Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking
2.2. ADMET
2.3. Molecular Dynamics
2.3.1. Root Mean Square Deviation
2.3.2. Root Mean Square Fluctuations
2.3.3. Radius of Gyration and Solvent-Accessible Surface Area Parameter
2.3.4. Protein–Ligand Contacts
3. Material and Methods
3.1. Data Set
3.2. Molecular Docking
3.2.1. Ligand Preparation
3.2.2. Protein Preparation
3.2.3. GridBox Generation
3.2.4. Receptor–Ligand Docking
3.3. ADMET Prediction
3.4. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, J.; Jin, Z.; Zhang, Q.; Cai, G.; Liu, B. A Liver Cancer Question-Answering System Based on Next-Generation Intelligence and the Large Model Med-PaLM 2. Int. J. Comput. Sci. Inf. Technol. 2024, 2, 28–35. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Bokov, D.; Markov, A.; Jalil, A.T.; Shalaby, M.N.; Suksatan, W.; Chupradit, S.; AL-Ghamdi, H.S.; Shomali, N.; Zamani, A.; et al. Cancer Combination Therapies by Angiogenesis Inhibitors; a Comprehensive Review. Cell Commun. Signal. 2022, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The Role of VEGF in Cancer-Induced Angiogenesis and Research Progress of Drugs Targeting VEGF. Eur. J. Pharmacol. 2023, 949, 175586. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front. Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Shah, A.A.; Kamal, M.A.; Akhtar, S. Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways and Current Biological Therapeutic Interventions. Curr. Drug Metab. 2021, 22, 50–59. [Google Scholar] [CrossRef]
- Spannuth, W.A.; Nick, A.M.; Jennings, N.B.; Armaiz-Pena, G.N.; Mangala, L.S.; Danes, C.G.; Lin, Y.G.; Merritt, W.M.; Thaker, P.H.; Kamat, A.A.; et al. Functional Significance of VEGFR-2 on Ovarian Cancer Cells. Int. J. Cancer 2009, 124, 1045–1053. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, W. The Emerging Regulation of VEGFR-2 in Triple-Negative Breast Cancer. Front. Endocrinol. 2015, 6, 159. [Google Scholar] [CrossRef]
- Chatterjee, S.; Heukamp, L.C.; Siobal, M.; Schöttle, J.; Wieczorek, C.; Peifer, M.; Frasca, D.; Koker, M.; König, K.; Meder, L.; et al. Tumor VEGF: VEGFR2 Autocrine Feed-Forward Loop Triggers Angiogenesis in Lung Cancer. J. Clin. Investig. 2013, 123, 1732–1740. [Google Scholar] [CrossRef]
- Martins, S.F.; Garcia, E.A.; Luz, M.A.M.; Pardal, F.; Rodrigues, M.; Filho, A.L. Clinicopathological Correlation and Prognostic Significance of VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 Expression in Colorectal Cancer. Cancer Genom. Proteom. 2013, 10, 55–67. [Google Scholar]
- Lian, L.; Li, X.-L.; Xu, M.-D.; Li, X.-M.; Wu, M.-Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X.-M.; Zhou, C.; et al. VEGFR2 Promotes Tumorigenesis and Metastasis in a Pro-Angiogenic-Independent Way in Gastric Cancer. BMC Cancer 2019, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-U.; Cho, H.-M.; Das, R.; Gil-Henn, H.; Ramakrishnan, S.; Al Bayati, A.; Carroll, S.F.; Zhang, Y.; Sankar, A.P.; Elledge, C.; et al. Inhibition of Vasculogenic Mimicry and Angiogenesis by an Anti-EGFR IgG1-Human Endostatin-P125A Fusion Protein Reduces Triple Negative Breast Cancer Metastases. Cells 2021, 10, 2904. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, D.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem. 2020, 20, 815–834. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, L.H.; Elshamsy, A.M.; Ali, T.F.S.; Youssif, B.G.M.; Bräse, S.; Abdel-Aziz, M.; El-Koussi, N.A. Design and Synthesis of New Dihydropyrimidine Derivatives with a Cytotoxic Effect as Dual EGFR/VEGFR-2 Inhibitors. ACS Omega 2024, 9, 34358–34369. [Google Scholar] [CrossRef]
- Liu, X.-J.; Zhao, H.-C.; Hou, S.-J.; Zhang, H.-J.; Cheng, L.; Yuan, S.; Zhang, L.-R.; Song, J.; Zhang, S.-Y.; Chen, S.-W. Recent Development of Multi-Target VEGFR-2 Inhibitors for the Cancer Therapy. Bioorganic Chem. 2023, 133, 106425. [Google Scholar] [CrossRef]
- Onda, M.; Ota, A.; Ito, K.; Ono, T.; Karnan, S.; Kato, M.; Kondo, S.; Furuhashi, A.; Hayashi, T.; Hosokawa, Y.; et al. Inhibition of VEGFR2 and EGFR Signaling Cooperatively Suppresses the Proliferation of Oral Squamous Cell Carcinoma. Cancer Med. 2023, 12, 16416–16430. [Google Scholar] [CrossRef]
- Adel, D.; El-Adl, K.; Nasr, T.; Sakr, T.M.; Zaghary, W. Pyrazolo[3,4-d]Pyrimidine Derivatives as EGFRT790M and VEGFR-2 Dual TK Inhibitors: Design, Synthesis, Molecular Docking, ADMET Profile and Anticancer Evaluations. J. Mol. Struct. 2023, 1291, 136047. [Google Scholar] [CrossRef]
- Albini, A.; Noonan, D.M.; Corradino, P.; Magnoni, F.; Corso, G. The Past and Future of Angiogenesis as Target for Cancer Therapy and Prevention. Cancer Prev. Res. 2024, 17, OF1–OF15. [Google Scholar] [CrossRef]
- Aboufaras, M.; Selmaoui, K.; Ouzennou, N. Use of Complementary Traditional Phytotherapy to Manage Cancer in Morocco: A Decade-Long Review of Ethnopharmacological Studies. J. Herb. Med. 2021, 29, 100494. [Google Scholar] [CrossRef]
- El Rhabori, S.; El Aissouq, A.; Chtita, S.; Khalil, F. Design of Novel Quinoline Derivatives as Antibreast Cancer Using 3D-QSAR, Molecular Docking and Pharmacokinetic Investigation. Anti-Cancer Drugs 2022, 33, 789. [Google Scholar] [CrossRef] [PubMed]
- Daoui, O.; Mali, S.N.; Elkhattabi, K.; Elkhattabi, S.; Chtita, S. Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A Virtual Screening Model Using CADD and Biophysical Simulations. Heliyon 2023, 9, e15545. [Google Scholar] [CrossRef] [PubMed]
- Das, A.P.; Agarwal, S.M. Recent Advances in the Area of Plant-Based Anti-Cancer Drug Discovery Using Computational Approaches. Mol. Divers. 2024, 28, 901–925. [Google Scholar] [CrossRef] [PubMed]
- Abchir, O.; Daoui, O.; Nour, H.; Yamari, I.; Elkhattabi, S.; Errougui, A.; Chtita, S. Exploration of Cannabis Constituents as Potential Candidates against Diabetes Mellitus Disease Using Molecular Docking, Dynamics Simulations and ADMET Investigations. Sci. Afr. 2023, 21, e01745. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Computational Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Yamari, I.; Abchir, O.; Siddique, F.; Zaki, H.; Errougui, A.; Talbi, M.; Bouachrine, M.; ElKouali, M.; Chtita, S. The Anticoagulant Potential of Lippia Alba Extract in Inhibiting SARS-CoV-2 Mpro: Density Functional Calculation, Molecular Docking Analysis, and Molecular Dynamics Simulations. Sci. Afr. 2024, 23, e01986. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Elmi, A.; Spina, R.; Kordofani, M.A.Y.; Laurain-Mattar, D.; Nour, H.; Abchir, O.; Chtita, S. In Vitro and in Silico Analysis for Elucidation of Antioxidant Potential of Djiboutian Avicennia marina (Forsk.) Vierh. Phytochemicals. J. Biomol. Struct. Dyn. 2024, 42, 3410–3425. [Google Scholar] [CrossRef]
- Nour, H.; Daoui, O.; Abchir, O.; ElKhattabi, S.; Belaidi, S.; Chtita, S. Combined Computational Approaches for Developing New Anti-Alzheimer Drug Candidates: 3D-QSAR, Molecular Docking and Molecular Dynamics Studies of Liquiritigenin Derivatives. Heliyon 2022, 8, e11991. [Google Scholar] [CrossRef]
- Abchir, O.; Yamari, I.; Nour, H.; Daoui, O.; Elkhattabi, S.; Errougui, A.; Chtita, S. Structure-Based Virtual Screening, ADMET Analysis, and Molecular Dynamics Simulation of Moroccan Natural Compounds as Candidates α-Amylase Inhibitors. ChemistrySelect 2023, 8, e202301092. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; El-Shazly, M.; Chamkhi, I. Ethnomedicinal Use, Phytochemistry, Pharmacology, and Toxicology of Ajuga iva (L.) Schreb. J. Ethnopharmacol. 2020, 258, 112875. [Google Scholar] [CrossRef]
- Lahrizi, L.; Errachidi, F.; El-Ghadraoui, L. Impact of Geographical Conditions on Phenolic and Flavonoid Contents and Antioxidant Activity of Different Extracts of Ajuga iva. Indian J. Agric. Res. 2024. [Google Scholar] [CrossRef]
- Alami Merrouni, I.; Elachouri, M. Anticancer Medicinal Plants Used by Moroccan People: Ethnobotanical, Preclinical, Phytochemical and Clinical Evidence. J. Ethnopharmacol. 2021, 266, 113435. [Google Scholar] [CrossRef] [PubMed]
- Berrani, A.; Marmouzi, I.; Kharbach, M.; Bouyahya, A.; Hamdani, M.E.; Jemli, M.E.; Lrhorfi, A.; Benassaoui, H.; Zouarhi, M.; Larbi, O.M.; et al. Anabasis aretioides Coss. & Moq. Phenolic Compounds Exhibit in Vitro Hypoglycemic, Antioxidant and Antipathogenic Properties. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 251–257. [Google Scholar] [CrossRef]
- Haida, S.; Kribii, A.; Kribii, A. Chemical Composition, Phenolic Content and Antioxidant Capacity of Haloxylon scoparium Extracts. S. Afr. J. Bot. 2020, 131, 151–160. [Google Scholar] [CrossRef]
- Derouich, M.; Bouhlali, E.D.T.; Bammou, M.; Hmidani, A.; Sellam, K.; Alem, C. Bioactive Compounds and Antioxidant, Antiperoxidative, and Antihemolytic Properties Investigation of Three Apiaceae Species Grown in the Southeast of Morocco. Scientifica 2020, 2020, 3971041. [Google Scholar] [CrossRef] [PubMed]
- Mostaphi, A.E.; Hartiti, H.E.; Barrahi, M.; Zarrouk, A.; Berrabeh, M.; Ouhssine, M. Etude Physico-Chimiques et Analyses Chromatographiques de l’huile Essentiel Des Grains de Céleri (Apium graveolens L.) [Physico-Chemical and Chromatographic Analysis Study of the Essential Oil of Celery Seed (Apium graveolens L.)]. Int. J. Res. Stud. Sci. Eng. Technol. 2017, 4, 1–5. [Google Scholar]
- Es-safi, I.; Mechchate, H.; Amaghnouje, A.; Jawhari, F.Z.; Al Kamaly, O.M.; Imtara, H.; Grafov, A.; Bari, A.; Bousta, D. An Insight into the Anxiolytic and Antidepressant-Like Proprieties of Carum Carvi, L. and Their Association with Its Antioxidant Activity. Life 2021, 11, 207. [Google Scholar] [CrossRef]
- Kouar, J.; Lamsaddek, A.; Benchekroun, R.; El Amrani, A.; Cherif, A.; Ould Bellahcen, T.; Kamil, N. Comparison between Electrocoagulation and Solvent Extraction Method in the Process of the Dechlorophyllation of Alcoholic Extracts from Moroccan Medicinal Plants Petroselinum crispum, Thymus satureioides and Microalgae Spirulina platensis. SN Appl. Sci. 2019, 1, 132. [Google Scholar] [CrossRef]
- Amrati, F.e.-z.; Bourhia, M.; Slighoua, M.; Ibnemoussa, S.; Bari, A.; Ullah, R.; Amaghnouje, A.; Di Cristo, F.; El Mzibri, M.; Calarco, A.; et al. Phytochemical Study on Antioxidant and Antiproliferative Activities of Moroccan Caralluma europaea Extract and Its Bioactive Compound Classes. Evid.-Based Complement. Altern. Med. 2020, 2020, e8409718. [Google Scholar] [CrossRef]
- Ouassou, H.; Bouhrim, M.; Kharchoufa, L.; Imtara, H.; Daoudi, N.E.; Benoutman, A.; Bencheikh, N.; Ouahhoud, S.; Elbouzidi, A.; Bnouham, M. Caralluma europaea (Guss) N.E.Br.: A Review on Ethnomedicinal Uses, Phytochemistry, Pharmacological Activities, and Toxicology. J. Ethnopharmacol. 2021, 273, 113769. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. Anacyclus pyrethrum (L.): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020, 25, 5469. [Google Scholar] [CrossRef]
- Baslam, A.; Aitbaba, A.; Aboufatima, R.; Agouram, F.; Boussaa, S.; Chait, A.; Baslam, M. Phytochemistry, Antioxidant Potential, and Antibacterial Activities of Anacyclus pyrethrum: Promising Bioactive Compounds. Horticulturae 2023, 9, 1196. [Google Scholar] [CrossRef]
- Mokhtari, K.E.; Kouali, M.E.; Talbi, M.; Hajji, L.; Brouzi, A.E. Chemical Composition and Insecticidal Activity of Anacyclus pyrethrum Essential Oil from the Bensliman Area against Culex Pipiens. Mediterr. J. Chem. 2020, 10, 13–21. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; Imtara, H.; Radouane, N.; El Moussaoui, A.; Es-safi, I.; Amaghnouje, A.; N. AlZain, M.; Noman, O.; Parvez, M.K.; Bousta, D.; et al. Phytochemical, Morphological and Genetic Characterisation of Anacyclus pyrethrum var. depressus (Ball.) Maire and Anacyclus pyrethrum var. pyrethrum (L.) Link. Molecules 2023, 28, 5378. [Google Scholar] [CrossRef] [PubMed]
- Amine, S.; Bouhrim, M.; Mechchate, H.; Ailli, A.; Radi, M.; Sahpaz, S.; Amalich, S.; Mahjoubi, M.; Zair, T. Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. Int. J. Plant Biol. 2022, 13, 55–70. [Google Scholar] [CrossRef]
- Sbai, I.; Otmani, E.; Jaziz, H.; Zarayby, L.; Ousaid, A.; Elbakri, W.; Montassif, S.; Ait Haj Said, A. Chemical Composition and Antioxidant Activity of the Essential Oil of Artemisia Vulgaris from Morocco. Res. J. Pharm. Biol. Chem. Sci. 2019, 9, 1524–1529. [Google Scholar]
- El Hajjouji, H.; Pinelli, E.; Guiresse, M.; Merlina, G.; Revel, J.-C.; Hafidi, M. Assessment of the Genotoxicity of Olive Mill Waste Water (OMWW) with the Vicia faba Micronucleus Test. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2007, 634, 25–31. [Google Scholar] [CrossRef]
- Saidi, S.; Remok, F.; Handaq, N.; Drioiche, A.; Gourich, A.A.; Menyiy, N.E.; Amalich, S.; Elouardi, M.; Touijer, H.; Bouhrim, M.; et al. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life 2023, 13, 1165. [Google Scholar] [CrossRef]
- El Kharraf, S.; Faleiro, M.L.; Abdellah, F.; El-Guendouz, S.; El Hadrami, E.M.; Miguel, M.G. Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, Major Terpenes: Impact on Biological Activities. Molecules 2021, 26, 5452. [Google Scholar] [CrossRef]
- Soulaimani, B.; Nafis, A.; Kasrati, A.; Rochdi, A.; Mezrioui, N.-E.; Abbad, A.; Hassani, L. Chemical Composition, Antimicrobial Activity and Synergistic Potential of Essential Oil from Endemic Lavandula maroccana (Mill.). S. Afr. J. Bot. 2019, 125, 202–206. [Google Scholar] [CrossRef]
- Nafis, A.; Ouedrhiri, W.; Iriti, M.; Mezrioui, N.; Marraiki, N.; Elgorban, A.M.; Syed, A.; Hassani, L. Chemical Composition and Synergistic Effect of Three Moroccan Lavender EOs with Ciprofloxacin against Foodborne Bacteria: A Promising Approach to Modulate Antimicrobial Resistance. Lett. Appl. Microbiol. 2021, 72, 698–705. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; El Majdoub, Y.O.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Aerial Parts of Thymus zygis subsp. Gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef] [PubMed]
- El-Akhal, J.; Oliveira, A.P.; Bencheikh, R.; Valentão, P.; Andrade, P.B.; Morato, M. Vasorelaxant Mechanism of Herbal Extracts from Mentha suaveolens, Conyza canadensis, Teucrium polium and Salvia verbenaca in the Aorta of Wistar Rats. Molecules 2022, 27, 8752. [Google Scholar] [CrossRef] [PubMed]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical Composition and Insecticidal Activity of Five Essential Oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Mahmoud, R.; Hjouji, K.; Mehdaoui, I.; Saoudi Hassani, E.M.; Ben Abbou, M.; Majbar, Z.; Taleb, M.; Rais, Z. The needles of Aleppo pine from the province of Taza-Morocco—A biomaterial of great potential. J. Ecol. Eng. 2023, 24, 41–50. [Google Scholar] [CrossRef]
- Amrani, K.A.; Barbouchi, M.; Elidrissi, M.; Amechrouq, A.; Chokrad, M. Chemical Composition and Physicochemical Properties of the Essential Oil of Coriander (Coriandrum sativum L.) Grown in Morocco. RHAZES Green Appl. Chem. 2019, 4, 35–50. [Google Scholar] [CrossRef]
- Barrahi, M.; Esmail, A.; Elhartiti, H.; Chahboun, N.; Benali, A.; Amiyare, R.; Lakhrissi, B.; Rhaiem, N.; Zarrouk, A.; Ouhssine, M. Chemical Composition and Evaluation of Antibacterial Activity of Fennel (Foeniculum vulgare Mill) Seed Essential Oil against Some Pathogenic Bacterial Strains. Casp. J. Environ. Sci. 2020, 18, 4276. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Bouhlali, E.d.T.; Derouich, M.; El-Rhaffari, L. Essential Oil and Chemical Composition of Wild and Cultivated Fennel (Foeniculum vulgare Mill.): A Comparative Study. S. Afr. J. Bot. 2020, 135, 93–100. [Google Scholar] [CrossRef]
- Maofari, A.A.; Hajjaji, S.E.; Debbab, A.; Zaydoun, S.; Ouaki, B.; Charof, R.; Mennane, Z.; Hakiki, A.; Mosaddak, M. Chemical Composition and Antibacterial Properties of Essential Oils of Pimpinella anisum L. Growing in Morocco and Yemen. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2013, 14, 11. [Google Scholar]
- Moustakime, Y.; Hazzoumi, Z.; Amrani Joutei, K. Aromatization of Virgin Olive Oil by Seeds of Pimpinella anisum Using Three Different Methods: Physico-Chemical Change and Thermal Stability of Flavored Oils. Grain Oil Sci. Technol. 2021, 4, 108–124. [Google Scholar] [CrossRef]
- Karim, E.M.; Abchir, O.; Nour, H.; Yamari, I.; Bennani, L.; El Kouali, M.; Talbi, M.; Errougui, A.; Chtita, S. Discovery of a Potential Inhibitor Against Lung Cancer: Computational Approaches and Molecular Dynamics Study. Phys. Chem. Res. 2024, 12, 579–589. [Google Scholar] [CrossRef]
- Kawakita, Y.; Seto, M.; Ohashi, T.; Tamura, T.; Yusa, T.; Miki, H.; Iwata, H.; Kamiguchi, H.; Tanaka, T.; Sogabe, S.; et al. Design and Synthesis of Novel Pyrimido[4,5-b]Azepine Derivatives as HER2/EGFR Dual Inhibitors. Bioorganic Med. Chem. 2013, 21, 2250–2261. [Google Scholar] [CrossRef]
- Cee, V.J.; Cheng, A.C.; Romero, K.; Bellon, S.; Mohr, C.; Whittington, D.A.; Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; et al. Pyridyl-Pyrimidine Benzimidazole Derivatives as Potent, Selective, and Orally Bioavailable Inhibitors of Tie-2 Kinase. Bioorganic Med. Chem. Lett. 2009, 19, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Maestro; Schrödinger, LLC.: New York, NY, USA, 2020.
- Protein Preparation Wizard, Epik version; Schrödinger: New York, NY, USA, 2011.
- AlAjmi, M.F.; Rehman, M.T.; Hussain, A.; Rather, G.M. Pharmacoinformatics Approach for the Identification of Polo-like Kinase-1 Inhibitors from Natural Sources as Anti-Cancer Agents. Int. J. Biol. Macromol. 2018, 116, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Norinder, U.; Bergström, C.A.S. Prediction of ADMET Properties. ChemMedChem 2006, 1, 920–937. [Google Scholar] [CrossRef] [PubMed]
- Desmond|Schrödinger Life Science; Schrödinger: New York, NY, USA, 2020; Available online: https://www.schrodinger.com/platform/products/desmond (accessed on 10 March 2024).
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Ke, Q.; Gong, X.; Liao, S.; Duan, C.; Li, L. Effects of Thermostats/Barostats on Physical Properties of Liquids by Molecular Dynamics Simulations. J. Mol. Liq. 2022, 365, 120116. [Google Scholar] [CrossRef]
- Daoui, O.; Nour, H.; Abchir, O.; Elkhattabi, S.; Bakhouch, M.; Chtita, S. A Computer-Aided Drug Design Approach to Explore Novel Type II Inhibitors of c-Met Receptor Tyrosine Kinase for Cancer Therapy: QSAR, Molecular Docking, ADMET and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2023, 41, 7768–7785. [Google Scholar] [CrossRef]
VEGFR2 (3EWH) | EGFR (3W32) | ||||
---|---|---|---|---|---|
Compound | Docking Score (kcal/mol) | Compound | Docking Score (kcal/mol) | ||
Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | 293 | −15.2 | Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | 293 | −15.3 |
Hesperidin | 17 | −14.8 | Hesperidin | 17 | −14.9 |
Luteolin-hexoside | 320 | −13.3 | Resveratrol 3-Glucoside | 291 | −12.6 |
Epigallocatechin gallate | 288 | −12.9 | Apigenin−7-(2-O-apiosylglucoside) | 292 | −12.6 |
Dihydroxybenzoic acid | 110 | −12.8 | Catechin−7-O-glucoside | 283 | −12.6 |
Caffeoylglucaric acid | 100 | −12.8 | Rutin | 3 | −12.3 |
Catechin−7-O-glucoside | 283 | −12.7 | Naringin | 16 | −11.9 |
Luteolin-dihexoside | 319 | −11.0 | Caffeoylglucaric acid | 100 | −11.7 |
Luteolin-glucuronide | 321 | −11.0 | Isochlorogenic acid b | 109 | −11.1 |
Epicatechin | 10 | −10.9 | Isochlorogenic acid C | 111 | −11.1 |
Catechin | 2 | −10.9 | Myricetin | 276 | −10.8 |
5-O-Caffeoylquinic acid | 331 | −10.9 | Rhamnetin | 282 | −10.8 |
Chlorogenic acid | 4 | −10.8 | Citronellyl Acetate | 328 | −10.7 |
Apigenin−7-(2-O-apiosylglucoside) | 292 | −10.8 | Quercetin | 7 | −10.3 |
Salvianolic acid B | 324 | −10.8 | Ferulic acid 4-O-glucoside | 286 | −10.2 |
Apigenin-glucuronide | 323 | −10.7 | Salvianolic acid B | 324 | −10.2 |
Salvianolic acid A | 326 | −10.6 | 4-O-Caffeoylquinic acid | 106 | −10.1 |
Apigenin-dihexoside | 322 | −10.5 | Luteolin-dihexoside | 319 | −10.1 |
Quercetin | 7 | −10.4 | Salvianolic acid A | 326 | −10.1 |
Myricetin | 276 | −10.2 | Luteolin-hexoside | 320 | −9.6 |
Harpagid | 284 | −10.2 | Kaempferide | 296 | −9.5 |
Resveratrol 3-Glucoside | 291 | −10.1 | Feruloylquinic acid | 105 | −9.5 |
Rosmarinic acid | 325 | −10.1 | Epigallocatechin gallate | 288 | −9.5 |
Naringin | 16 | −10.0 | Chlorogenic acid | 4 | −9.4 |
Ferulic acid 4-O-glucoside | 286 | −10.0 | Catechin | 2 | −9.4 |
Vanillic acid glucoside | 298 | −9.8 | 5-O-caffeoylquinic acid | 331 | −9.4 |
Luteolin | 22 | −9.7 | Luteolin-glucuronide | 321 | −9.3 |
Sorafenib | −9.7 | Erlotinib | −9.2 |
Compound | MW | LogP | HbA | HbD | Lipinski |
---|---|---|---|---|---|
2 | 290.27 | 1.54 | 6 | 5 | Yes |
3 | 610.52 | −1.68 | 16 | 10 | No |
4 | 354.31 | −0.64 | 8 | 6 | Yes |
7 | 302.23 | 1.98 | 7 | 5 | Yes |
10 | 290.27 | 1.54 | 6 | 5 | Yes |
16 | 580.53 | −1.16 | 14 | 8 | No |
17 | 610.56 | −1.15 | 15 | 8 | No |
100 | 372.28 | −2.33 | 9 | 8 | Yes |
105 | 368.33 | −0.34 | 8 | 5 | Yes |
106 | 354.31 | −0.64 | 8 | 6 | Yes |
109 | 516.45 | 1.03 | 11 | 7 | No |
110 | 448.38 | 0.48 | 11 | 7 | No |
111 | 516.45 | 1.03 | 11 | 7 | No |
276 | 318.23 | 1.69 | 8 | 6 | Yes |
282 | 316.26 | 2.29 | 7 | 4 | Yes |
283 | 452.41 | −0.98 | 11 | 8 | No |
284 | 364.34 | −3.46 | 10 | 7 | No |
286 | 356.32 | −1.02 | 8 | 5 | Yes |
288 | 458.37 | 2.23 | 11 | 8 | No |
291 | 390.38 | 0.44 | 8 | 6 | Yes |
292 | 564.49 | −1.48 | 14 | 8 | No |
293 | 650.54 | −1.46 | 16 | 8 | No |
296 | 300.26 | 2.58 | 6 | 3 | Yes |
298 | 330.28 | −1.42 | 8 | 5 | Yes |
319 | 610.52 | −2.77 | 16 | 10 | No |
320 | 448.38 | −0.24 | 11 | 7 | No |
321 | 462.36 | −0.15 | 11 | 7 | No |
322 | 594.52 | −2.47 | 15 | 9 | No |
323 | 446.36 | 0.14 | 10 | 6 | No |
324 | 718.62 | 3.33 | 14 | 9 | No |
325 | 360.31 | 1.76 | 7 | 5 | Yes |
326 | 494.45 | 3.34 | 9 | 7 | Yes |
328 | 538.46 | 2.72 | 10 | 6 | No |
331 | 354.31 | −0.64 | 8 | 6 | Yes |
22 | 286.23 | 2.28 | 1 | 6 | Yes |
WS | Caco2 | IAb | BBB | CYP2D6 | CYP3A4 | CYP1A2 | CYP2C19 | CYP2C9 | T.C. | ROCT2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | −2.99 | −0.29 | 67.96 | −1.16 | No | No | No | No | No | 0.24 | No |
4 | −2.62 | −0.98 | 1.79 | −1.70 | No | No | No | No | No | 0.30 | No |
7 | −3.26 | 0.73 | 69.79 | −1.45 | No | No | Yes | No | No | 0.60 | No |
10 | −2.98 | −0.44 | 72.13 | −1.18 | No | No | No | No | No | 0.23 | No |
22 | −3.08 | 1.00 | 78.80 | −2.73 | No | No | Yes | No | No | 0.66 | No |
100 | −2.88 | −1.21 | 0 | −2.45 | No | No | No | No | No | 0.15 | No |
105 | −2.03 | −0.49 | 33.32 | −1.33 | No | No | No | No | No | 0.41 | No |
106 | −1.99 | −0.78 | 8.82 | −1.91 | No | No | No | No | No | 0.32 | No |
276 | −3.03 | 0.23 | 63.00 | −1.72 | No | No | Yes | Yes | Yes | 0.52 | No |
282 | −3.44 | 0.56 | 80.49 | −1.44 | No | No | Yes | No | No | 0.61 | No |
286 | −2.46 | −0.65 | 26.01 | −1.65 | No | No | No | No | No | 0.26 | No |
291 | −3.78 | 0.18 | 45.49 | −1.34 | No | No | No | No | No | 0.28 | No |
296 | −3.41 | 1.03 | 80.34 | −1.31 | No | No | Yes | Yes | Yes | 0.71 | No |
298 | −2.46 | −0.56 | 29.18 | −1.68 | No | No | No | No | No | 0.68 | No |
325 | −3.42 | 0.01 | 47.96 | −1.54 | No | No | No | No | No | 0.36 | No |
326 | −2.91 | −0.26 | 48.06 | −1.97 | No | No | Yes | No | No | 0.12 | No |
331 | −2.22 | −0.57 | 9.03 | −1.89 | No | No | No | No | No | 0.36 | No |
AMES | Max. D | hERG I | hERG II | LD50 | LOAEL | Hepatotoxicity | S.S. | |
---|---|---|---|---|---|---|---|---|
2 | No | 0.76 | No | No | 1.82 | 2.97 | No | No |
4 | No | 1.05 | No | No | 1.86 | 3.90 | No | No |
7 | No | 0.99 | No | No | 2.08 | 2.77 | No | No |
10 | No | 0.60 | No | No | 2.03 | 2.01 | No | No |
22 | No | 0.83 | No | No | 2.23 | 2.05 | No | No |
100 | No | 0.56 | No | No | 2.47 | 5.12 | No | No |
105 | No | 0.64 | No | No | 2.50 | 3.67 | No | No |
106 | No | 0.13 | No | No | 2.67 | 3.88 | No | No |
276 | No | 0.76 | No | No | 2.57 | 3.04 | No | No |
282 | Yes | 0.92 | No | No | 2.42 | 2.83 | No | No |
286 | No | 0.52 | No | No | 2.94 | 3.69 | No | No |
291 | No | 0.45 | No | No | 3.70 | 3.66 | No | No |
296 | No | 0.90 | No | No | 2.24 | 2.41 | No | No |
298 | No | 0.85 | No | No | 2.76 | 3.78 | Yes | No |
325 | No | 0.50 | No | No | 2.47 | 3.54 | No | No |
326 | No | 0.51 | No | Yes | 2.61 | 4.65 | No | No |
331 | No | 0.26 | No | No | 2.93 | 3.64 | No | No |
Compound Name | Compound ID | Structure |
---|---|---|
Catechin | 2 | |
Ferulic acid 4-O-glucoside | 286 | |
Resveratrol 3-Glucoside | 291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouribab, A.; Karim, E.M.; Khedraoui, M.; Abchir, O.; Errougui, A.; Raouf, Y.S.; Samadi, A.; Chtita, S. Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies. Pharmaceuticals 2024, 17, 1528. https://doi.org/10.3390/ph17111528
Bouribab A, Karim EM, Khedraoui M, Abchir O, Errougui A, Raouf YS, Samadi A, Chtita S. Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies. Pharmaceuticals. 2024; 17(11):1528. https://doi.org/10.3390/ph17111528
Chicago/Turabian StyleBouribab, Amal, El Mehdi Karim, Meriem Khedraoui, Oussama Abchir, Abdelkbir Errougui, Yasir S. Raouf, Abdelouahid Samadi, and Samir Chtita. 2024. "Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies" Pharmaceuticals 17, no. 11: 1528. https://doi.org/10.3390/ph17111528
APA StyleBouribab, A., Karim, E. M., Khedraoui, M., Abchir, O., Errougui, A., Raouf, Y. S., Samadi, A., & Chtita, S. (2024). Exploring Moroccan Medicinal Plants for Anticancer Therapy Development Through In Silico Studies. Pharmaceuticals, 17(11), 1528. https://doi.org/10.3390/ph17111528