In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids
Abstract
:1. Introduction
2. Results
2.1. Designing the Hybrids
2.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
2.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding Physicochemical Properties
2.4. Molecular Docking
2.4.1. Self-Docking of Albicidin
2.4.2. Docking of the Hybrids
3. Discussion
3.1. Designing the Hybrids and Selecting the Target
3.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
3.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding the Physicochemical Properties
3.4. Molecular Docking
3.4.1. Self-Docking of Albicidin
3.4.2. Docking of the Hybrids
4. Materials and Methods
4.1. Designing the Hybrids and Selecting the Target
4.2. Determining the Similarity Between the TC-FQN Hybrids and the Co-Crystallized Ligand
4.3. Comparing the Hybrids with the Co-Crystallized Ligand Regarding the Physicochemical Properties
4.4. Molecular Docking
4.4.1. Self-Docking of Albicidin
4.4.2. Docking of the Hybrids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hospital-Acquired Complication—3. Healthcare-Associated Infection Fact Sheet|Australian Commission on Safety and Quality in Health Care. Available online: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/hospital-acquired-complication-3-healthcare-associated-infection-fact-sheet (accessed on 26 July 2022).
- Global Guidelines for the Prevention of Surgical Site Infection, 2nd Ed. Available online: https://www.who.int/publications/i/item/9789241550475 (accessed on 16 March 2022).
- CDC. The Biggest Antibiotic-Resistant Threats in the U.S. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 12 February 2023).
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin. Infect. Dis. 2021, 72, S17–S26. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, S.H. The Evolving Response to Antibiotic Resistance (1945–2018). Palgrave Commun. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Fernandes, P.; Martens, E. Antibiotics in Late Clinical Development. Biochem. Pharmacol. 2017, 133, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed]
- Skandalis, N.; Maeusli, M.; Papafotis, D.; Miller, S.; Lee, B.; Theologidis, I.; Luna, B. Environmental Spread of Antibiotic Resistance. Antibiotics 2021, 10, 640. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Lv, Y.; Cui, L.; Li, Y.; Li, T.; Song, H.; Hao, Y.; Shen, J.; Wang, Y.; et al. Novel Plasmid-Mediated Tet(X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical Acinetobacter Baumannii Isolate. Antimicrob. Agents Chemother. 2019, 64, e01326-19. [Google Scholar] [CrossRef]
- Blondeau, J.M. Fluoroquinolones: Mechanism of Action, Classification, and Development of Resistance. Surv. Ophthalmol. 2004, 49 (Suppl. S2), S73–S78. [Google Scholar] [CrossRef]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of Action of and Resistance to Quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of Quinolone Action and Resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of Quinolone Action and Resistance: Where Do We Stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Tillotson, G.S. Quinolones: Structure-Activity Relationships and Future Predictions. J. Med. Microbiol. 1996, 44, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone Antibacterials: A Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol. Pharm. 2009, 66, 587–604. [Google Scholar] [PubMed]
- Rusu, A.; Tóth, G.; Szőcs, L.; Kökösi, J.; Kraszni, M.; Gyéresi, Á.; Noszál, B. Triprotic Site-Specific Acid–Base Equilibria and Related Properties of Fluoroquinolone Antibacterials. J. Pharm. Biomed. Anal. 2012, 66, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Volkova, T.V.; Perlovich, G.L. Solubility, Lipophilicity and Membrane Permeability of Some Fluoroquinolone Antimicrobials. Eur. J. Pharm. Sci. 2016, 93, 29–37. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Rusu, A.; Lungu, I.-A.; Moldovan, O.-L.; Tanase, C.; Hancu, G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones—Shaping the Fifth Generation. Pharmaceutics 2021, 13, 1289. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020, 25, 5662. [Google Scholar] [CrossRef]
- Horta, P.; Secrieru, A.; Coninckx, A.; Cristiano, M. Quinolones for Applications in Medicinal Chemistry: Synthesis and Structure in Targets in Heterocyclic Systems—2018; Chapter 11; Italian Chemical Society: Roma, Italy, 2018; pp. 260–297. [Google Scholar]
- Klein, N.C.; Cunha, B.A. Tetracyclines. Med. Clin. North Am. 1995, 79, 789–801. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Chukwudi, C.U. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob. Agents Chemother. 2016, 60, 4433–4441. [Google Scholar] [CrossRef]
- Michaelis, M.; Kleinschmidt, M.C.; Doerr, H.W.; Cinatl, J. Minocycline Inhibits West Nile Virus Replication and Apoptosis in Human Neuronal Cells. J. Antimicrob. Chemother. 2007, 60, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Khanna, D.; Kalra, S. Minocycline and Doxycycline: More Than Antibiotics. Curr. Mol. Pharmacol. 2021, 14, 1046–1065. [Google Scholar] [CrossRef] [PubMed]
- Debrah, A.Y.; Mand, S.; Specht, S.; Marfo-Debrekyei, Y.; Batsa, L.; Pfarr, K.; Larbi, J.; Lawson, B.; Taylor, M.; Adjei, O.; et al. Doxycycline Reduces Plasma VEGF-C/sVEGFR-3 and Improves Pathology in Lymphatic Filariasis. PLoS Pathog. 2006, 2, e92. [Google Scholar] [CrossRef]
- Scheinfeld, N.; Berk, T. A Review of the Diagnosis and Treatment of Rosacea. Postgrad. Med. 2010, 122, 139–143. [Google Scholar] [CrossRef]
- Szeto, G.L.; Brice, A.K.; Yang, H.-C.; Barber, S.A.; Siliciano, R.F.; Clements, J.E. Minocycline Attenuates HIV Infection and Reactivation by Suppressing Cellular Activation in Human CD4+ T Cells. J. Infect. Dis. 2010, 201, 1132–1140. [Google Scholar] [CrossRef]
- Dutta, K.; Basu, A. Use of Minocycline in Viral Infections. Indian J. Med. Res. 2011, 133, 467–470. [Google Scholar]
- Elewa, H.F.; Hilali, H.; Hess, D.C.; Machado, L.S.; Fagan, S.C. Minocycline for Acute Neuroprotection. Pharmacotherapy 2006, 26, 515–521. [Google Scholar] [CrossRef]
- Shutter, M.C.; Akhondi, H. Tetracycline. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- LaPlante, K.L.; Dhand, A.; Wright, K.; Lauterio, M. Re-Establishing the Utility of Tetracycline-Class Antibiotics for Current Challenges with Antibiotic Resistance. Ann. Med. 2022, 54, 1686–1700. [Google Scholar] [CrossRef]
- Gupta, V.; Datta, P. Next-Generation Strategy for Treating Drug Resistant Bacteria: Antibiotic Hybrids. Indian J. Med. Res. 2019, 149, 97–106. [Google Scholar] [CrossRef]
- Brötz-Oesterhelt, H.; Brunner, N.A. How Many Modes of Action Should an Antibiotic Have? Curr. Opin. Pharmacol. 2008, 8, 564–573. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Baasov, T. Dual-Acting Hybrid Antibiotics: A Promising Strategy to Combat Bacterial Resistance. Expert Opin. Drug Discov. 2010, 5, 883–902. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, A.M.; Jones, A.M. The Quinolones: Decades of Development and Use. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Walkty, A.; Vercaigne, L.; Karlowsky, J.A.; Embil, J.; Gin, A.S.; Hoban, D.J. The New Fluoroquinolones: A Critical Review. Can. J. Infect. Dis. 1999, 10, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria, and Role in Evolutionary Success. Trends Microbiol. 2014, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.I.; MacGowan, A.P. Development of the Quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 1–11. [Google Scholar] [CrossRef]
- Limberakis, C. Quinolone Antibiotics: Levofloxacin (Levaquin®), Moxifloxacin (Avelox®), Gemifloxacin (Factive®), and Garenoxacin (T-3811). In The Art of Drug Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 39–69. ISBN 978-0-470-13497-9. [Google Scholar]
- Uivarosi, V. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. Molecules 2013, 18, 11153–11197. [Google Scholar] [CrossRef]
- Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent Developments of Quinolone-Based Derivatives and Their Activities against Escherichia Coli. Eur. J. Med. Chem. 2018, 157, 1223–1248. [Google Scholar] [CrossRef]
- Fedorowicz, J.; Sączewski, J. Modifications of Quinolones and Fluoroquinolones: Hybrid Compounds and Dual-Action Molecules. Monatshefte Chem. 2018, 149, 1199–1245. [Google Scholar] [CrossRef]
- Lungu, I.-A.; Moldovan, O.-L.; Biriș, V.; Rusu, A. Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022, 14, 1749. [Google Scholar] [CrossRef]
- Sriram, D.; Yogeeswari, P.; Senchani, G.; Banerjee, D. Newer Tetracycline Derivatives: Synthesis, Anti-HIV, Antimycobacterial Activities and Inhibition of HIV-1 Integrase. Bioorganic Med. Chem. Lett. 2007, 17, 2372–2375. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, Synthesis, and Evaluation of Novel Fluoroquinolone−Aminoglycoside Hybrid Antibiotics. J. Med. Chem. 2009, 52, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Gorityala, B.K.; Guchhait, G.; Goswami, S.; Fernando, D.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. Hybrid Antibiotic Overcomes Resistance in P. Aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J. Med. Chem. 2016, 59, 8441–8455. [Google Scholar] [CrossRef]
- Gordeev, M.F.; Hackbarth, C.; Barbachyn, M.R.; Banitt, L.S.; Gage, J.R.; Luehr, G.W.; Gomez, M.; Trias, J.; Morin, S.E.; Zurenko, G.E.; et al. Novel Oxazolidinone-Quinolone Hybrid Antimicrobials. Bioorganic Med. Chem. 2003, 13, 4213–4216. [Google Scholar] [CrossRef] [PubMed]
- Kali, A.; Charles, M.V.P.; Srirangaraj, S. Cadazolid: A New Hope in the Treatment of Clostridium Difficile Infection. Australas. Med. J. 2015, 8, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Cornely, O.A.; Grill, S.; Kracker, H.; Marrast, A.C.; Nord, C.E.; Talbot, G.H.; Buitrago, M.; Diaconescu, I.G.; Oliveira, C.M.d.; et al. Cadazolid for the Treatment of Clostridium Difficile Infection: Results of Two Double-Blind, Placebo-Controlled, Non-Inferiority, Randomised Phase 3 Trials. Lancet Infect. Dis. 2019, 19, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Chugunova, E.; Akylbekov, N.; Bulatova, A.; Gavrilov, N.; Voloshina, A.; Kulik, N.; Zobov, V.; Dobrynin, A.; Syakaev, V.; Burilov, A. Synthesis and Biological Evaluation of Novel Structural Hybrids of Benzofuroxan Derivatives and Fluoroquinolones. Eur. J. Med. Chem. 2016, 116, 165–172. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Bheemanaboina, R.R.Y.; Gao, W.-W.; Kang, J.; Cai, G.-X.; Zhou, C.-H. Discovery of Benzimidazole-Quinolone Hybrids as New Cleaving Agents toward Drug-Resistant Pseudomonas Aeruginosa DNA. ChemMedChem 2018, 13, 1004–1017. [Google Scholar] [CrossRef]
- Hashimi, S.M. Albicidin, a Potent DNA Gyrase Inhibitor with Clinical Potential. J. Antibiot. 2019, 72, 785–792. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Goyal, R.; Sharma, A.; Thakur, V.K.; Ola, M.; Sharma, P.C. Green Chemistry Approaches towards the Design and Synthesis of Anti-Infective Fluoroquinolone Derivatives. Curr. Res. Green Sustain. Chem. 2021, 4, 100044. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones. Clin. Infect. Dis. 2001, 32, S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, E.; Hommernick, K.; Behroz, I.; Kulike, M.; Pakosz-Stępień, Z.; Mazurek, L.; Seidel, M.; Kunert, M.; Santos, K.; von Moeller, H.; et al. Molecular Mechanism of Topoisomerase Poisoning by the Peptide Antibiotic Albicidin. Nat. Catal. 2023, 6, 52–67. [Google Scholar] [CrossRef]
- Lyne, P.D. Structure-Based Virtual Screening: An Overview. Drug Discov. Today 2002, 7, 1047–1055. [Google Scholar] [CrossRef]
- Smith, A. Screening for Drug Discovery: The Leading Question. Nature 2002, 418, 453–459. [Google Scholar] [CrossRef]
- Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K. Recognizing Pitfalls in Virtual Screening: A Critical Review. J. Chem. Inf. Model. 2012, 52, 867–881. [Google Scholar] [CrossRef]
- Kuwahara, H.; Gao, X. Analysis of the Effects of Related Fingerprints on Molecular Similarity Using an Eigenvalue Entropy Approach. J. Cheminformatics 2021, 13, 27. [Google Scholar] [CrossRef]
- Bero, S.A.; Muda, A.K.; Choo, Y.H.; Muda, N.A.; Pratama, S.F. Similarity Measure for Molecular Structure: A Brief Review. J. Phys. Conf. Ser. 2017, 892, 012015. [Google Scholar] [CrossRef]
- Willett, P. Similarity Searching Using 2D Structural Fingerprints. In Chemoinformatics and Computational Chemical Biology; Bajorath, J., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 133–158. ISBN 978-1-60761-839-3. [Google Scholar]
- Willett, P. Similarity-Based Virtual Screening Using 2D Fingerprints. Drug Discov. Today 2006, 11, 1046–1053. [Google Scholar] [CrossRef]
- Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular Fingerprint Similarity Search in Virtual Screening. Methods 2015, 71, 58–63. [Google Scholar] [CrossRef]
- Durant, J.L.; Leland, B.A.; Henry, D.R.; Nourse, J.G. Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 2002, 42, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A Review on Machine Learning Approaches and Trends in Drug Discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Mellor, C.L.; Marchese Robinson, R.L.; Benigni, R.; Ebbrell, D.; Enoch, S.J.; Firman, J.W.; Madden, J.C.; Pawar, G.; Yang, C.; Cronin, M.T.D. Molecular Fingerprint-Derived Similarity Measures for Toxicological Read-across: Recommendations for Optimal Use. Regul. Toxicol. Pharmacol. 2019, 101, 121–134. [Google Scholar] [CrossRef]
- Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002, 45, 4350–4358. [Google Scholar] [CrossRef]
- Dunkel, M.; Günther, S.; Ahmed, J.; Wittig, B.; Preissner, R. SuperPred: Drug Classification and Target Prediction. Nucleic Acids Res. 2008, 36, W55–W59. [Google Scholar] [CrossRef]
- Hartung, T. Making Big Sense from Big Data in Toxicology by Read-Across. ALTEX—Altern. Anim. Exp. 2016, 33, 83–93. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Velmourougane, G. Understanding Lipinski’s Rule of 5 and the Role of LogP Value in Drug Design and Development. Available online: https://www.sailife.com/understanding-lipinskis-rule-of-5-and-the-role-of-logp-value-in-drug-design-and-development/ (accessed on 11 November 2024).
- Roy, D.; Patel, C. Revisiting the Use of Quantum Chemical Calculations in LogPoctanol-Water Prediction. Molecules 2023, 28, 801. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Duffy, E.M. Prediction of Drug Solubility from Structure. Advanced Drug Delivery Reviews 2002, 54, 355–366. [Google Scholar] [CrossRef]
- Romanick, M.; Holt, A. Topological Polar Surface Area. In An ABC of PK/PD. Core Concepts in Pharmacokinetics and Pharmacodynamics for Students of Medicine, Dentistry and Pharmacy; University of Alberta Library: Edmonton, AB, Canada, 2023; Available online: https://pressbooks.openeducationalberta.ca/abcofpkpd/chapter/tpsa/ (accessed on 24 September 2024).
- Pajouhesh, H.; Lenz, G.R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. Neurotherapeutics 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, S.A.; Pennington, L.D. Structure−Brain Exposure Relationships. J. Med. Chem. 2006, 49, 7559–7583. [Google Scholar] [CrossRef] [PubMed]
- Arteca, G.A. Molecular Shape Descriptors. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 191–253. ISBN 978-0-470-12586-1. [Google Scholar]
- Kufareva, I.; Abagyan, R. Methods of Protein Structure Comparison. Methods Mol. Biol. 2012, 857, 231. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Bhati, A.P.; Zasada, S.J.; Coveney, P.V. Rapid, Accurate, Precise and Reproducible Ligand–Protein Binding Free Energy Prediction. Interface Focus 2020, 10, 20200007. [Google Scholar] [CrossRef]
- Robertson, G.T.; Bonventre, E.J.; Doyle, T.B.; Du, Q.; Duncan, L.; Morris, T.W.; Roche, E.D.; Yan, D.; Lynch, A.S. In Vitro Evaluation of CBR-2092, a Novel Rifamycin-Quinolone Hybrid Antibiotic: Microbiology Profiling Studies with Staphylococci and Streptococci. Antimicrob. Agents Chemother. 2008, 52, 2324–2334. [Google Scholar] [CrossRef]
- BIOVIA Draw 2021. Available online: https://www.3ds.com/products/biovia/draw (accessed on 27 June 2021).
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio 2024. Available online: https://www.3ds.com/products/biovia/discovery-studio (accessed on 3 January 2024).
- Forecaster. Available online: https://molecularforecaster.com/academic-license/ (accessed on 2 June 2024).
- Therrien, E.; Englebienne, P.; Arrowsmith, A.G.; Mendoza-Sanchez, R.; Corbeil, C.R.; Weill, N.; Campagna-Slater, V.; Moitessier, N. Integrating Medicinal Chemistry, Organic/Combinatorial Chemistry, and Computational Chemistry for the Discovery of Selective Estrogen Receptor Modulators with Forecaster, a Novel Platform for Drug Discovery. J. Chem. Inf. Model. 2012, 52, 210–224. [Google Scholar] [CrossRef]
- Moitessier, N.; Pottel, J.; Therrien, E.; Englebienne, P.; Liu, Z.; Tomberg, A.; Corbeil, C.R. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. Acc. Chem. Res. 2016, 49, 1646–1657. [Google Scholar] [CrossRef]
- Xu, W.; Lucke, A.J.; Fairlie, D.P. Comparing Sixteen Scoring Functions for Predicting Biological Activities of Ligands for Protein Targets. J. Mol. Graph. Model. 2015, 57, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Scarpino, A.; Ferenczy, G.G.; Keserű, G.M. Comparative Evaluation of Covalent Docking Tools. J. Chem. Inf. Model. 2018, 58, 1441–1458. [Google Scholar] [CrossRef] [PubMed]
- Burai Patrascu, M.; Pottel, J.; Pinus, S.; Bezanson, M.; Norrby, P.-O.; Moitessier, N. From Desktop to Benchtop with Automated Computational Workflows for Computer-Aided Design in Asymmetric Catalysis. Nat. Catal. 2020, 3, 574–584. [Google Scholar] [CrossRef]
- Labarre, A.; Stille, J.K.; Patrascu, M.B.; Martins, A.; Pottel, J.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 8. Forming New Bonds─Challenges and Opportunities. J. Chem. Inf. Model. 2022, 62, 1061–1077. [Google Scholar] [CrossRef]
- Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 1. Development and Validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435–449. [Google Scholar] [CrossRef]
- Pottel, J.; Therrien, E.; Gleason, J.L.; Moitessier, N. Docking Ligands into Flexible and Solvated Macromolecules. 6. Development and Application to the Docking of HDACs and Other Zinc Metalloenzymes Inhibitors. J. Chem. Inf. Model. 2014, 54, 254–265. [Google Scholar] [CrossRef]
TC Component | FQN Component | |
---|---|---|
Doxycycline–CH2– | –CH2–Balofloxacin | –CH2–Moxifloxacin |
Minocycline–CH2– | –CH2–Besifloxacin | –CH2–Nemonoxacin |
Tetracycline–CH2– | –CH2–Ciprofloxacin | –CH2–Norfloxacin |
Tigecycline–CH2– | –CH2–Delafloxacin | –CH2–Sitafloxacin |
–CH2–Finafloxacin | –CH2–Zabofloxacin |
Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient | Hybrid Code | Tanimoto Coefficient |
---|---|---|---|---|---|---|---|
Do-Ba | 0.67 | Mi-Ba | 0.67 | Te-Ba | 0.68 | Ti-Ba | 0.68 |
Do-Be | 0.66 | Mi-Be | 0.65 | Te-Be | 0.66 | Ti-Be | 0.66 |
Do-Ci | 0.66 | Mi-Ci | 0.66 | Te-Ci | 0.67 | Ti-Ci | 0.67 |
Do-De | 0.66 | Mi-De | 0.65 | Te-De | 0.66 | Ti-De | 0.64 |
Do-Fi | 0.63 | Mi-Fi | 0.63 | Te-Fi | 0.64 | Ti-Fi | 0.64 |
Do-Mo | 0.64 | Mi-Mo | 0.64 | Te-Mo | 0.64 | Ti-Mo | 0.65 |
Do-Ne | 0.67 | Mi-Ne | 0.67 | Te-Ne | 0.67 | Ti-Ne | 0.68 |
Do-No | 0.67 | Mi-No | 0.66 | Te-No | 0.67 | Ti-No | 0.67 |
Do-Si | 0.65 | Mi-Si | 0.64 | Te-Si | 0.65 | Ti-Si | 0.65 |
Do-Za | 0.60 | Mi-Za | 0.59 | Te-Za | 0.60 | Ti-Za | 0.60 |
Hybrid Code | HBD | HBA | MW | logP | logS | RB | tPSA | BBB | Span |
---|---|---|---|---|---|---|---|---|---|
Do-Ba | 9 | 12 | 847.894 | 7.96004 | −4.32137 | 12 | 234.47 | 0 | 14.761 |
Do-Be | 10 | 11 | 852.31 | 8.64016 | −5.93672 | 11 | 225.24 | 0 | 13.6502 |
Do-Ci | 9 | 11 | 789.814 | 6.92408 | −4.25757 | 10 | 225.24 | 0 | 14.2762 |
Do-De | 10 | 13 | 898.222 | 7.14079 | −6.4443 | 10 | 270.39 | 0 | 13.9193 |
Do-Fi | 9 | 12 | 856.861 | 6.78255 | −4.02152 | 10 | 258.26 | 0 | 14.5525 |
Do-Mo | 9 | 12 | 859.905 | 8.18711 | −4.8601 | 11 | 234.47 | 0 | 14.1119 |
Do-Ne | 10 | 12 | 829.904 | 7.71927 | −3.79623 | 12 | 234.47 | 0 | 14.7355 |
Do-No | 9 | 11 | 777.803 | 6.65226 | −4.23877 | 10 | 225.24 | 0 | 14.5137 |
Do-Si | 10 | 11 | 868.285 | 8.42228 | −5.82351 | 11 | 225.24 | 0 | 14.1988 |
Do-Za | 9 | 14 | 859.865 | 5.31606 | −3.01163 | 11 | 247.36 | 0 | 14.4449 |
Mi-Ba | 8 | 11 | 860.937 | 7.75452 | −3.94298 | 11 | 217.48 | 0 | 14.9754 |
Mi-Be | 9 | 10 | 865.353 | 8.43635 | −5.61406 | 10 | 208.25 | 0 | 13.9213 |
Mi-Ci | 8 | 10 | 802.857 | 6.7219 | −3.91432 | 9 | 208.25 | 0 | 14.5806 |
Mi-De | 9 | 12 | 911.265 | 6.94443 | −6.16854 | 9 | 253.4 | 0 | 14.078 |
Mi-Fi | 8 | 11 | 869.904 | 6.56169 | −3.57005 | 9 | 241.27 | 0 | 15.4229 |
Mi-Mo | 8 | 11 | 872.948 | 7.97204 | −4.46624 | 10 | 217.48 | 0 | 14.85 |
Mi-Ne | 9 | 11 | 842.947 | 7.50761 | −3.40136 | 11 | 217.48 | 0 | 15.0102 |
Mi-No | 8 | 10 | 790.846 | 6.45784 | −3.90934 | 9 | 208.25 | 0 | 14.8218 |
Mi-Si | 9 | 10 | 881.328 | 8.21306 | −5.48178 | 10 | 208.25 | 0 | 14.3282 |
Mi-Za | 8 | 13 | 872.908 | 5.08481 | −2.37858 | 10 | 230.37 | 0 | 15.126 |
Te-Ba | 9 | 12 | 847.894 | 6.7395 | −3.49544 | 12 | 234.47 | 0 | 14.698 |
Te-Be | 10 | 11 | 852.31 | 7.38854 | −5.08594 | 11 | 225.24 | 0 | 13.6847 |
Te-Ci | 9 | 11 | 789.814 | 5.76569 | −3.49409 | 10 | 225.24 | 0 | 14.3242 |
Te-De | 10 | 13 | 898.222 | 5.9824 | −5.66162 | 10 | 270.39 | 0 | 13.9825 |
Te-Fi | 9 | 12 | 856.861 | 5.59308 | −3.28442 | 10 | 258.26 | 0 | 14.51 |
Te-Mo | 9 | 12 | 859.905 | 6.93548 | −4.1755 | 11 | 234.47 | 0 | 13.8736 |
Te-Ne | 10 | 12 | 829.904 | 6.49873 | −2.97309 | 12 | 234.47 | 0 | 14.7124 |
Te-No | 9 | 11 | 777.803 | 5.52495 | −3.49583 | 10 | 225.24 | 0 | 14.5488 |
Te-Si | 10 | 11 | 868.285 | 7.17066 | −4.97454 | 11 | 225.24 | 0 | 14.1618 |
Te-Za | 9 | 14 | 859.865 | 4.18875 | −2.24149 | 11 | 247.36 | 0 | 14.4696 |
Ti-Ba | 10 | 13 | 989.112 | 8.20142 | −0.609453 | 14 | 249.82 | 0 | 19.7149 |
Ti-Be | 11 | 12 | 993.528 | 8.9158 | −2.68174 | 13 | 240.59 | 0 | 18.6122 |
Ti-Ci | 10 | 12 | 931.032 | 7.12409 | −1.04944 | 12 | 240.59 | 0 | 18.8034 |
Ti-De | 12 | 13 | 1040.45 | 7.36406 | −3.02325 | 12 | 282.5 | 0 | 19.1446 |
Ti-Fi | 10 | 13 | 998.079 | 6.9352 | −0.559961 | 12 | 273.61 | 0 | 19.7615 |
Ti-Mo | 10 | 13 | 1001.12 | 8.41774 | −1.60355 | 13 | 249.82 | 0 | 18.7474 |
Ti-Ne | 11 | 13 | 971.122 | 7.93612 | −0.0193502 | 14 | 249.82 | 0 | 19.7203 |
Ti-No | 10 | 12 | 919.021 | 6.85594 | −1.10865 | 12 | 240.59 | 0 | 18.5602 |
Ti-Si | 11 | 12 | 1009.50 | 8.67628 | −2.50717 | 13 | 240.59 | 0 | 19.2606 |
Ti-Za | 10 | 15 | 1001.08 | 5.37239 | 0.497277 | 13 | 262.71 | 0 | 19.2322 |
Albicidin | 9 | 12 | 842.818 | 8.70223 | −7.27913 | 9 | 285.74 | 0 | 16.647 |
No. | Hybrid Code | Energy (kcal/mol) | Rank Score | Match Score | FITTED Score |
---|---|---|---|---|---|
1. | Do-Ba | −46.8805 | −25.9619 | 40.8598 | −32.4995 |
2. | Do-Be | −55.3341 | −29.0247 | 27.6213 | −33.4442 |
3. | Do-Ci | −52.5709 | −26.8659 | 61.2568 | −36.667 |
4. | Do-De | −41.1101 | −31.9846 | 27.5557 | −36.3935 |
5. | Do-Fi | −59.1246 | −29.9974 | 38.7332 | −36.1947 |
6. | Do-Mo | −44.0383 | −21.2354 | 42.2432 | −27.9944 |
7. | Do-Ne | −52.2205 | −21.4368 | 44.3933 | −28.5397 |
8. | Do-No | −65.3521 | −22.5224 | 39.6634 | −28.8685 |
9. | Do-Si | −43.6101 | −21.8714 | 44.1344 | −28.9329 |
10. | Do-Za | −27.7438 | −28.3422 | 28.6443 | −32.9253 |
11. | Mi-Ba | −47.7369 | −24.8899 | 33.7495 | −30.2898 |
12. | Mi-Be | −50.6453 | −23.5048 | 44.205 | −30.5776 |
13. | Mi-Ci | −54.9941 | −20.2415 | 37.5034 | −26.2421 |
14. | Mi-De | −44.5589 | −28.5292 | 31.7109 | −33.6029 |
15. | Mi-Fi | −56.69 | −27.7948 | 33.9761 | −33.2309 |
16. | Mi-Mo | −55.2164 | −27.4651 | 29.489 | −32.1834 |
17. | Mi-Ne | −56.1481 | −28.0855 | 34.6462 | −33.6289 |
18. | Mi-No | −60.445 | −21.1604 | 36.1175 | −26.9392 |
19. | Mi-Si | −41.4239 | −27.8282 | 52.2429 | −36.187 |
20. | Mi-Za | −33.6735 | −27.0834 | 28.1093 | −31.5809 |
21. | Te-Ba | −52.1768 | −29.2146 | 36.094 | −34.9896 |
22. | Te-Be | −58.9201 | −30.1819 | 50.1065 | −38.1989 |
23. | Te-Ci | −58.1497 | −22.665 | 36.0531 | −28.4335 |
24. | Te-De | −55.2032 | −41.5255 | 38.6688 | −47.7125 |
25. | Te-Fi | −51.9233 | −23.225 | 41.78 | −29.9098 |
26. | Te-Mo | −45.6765 | −21.5231 | 37.5876 | −27.5371 |
27. | Te-Ne | −56.0786 | −19.223 | 41.7466 | −25.9024 |
28. | Te-No | −61.5205 | −20.0941 | 38.623 | −26.2737 |
29. | Te-Si | −44.2699 | −23.2726 | 36.39 | −29.095 |
30. | Te-Za | −25.535 | −23.5952 | 31.9301 | −28.704 |
31. | Ti-Ba | −77.9709 | −21.1048 | 37.5492 | −27.1127 |
32. | Ti-Be | −78.3624 | −25.9144 | 37.413 | −31.9005 |
33. | Ti-Ci | −93.1157 | −26.1696 | 38 | −32.2496 |
34. | Ti-De | −58.2974 | −30.7778 | 37.439 | −36.768 |
35. | Ti-Fi | −81.4413 | −25.177 | 41.3032 | −31.7855 |
36. | Ti-Mo | −68.6103 | −27.8297 | 36.9597 | −33.7432 |
37. | Ti-Ne | −98.4678 | −30.1133 | 38.9649 | −36.3477 |
38. | Ti-No | −97.8969 | −27.2614 | 37.6273 | −33.2818 |
39. | Ti-Si | −82.2259 | −26.0071 | 38.5462 | −32.1745 |
40. | Ti-Za | −63.2206 | −28.8194 | 37.9827 | −34.8967 |
- | Albicidin | −171.899 | −26.846 | 39.746 | −33.2054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungu, I.-A.; Oancea, O.-L.; Rusu, A. In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals 2024, 17, 1540. https://doi.org/10.3390/ph17111540
Lungu I-A, Oancea O-L, Rusu A. In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals. 2024; 17(11):1540. https://doi.org/10.3390/ph17111540
Chicago/Turabian StyleLungu, Ioana-Andreea, Octavia-Laura Oancea, and Aura Rusu. 2024. "In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids" Pharmaceuticals 17, no. 11: 1540. https://doi.org/10.3390/ph17111540
APA StyleLungu, I. -A., Oancea, O. -L., & Rusu, A. (2024). In Silico Study of the Potential Inhibitory Effects on Escherichia coli DNA Gyrase of Some Hypothetical Fluoroquinolone–Tetracycline Hybrids. Pharmaceuticals, 17(11), 1540. https://doi.org/10.3390/ph17111540