | [56] |
1β,4β-epoxy-eudesmane-11-ol | C. opobalsamum | Eudesmane | [56] |
9-nor-9,10-seco-isolindestrenolide | C. myrrha | Eudesmane | [87] |
9,10-seco-isohydroxylindestrenolide | C. myrrha | Eudesmane | [87] |
lindestrenolide | C. myrrha | Eudesmane | [87] |
atractylenolide | C. myrrha | Eudesmane | [87] |
4β-hydroxy-8,12-epoxyeudesma-7,11-diene-1,6-dione | C. myrrha | Eudesmane | [87] |
lindestrene | C. myrrha, C. molmol | Eudesmane | [80,81] |
commiphoraneI | Resina Commiphora | Eudesmane | [88] |
commiphorane E1 | Resina Commiphora | Eudesmane | [61] |
commiphorane E2 | Resina Commiphora | Eudesmane | [61] |
commiphorane E3 | Resina Commiphora | Eudesmane | [61] |
curcolonol | Resina Commiphora | Eudesmane | [61] |
myrrhterpenoid M | C. myrrha | Eudesmane | [89] |
myrrhterpenoid N | C. myrrha | Eudesmane | [89] |
myrrhanolide A | C. myrrha | Eudesmane | [90] |
2-methoxyfuranoguaia-9-ene-8-one | C. molmol | Guaiane | [80] |
(1R,2R,4S)-1,2-epoxyfuranogermacr-10(15)-en-6-one | Resina Commiphora | Guaiane | [78] |
alismol | C. myrrha, C. opobalsamum | Guaiane | [83] |
6α,7α-epoxy-1β-guai-10(14)-en-4α-ol | C. opobalsamum | Guaiane | [57] |
5β-10α-hydroxy-2α-methoxy-6-oxoguaia-7(11),8-dien-8,12-olide | C. opobalsamum | Guaiane | [57] |
(1R,4S,5R)-guaia-6,10(14)-diene | C. opobalsamum | Guaiane | [57] |
myrrhterpenoid O | Resina Commiphora | Guaiane | [78] |
myrrhterpenoid G | C. myrrha | Guaiane | [84] |
myrrhterpenoid H | C. myrrha | Guaiane | [84] |
myrrhterpenoid I | C. myrrha | Guaiane | [84] |
myrrhterpenoid K | C. myrrha | Guaiane | [89] |
myrrhterpenoid L | C. myrrha | Guaiane | [89] |
guaia-6α,7α-epoxy-4α,10α-diol | C. opobalsamum | Guaiane | [85] |
guaia-4β,7β,10α-trihydroxy-5-ene | C. opobalsamum | Guaiane | [56] |
myrrhanoperoxide | C. myrrha | Guaiane | [87] |
rel-(+)-(1S,4R,7S)-11-acetyl-guai-10(14)-en-4,11-ol | C. myrrha | Guaiane | [87] |
rel-(+)-(4R,5R,7S)-11-acetyl-guai-1(10)-en-4,11-ol | C. myrrha | Guaiane | [87] |
commiphorane J | Resina Commiphora | Guaiane | [88] |
guai-1(10),5,7(11),8-tetradien-12,8-olide | C. myrrha | Guaiane | [91] |
commiphoranoid A | Resina Commiphora | Guaiane | [92] |
commiphoranoid B | Resina Commiphora | Guaiane | [92] |
commiphoranoid C | Resina Commiphora | Guaiane | [92] |
dihydropyrocurzerenone | C. myrrha, C. sphaerocarpa, C. opobalsamum | Cadinane | [69,85] |
τ-cadinol | C. myrrha, C. molmol, C. guidottii, C. kua | Cadinane | [60,77,93,94] |
3α-hydroxy-τ-cadinol | C. myrrha, C. guidottii | Cadinane | [77] |
myrrhone | C. myrrha, C. opobalsamum, C. erythraea, Resina Commiphora | Cadinane | [55,58,77,78,83,85,95] |
9-methoxymyrrhone | C. opobalsamum | Cadinane | [83] |
agarsenone | C. opobalsamum, C. erythraea | Cadinane | [83] |
myrrhanolide B | C. myrrha, C. opobalsamum, Resina Commiphora | Cadinane | [83,90,95] |
furanocadina-1(10),6,8-triene-4-ol | C. opobalsamum | Cadinane | [57] |
myrrhterpenoid J | C. myrrha | Cadinane | [84] |
commipholinone | C. myrrha, C. opobalsamum, Resina Commiphora | Cadinane | [56,58,95] |
commiterpene D | C. myrrha | Cadinane | [87] |
(11β)-8,11-dihydroxy-cadina-6,8,10-trien-12-oicacid-γ lactone | Resina Commiphora | Cadinane | [88] |
commiphorane H | Resina Commiphora | Cadinane | [88] |
(+)-myrrhalactone A | C. myrrha | Cadinane | [96] |
(–)-myrrhalactone A | C. myrrha | Cadinane | [96] |
(±)-commyrrin A | C. myrrha | Cadinane | [91] |
(±)-commyrrin B | C. myrrha | Cadinane | [91] |
commiphoin A | C. myrrha | Cadinane | [56] |
commiphoin B | C. myrrha | Cadinane | [56] |
commiphoin C | C. myrrha | Cadinane | [56] |
commiterpene A | C. myrrha | Cadinane | [56] |
commiphorene A | Resina Commiphora | Cadinane | [95] |
commiphorene B | Resina Commiphora | Cadinane | [95] |
myrrhanolide C | C. myrrha, Resina Commiphora | Cadinane | [90,95] |
myrracalamene A | C. myrrha | Cadinane | [97] |
myrracalamene B | C. myrrha | Cadinane | [97] |
myrracalamene C | C. myrrha | Cadinane | [97] |
myrracadinol B | C. myrrha | Cadinane | [97] |
myrracadinol C | C. myrrha | Cadinane | [97] |
myrracadinol A | C. myrrha | Cadinane | [97] |
8-hydroxy-12-norcardina-4,6,8,10-tetraen-11-one | Resina Commiphora | Cadinane | [98] |
commiterpene A | C. myrrha | Cadinane | [99] |
commiterpene B | C. myrrha | Cadinane | [99] |
commiterpene C | C. myrrha | Cadinane | [99] |
curzerenone | C. myrrha, C. sphaerocarpa, C. erythraea, C. Opobalsamum, Resina Commiphora | Elemane | [55,69,78,82,85] |
2-methoxyisogermafurenolide | Resina Commiphora | Elemane | [78] |
8-epi-2-methoxyisogermafurenolide | C. myrrha, Resina Commiphora | Elemane | [78,87] |
2-methoxy isofuranogermacrene | C. myrrha, C. molmol, C. erythraea, Resina Commiphora | Elemane | [78,79] |
β-elemene | C. myrrha, C. molmol, Resina Commiphora | Elemane | [78,86,94] |
elemyl acetate | Resina Commiphora | Elemane | [78] |
8-hydroxyisogermafurenolide | Resina Commiphora | Elemane | [78] |
γ-elemanel actone | C. molmol | Elemane | [79] |
isofuranogermacrene | C. myrrha | Elemane | [81,100] |
elemol | C. holtziana | Elemane | [86] |
δ-elemene | C. holtziana | Elemane | [86] |
γ-elemene | C. myrrha, C. holtziana | Elemane | [86] |
isogermafurenolide | C. myrrha | Elemane | [87] |
hydroxyisogermafurenolide | C. myrrha | Elemane | [87] |
methoxyisogermafurenolide | C. myrrha | Elemane | [87] |
α-bisabolene | C. guidotti | Others | [70] |
β-bisabolene | C. guidotti | Others | [70,74] |
α-santalene | C. guidotti | Others | [70] |
α-cubebene | C. myrrha | Others | [86] |
β-bourhonene | C. holtziana | Others | [86] |
commipholactam A | Resina Commiphora | Others | [88] |
commiphorane C | Resina Commiphora | Others | [64] |
commiphorane D | Resina Commiphora | Others | [64] |
2-methyl-5-(5′-hydroxy-1′,5′-dimethyl-3′-hexenyl)phenol | C. kua | Others | [101] |
6-hydroxy-2-methyl-5-(5′-hydroxy-1′(R),5′-dimethylhex 3′-enyl)-phenol | C. kua | Others | [65] |
2-methyl-5-[4′(S)-hydroxy-1′(R),5′-dimethylhex-5′ enyl]-phenol | C. kua | Others | [65] |
7-oxo-13α-hydroxyabiet-8(14)-en-18-oic acid | Resina Commiphora | Abietane | [61] |
7-oxo-13β-hydroxyabiet-8(14)-en-18-oic acid | Resina Commiphora | Abietane | [61] |
7-oxo-13α-methoxyabiet-8(14)-en-18-oic acid | Resina Commiphora | Abietane | [61] |
7-oxo-13β-methoxyabiet-8(14)-en-18-oic acid | Resina Commiphora | Abietane | [61] |
Dehydroabietic acid | C. myrrha, Resina Commiphora | Abietane | [61,63] |
7-oxocallitrisic acid | C. myrrha, Resina Commiphora | Abietane | [61,98] |
abieta-8,11,13,15-tetraen-18-oic acid | Resina Commiphora | Abietane | [61] |
19-norabieta-5,8,11,13-tetraen-7-one | Resina Commiphora | Abietane | [61] |
abietic acid | C. myrrha | Abietane | [63] |
commiphoranesK1 | Resina Commiphora | Abietane | [88] |
commiphoranesK2 | Resina Commiphora | Abietane | [88] |
nepetaefolinF | Resina Commiphora | Abietane | [98] |
3β-hydroxy-dehydroabietic acid | Resina Commiphora | Abietane | [88] |
(1E,5E,9E)-1,5,9-trimethyl-12-(1-methylethenyl)cyclotetradeca-1,5,9-triene | C. mukul | Cembrane | [62] |
(2E,6E,10E)-3,7,11-trimethyl-14-(1-methylethenyl)cyclotetradeca-2,6,10-trien-1-ol | C. mukul | Cembrane | [62] |
(1E,3E,6E,10E)-3,7,11-trimethyl-14-(1-methylethyl)cyclotetradeca-1,3,6,10-tetraene | C. mukul | Cembrane | [62] |
(2E,6E,10E)-3,7,11-trimethyl-14-(1-methylethyl)cyclotetradeca-2,6,10-trien-1-ol | C. mukul | Cembrane | [62] |
(1E,4E,8E)-4,8,14-trimethyl-11-(1-methylethyl)-14-methoxycyclotetradeca-1,4,8-triene | C. mukul | Cembrane | [62] |
(2E,12E)-2,7,13-trimethyl-9-(1-methylethyl)-15-oxabicyclo [12.1.0]pentadeca-2,12-dien-7-ol | C. mukul | Cembrane | [62] |
cembrene | C. mukul | Cembrane | [102] |
cembrene A | C. mukul | Cembrane | [102] |
cembrenol | C. mukul | Cembrane | [102] |
mukulol | C. mukul | Cembrane | [102,103] |
isocembrol | C. mukul | Cembrane | [103] |
4-epiisocembrol | C. mukul | Cembrane | [103] |
commiphorane A | Resina Commiphora | 6/6/6/6 | [64] |
commiphorane B | Resina Commiphora | 6/6/6/6 | [64] |
pimaricacid | Resina Commiphora | Pimarane | [61] |
pimarol | Resina Commiphora | Pimarane | [61] |
sandaracopimaric acid | C. myrrha | Pimarane | [63] |
commiphorane F | Resina Commiphora | Podocarpinene | [61] |
8(14)-podocarpen-13-on-18-oic acid | Resina Commiphora | Podocarpinene | [61] |
(4Z,6E)-4,7,12,15,15-pentamethylbicyclo [9.3.1]pentadeca-4,6-dien-12-ol. | C. mukul | - | [62] |
verticillol | C. mukul | - | [102] |
commiphoraneG1 | Resina Commiphora | Dammarane | [61] |
(20S)-3β-acetoxy-12β,16β-trihydroxydammar-24-ene | C. confusa | Dammarane | [104] |
(20S)-12β,16β-trihydroxydammar-24-ene-3β-O-glucopyranoside | C. confusa | Dammarane | [104] |
(20R)-3β-ace-toxy-16β-dihydroxydammar-24-ene | C. confusa | Dammarane | [104] |
3β-hydroxydammar-24-ene | C. confusa | Dammarane | [104] |
3β-acetoxydammar-24-ene | C. confusa | Dammarane | [104] |
(20R)3β-acetoxy-16β-hydroxydammar-24-ene | C. confusa | Dammarane | [104] |
(20R)-3β,16β-trihydroxydammar-24-ene | C. confusa | Dammarane | [104] |
(20S)-3β-acetoxy-12β,16β,25-tetrahydroxydammar-23-ene | C. confusa | Dammarane | [104] |
(20S)-3β,12β,16β,25-pentahdroxydammar-23-ene | C. confusa | Dammarane | [104] |
3β,16β,20(S),25-tetrahydroxydammar-23-ene | C. kua | Dammarane | [65] |
3β-acetoxy-16β,20(S),25-trihydroxydammar-23-ene | C. kua | Dammarane | [65] |
3β,16β,20(R)-trihydroxydammar-24-ene | C. kua | Dammarane | [65] |
3β-acetoxy-16β,20(R)-dihydroxydammar-24-ene | C. kua | Dammarane | [65] |
(3R,20S)-3,20-dihydroxydammar-24-ene | C. confusa | Dammarane | [67] |
α-amyrin | C. confusa | Dammarane | [67] |
(3R,20S)-3-acetoxy-20-hydroxydammar-24-ene | C. confusa | Dammarane | [67] |
cabraleadiol3-acetate | C. confusa | Dammarane | [67] |
rel-20S-hydroxy-dammar-24-en-3,16-dione | Resina Commiphora | Dammarane | [78] |
rel-(16S,20S)-dihydroxydammar-24-en-3-one | Resina Commiphora | Dammarane | [78] |
(16S,20R)-dihydroxydammar-24-en-3-one | C. kua | Dammarane | [60] |
15α-hydroxymansumbinone | C. kua | Dammarane | [60] |
28-acetoxy-15α-hydroxymansumbinone | C. kua | Dammarane | [60] |
mansumbinone | C. molmol, C. kua, Resina Commiphora | Dammarane | [60,78,94] |
mansumbinol | C. molmol | Dammarane | [60,78] |
Mansumbinol epoxide | Resina Commiphora | Dammarane | [78] |
mansumbin-13(17)-en-3,16-dione | Resina Commiphora | Dammarane | [78] |
3,4-seco-mansumbinoic acid | C. molmol, Resina Commiphora | Dammarane | [60,78] |
3-oxo-commiphoraneG2 | Resina Commiphora | Dammarane | [98] |
commiphoraneG2 | Resina Commiphora | Dammarane | [61] |
epimansumbinol | C. mukul | Dammarane | [103] |
myrrhasin | C. myrrha | Dammarane | [90] |
cycloartan-24-ene-1α,2α,3β-triol | C. myrrha, C. opobalsamum, Resina Commiphora | Cycloartane | [78,85,86,105,106] |
cycloartan-24-ene-1α,2α,3α-triol | C. opobalsamum | Cycloartane | [106] |
3β-acetoxycycloartan-24-ene-1α,2α-diol | C. opobalsamum | Cycloartane | [106] |
1α-acetoxycycloartan-24-ene-2α,3β-diol | C. opobalsamum | Cycloartane | [56,106] |
3β-isovaleroyloxycycloartan-24-ene-1α,2α-diol | C. opobalsamum | Cycloartane | [56,106] |
cycloartan-24-ene-1α,3β-diol | C. opobalsamum | Cycloartane | [106] |
cycloartan-24-ene-1S,3R-diol | C. opobalsamum | Cycloartane | [56] |
cycloartan-24-ene-1α,2α,3β-triol | C. opobalsamum | Cycloartane | [106] |
cycloartane-1α,2α,3β,25-tetraol | C. myrrha | Cycloartane | [63] |
cycloartan-23E-ene-1α,2α,3β,25-tetrol | C. opobalsamum | Cycloartane | [106] |
24R,25-epoxycycloartane-1α,2α,3β-triol | C. opobalsamum | Cycloartane | [106] |
24S,25-epoxycycloartane-1α,2α,3β-triol | C. opobalsamum | Cycloartane | [106] |
cycloartan-23-ene-1S′,3R′,25-triol | C. opobalsamum | Cycloartane | [56] |
cycloartane-24-en-1α,2α,3β-triol-1,2-acetonide | C. opobalsamum | Cycloartane | [56] |
1α-acetoxy-9,19-cyclolanost-24-en-3β-ol | C. kua, C. myrrha, C. incisa | Cycloartane | [66] |
myrrhanol B | C. mukul | Polypodane | [103] |
myrrhanone B | C. mukul | Polypodane | [103] |
myrrhanone Aacetate | C. mukul | Polypodane | [103] |
(13E,17E,21E)-polypodo-13,17,21-triene-3,8-dio | C. mukul, C. wightii | Polypodane | [62,107] |
myrrhanol A | C. mukul, C. wightii | Polypodane | [103,108,109] |
myrrhanone A | C. mukul, C. wightii | Polypodane | [103,108,109] |
(13E,17E,21E)-8-hydroxypolypodo-13,17,21-trien-3-one | C. mukul, C. wightii | Polypodane | [62,107] |
7-oxo-ganodericacidZ | Resina Commiphora | Lanostane | [98] |
29-norlanost-8,24-dien-1α,2α,3β-triol | C. myrrha, C. kua, C. incisa | Lanostane | [66] |
2α,3β-diacetoxy-29-norlanost-8,24-dien-lα-ol | C. incisa | Lanostane | [66] |
lα,2α,3β-triacetoxy-29-norlanost-8,24-diene | C. incisa | Lanostane | [66] |
3β-acetoxy-24-methyl-29-norlanost-8,25-diene | C. incisa | Lanostane | [66] |
commiphoraneG3 | Resina Commiphora | Ursane | [61] |
28-nor-urs-12-ene-3β,17β-diol | Resina Commiphora | Ursane | [61] |
3,22-dioxo-20-taraxastene | Resina Commiphora | Taraxastane | [61] |
β-amyrin | C. confusa | Oleanane | [65] |
Compounds | Species | Ref |
---|---|---|
diasesartemin | C. wightii | [107,112] |
sesamin | C. wightii | [107] |
5,5′-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diylbis[7-(methoxy)-1,3-benzodioxole] | C. wightii | [62] |
epi-mukulin | C. wightii | [112] |
(+)-epi-magnolin | C. wightii | [112] |
(+)-diayangambin | C. wightii | [112] |
erlangerin A | C. erlangeriana | [69] |
erlangerin B | C. erlangeriana | [69] |
erlangerin C | C. erlangeriana | [69] |
erlangerin D | C. erlangeriana | [69] |
Compounds | Species | Ref |
---|---|---|
E-guggulusterone | C. mukul, C. wightii | [62,103,107,109,112,115] |
Z-guggulusterone | C. mukul, C. wightii | [62,103,107,109,112,115] |
pregn-4-ene-3,16-dione | C. mukul | [62] |
progesterone | C. mukul | [103] |
16β-acetyloxy-pregn-4,17(20)-trans-dien-3-one | C. mukul | [103] |
3α-acetyloxy-5α-pregnan-16-one | C. mukul | [103] |
20R,22R-dihydroxycholest-4-en-3-one | C. mukul | [103] |
guggulsterol I | C. mukul, C. wightii | [103,109,112,115] |
guggulsterol II | C. mukul | [115] |
guggulsterol III | C. mukul, C. wightii | [107,115] |
guggulsterol IV | C. mukul | [113] |
8β-hydroxypregnene-4,6-diene-3,20-dione | C. wightii | [107] |
20-acetyloxy-4-pregnene-3,16-dione | C. mukul, C. wightii | [62,103,107] |
20α-hydroxy-4-pregnen-3-one | C. mukul | [115] |
20β-hydroxy-4-pregnen-3-one | C. mukul | [115] |
16β-hydroxy-4,17(20)Z-pregnadien-3-one | C. mukul | [115] |
(Z)Δ1,2dehydroguggulsterone | C. wightii | [112] |
Δ6,7dehydro-20-hydroxygugglsterone | C. wightii | [112] |
β-sitostenone | C. myrrha | [91] |
β-sitosterol | C. myrrha | [91,104] |
Guggulsterone-M | C. wightii | [109] |
Dehydroguggulsterone-M | C. wightii | [109] |
Guggulsterol-Y | C. wightii | [109] |
β-epimer | C. myrrha | [115] |
16α-hydroxy-4-pregnen-3-one | C. mukul | [115] |
Inspection | ChP2020 | EP11.0 | BP2024 | IP2022 | USP2024-NF42 | |
---|---|---|---|---|---|---|
Name | Myrrha | Myrrha | Myrrh | Guggul Resin | Myrrh | Guggul |
Commiphora Type | Commiphora myrrha Engl. Commiphora molmol Engl. | Commiphora myrrha (Nees) Engl. (syn.Commiphora molmol (Engl.) Engl. ex Tschirch) and/or other species of Commiphora. | Commiphora myrrha (Nees) Engl. (syn. Commiphora molmol (Engl.) Engl. ex Tschirch) and/or other species of Commiphora. | Commiphora wightii (Arnott) Bhandari (Commiphora mukul (Arn.) Bhandari, balsamodendron mukul Hook. ex. Stocks) (Fam. Burseraceae) | Commiphora molmol Engler and other related species of Commiphora other than Commiphora mukul (Fam. Burseraceae) | Commiphora wightii (Arn.) Bhandari, also known as Commiphora mukul (Hook. ex. Stocks) Engl. Or Balsamodendrum mukul (Hook.) (Fam. Burseraceae). |
Content determination | Volatile oil: natural myrrh not less than 4% (mL/g); colloidal myrrh not less than 2% (mL/g) | Matter insoluble in ethanol: max 75% | Matter insoluble in ethanol: max 75% | Ethyl acetate-soluble extractive: not less than 25.0% Ethanol-soluble extractive: not less than 35.0% | Alcohol-Soluble Extractives: 40–70% Water-Soluble Extractives: not less than 50% Volatile Oil Determination: not less than 6.0% | Alcohol-Soluble Extractives: not less than 33% |
Identification | Chemical method: Thin-layer chromatography | Microscopic examination; Thin-layer chromatography (C. mukul) | Microscopic examination; Thin-layer chromatography (C. mukul) | Chemical method; Thin-layer chromatography | Chemical method: Thin-layer chromatography | Thin-layer chromatography; HPLC Analysis |
Foreign matter | Natural myrrh: Max 10.0% Colloidal myrrh: Max 15.0% | Matter insoluble in ethanol: max 75% | Matter insoluble in ethanol: max 75% | - | Organic Matter: Max 2%; Pesticide Residue Analysis: Meets the requirements | Limits of Elemental Impurities: Meets the requirements Pesticide Residue Analysis: Meets the requirements |
Loss on drying | - | Max 15% | Max 15% | - | Max 15% | - |
Total ash | Max 15.0% | Max 7% | Max 7% | Max 10% | Max 10% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Sun, X.; Peng, C.; Wei, J.; Yang, X. The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control. Pharmaceuticals 2024, 17, 1524. https://doi.org/10.3390/ph17111524
Yang Y, Sun X, Peng C, Wei J, Yang X. The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control. Pharmaceuticals. 2024; 17(11):1524. https://doi.org/10.3390/ph17111524
Chicago/Turabian StyleYang, Yujia, Xiuting Sun, Chuhang Peng, Jianhe Wei, and Xinquan Yang. 2024. "The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control" Pharmaceuticals 17, no. 11: 1524. https://doi.org/10.3390/ph17111524
APA StyleYang, Y., Sun, X., Peng, C., Wei, J., & Yang, X. (2024). The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control. Pharmaceuticals, 17(11), 1524. https://doi.org/10.3390/ph17111524