Correction: Taha et al. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918
Reference
- Taha, M.; Elazab, S.T.; Badawy, A.M.; Saati, A.A.; Qusty, N.F.; Al-Kushi, A.G.; Sarhan, A.; Osman, A.; Farage, A.E. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, M.; Elazab, S.T.; Badawy, A.M.; Saati, A.A.; Qusty, N.F.; Al-Kushi, A.G.; Sarhan, A.; Osman, A.; Farage, A.E. Correction: Taha et al. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918. Pharmaceuticals 2024, 17, 1533. https://doi.org/10.3390/ph17111533
Taha M, Elazab ST, Badawy AM, Saati AA, Qusty NF, Al-Kushi AG, Sarhan A, Osman A, Farage AE. Correction: Taha et al. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918. Pharmaceuticals. 2024; 17(11):1533. https://doi.org/10.3390/ph17111533
Chicago/Turabian StyleTaha, Medhat, Sara T. Elazab, Alaa. M. Badawy, Abdullah A. Saati, Naeem F. Qusty, Abdullah G. Al-Kushi, Anas Sarhan, Amira Osman, and Amira E. Farage. 2024. "Correction: Taha et al. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918" Pharmaceuticals 17, no. 11: 1533. https://doi.org/10.3390/ph17111533
APA StyleTaha, M., Elazab, S. T., Badawy, A. M., Saati, A. A., Qusty, N. F., Al-Kushi, A. G., Sarhan, A., Osman, A., & Farage, A. E. (2024). Correction: Taha et al. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals 2022, 15, 918. Pharmaceuticals, 17(11), 1533. https://doi.org/10.3390/ph17111533