Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield
2.2. Phytocompounds from Z. rosea Bulb
2.3. Hematological Results
2.3.1. Effect of Z. rosea Extract on Hematological Parameters in Blood
2.3.2. Effect of Z. rosea Extract on WBCs in BALF
2.3.3. Effect of Z. rosea Extract on TLC in Blood and BALF
2.3.4. Effect of Z. rosea Extract on Neutrophils in Blood and BALF
2.3.5. Effect of Z. rosea Extract on Eosinophils in Blood and BALF
2.4. Histopathological Interpretation of Lung Tissues
2.5. Effect of Z. rosea Extract on Proinflammatory Interleukins
2.6. Effect of Z. rosea Extract on Anti-Inflammatory Interleukins
2.7. Targets Associated with Phytocompounds
2.8. Ovelapping Targets Between Allergic-Asthma-Associated Targets and Phytocompound-Related Targets
2.9. Protein–Protein Interaction Network Construction
2.10. Protein–Protein Interaction Network Construction and Genome Analysis
2.11. Molecular Docking of 3 Targets
2.12. Computational Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. GC-MS Analysis
4.4. Experimental Animals
4.5. Induction of Allergic Asthma
4.6. Blood and BALF Inflammatory Cell Count
4.7. Investigation of Histopathology Slides
4.8. Real-Time Polymerase Chain Reaction (RT–PCR)
4.8.1. The mRNA Expression Levels of Cytokines
4.8.2. Total RNA Extraction
4.8.3. cDNA Synthesis and RT–PCR Amplification
4.9. Network Pharmacology Analysis
4.9.1. Phytochemicals Database Construction and Drug Likeness Property
4.9.2. Compounds–Associated Target Prediction
4.9.3. Allergic Asthma—Associated Target Prediction
4.9.4. Venn Diagram Construction
4.9.5. Construction of Protein–Protein Interaction (PPI) Network
4.9.6. Gene Ontology and Functional Enrichment Analysis
4.10. Molecular Docking
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebmeier, S.; Thayabaran, D.; Braithwaite, I.; Bénamara, C.; Weatherall, M.; Beasley, R. Trends in international asthma mortality: Analysis of data from the WHO Mortality Database from 46 countries (1993–2012). Lancet 2017, 390, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.C.; Pascual, R.M. Update in asthma 2009. Am. J. Respir. Crit. Care Med. 2010, 181, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Joos, G.F.; Bracke, K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011, 378, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.T.; MacGlashan, D.W.; Lichtenstein, L.M. Human basophils: Mediator release and cytokine production. Adv. Immunol. 2001, 77, 93–122. [Google Scholar]
- Robinson, D.S.; Hamid, Q.; Ying, S.; Tsicopoulos, A.; Barkans, J.; Bentley, A.M.; Corrigan, C.; Durham, S.R.; Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 1992, 326, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.E. Asthma: Defining of the persistent adult phenotypes. Lancet 2006, 368, 804–813. [Google Scholar] [CrossRef]
- Hlazunov, O.A.; Stepanova, S.V.; Hruzdeva, A.O. Innovative teaching tools in conditions of postgraduate medical education. Colloquium-J. 2021, 3, 7–11. [Google Scholar]
- Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: More than just TH2 cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef]
- Wills-Karp, M.; Luyimbazi, J.; Xu, X.; Schofield, B.; Neben, T.Y.; Karp, C.L.; Donaldson, D.D. Interleukin-13: Central mediator of allergic asthma. Science 1998, 282, 2258–2261. [Google Scholar] [CrossRef]
- Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the pathophysiology of severe asthma. Front. Physiol. 2019, 10, 1514. [Google Scholar] [CrossRef]
- Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 1999, 17, 255–281. [Google Scholar] [CrossRef] [PubMed]
- Konduri, K.S.; Nandedkar, S.; Düzgünes, N.; Suzara, V.; Artwohl, J.; Bunte, R.; Gangadharam, P.R. Efficacy of liposomal budesonide in experimental asthma. J. Allergy Clin. Immunol. 2003, 111, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Iademarco, M.; Barks, J.; Dean, D. Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-alpha in cultured endothelial cells. J. Clin. Investig. 1995, 95, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, B.; Lugli, S.; Feng, N.; Etter, H.; Lutz, R.A.; Ryffel, B.; Sugamura, K.; Wunderli-Allenspach, H.; Moser, R. Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common gamma chain. Blood 1996, 87, 4286–4295. [Google Scholar] [CrossRef]
- Masinovsky, B.; Urdal, D.; Gallatin, W.M. IL-4 acts synergistically with IL-1 beta to promote lymphocyte adhesion to microvascular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol. 1990, 145, 2886–2895. [Google Scholar] [CrossRef]
- Tavakol, A.J.; Farid Hosseini, R.; Hosseini Farahabadi, S.; Heydarian, F.; Boskabady, M.H.; Khoshnavaz, R.; Razavi, A.; Ghayoor Karimiani, E.; Ghasemi, G. Association of the expression of IL-4 and IL-13 genes, IL-4 and IgE serum levels with allergic asthma. Iran. J. Allergy Asthma Immunol. 2007, 6, 67–72. [Google Scholar]
- Al-Moamary, M.S.; Alhaider, S.A.; Alangari, A.A.; Idrees, M.M.; Zeitouni, M.O.; Al Ghobain, M.O.; Alanazi, A.F.; Al-Harbi, A.S.; Yousef, A.A.; Alorainy, H.S.; et al. The Saudi initiative for asthma-2021 Update: Guidelines for the diagnosis and management of asthma in adults and children. Ann. Thorac. Med. 2021, 16, 4–56. [Google Scholar] [CrossRef]
- Georas, S.N.; Donohue, P.; Connolly, M.; Wechsler, M.E. JAK inhibitors for asthma. J. Allergy Clin. Immunol. 2021, 148, 953–963. [Google Scholar] [CrossRef]
- Lulich, K.; Goldie, R.G.; Ryan, G.; Paterson, J.W. Adverse reactions to β2-agonist bronchodilators. Med. Toxicol. 1986, 1, 286–299. [Google Scholar] [CrossRef]
- Graham, D.M.; Blaiss, M.S. Complementary/alternative medicine in the treatment of asthma. Ann. Allergy Asthma Immunol. 2000, 85, 438–449. [Google Scholar] [CrossRef]
- Kopnina, H.; Haafkens, J. Necessary alternatives: Patients’ views of asthma treatment. Patient Prefer. Adherence 2010, 4, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Qu, D.; Zhang, K.M.; Cang, X.X.; Kou, Z.N.; Xiao, W.; Zhu, J.B. Phytochemical and biological investigations of Amaryllidaceae alkaloids: A review. J. Asian Nat. Prod. Res. 2017, 19, 53–100. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2016, 33, 1318–1343. [Google Scholar] [CrossRef] [PubMed]
- Austin, D.F. Florida Ethnobotany, 1st ed.; CRC Press: New York, NY, USA, 2004; p. 952. [Google Scholar]
- Maheshwaran, G.; Bharathi, A.N.; Selvi, M.M.; Kumar, M.K.; Kumar, R.M.; Sudhahar, S. Green synthesis of Silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. J. Environ. Chem. Eng. 2020, 8, 104137. [Google Scholar] [CrossRef]
- Francisco, L. A small flower with expansive energy: A proving of Zephyranthes rosea. Homoeopath. Links 2017, 30, 112–113. [Google Scholar] [CrossRef]
- Acevedo-Rodríguez, P.; Strong, M.T. Monocotyledons and gymnosperms of Puerto Rico and the Virgin Islands. Taxon 2005, 52, 1–415. [Google Scholar]
- Fernández Alonso, J.L.; Groenendijk, J.P. A new specie of Zephyranthes Herb. sl (Amaryllidaceae, Hippeastreae) with notes on the genus in Colombia. Rev. Acad. Colomb. Cienc. 2004, 28, 177–186. [Google Scholar]
- Tapia-Campos, E.; Rodriguez-Dominguez, J.M.; De Los Milagros Revuelta-Arreola, M.; Van Tuyl, J.M.; Barba-Gonzalez, R. Mexican Geophytes II. The Genera Hymenocallis, Sprekelia and Zephyranthes. Floricult. Ornam. Biotechnol. 2012, 6, 129–139. [Google Scholar]
- Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef]
- Boit, H.G.; Döpke, W.; Stender, W. Alkaloide aus Crinum-, Zephyranthes-, Leucojum-und Clivia-Arten. Chem. Berichte 1957, 90, 2203–2206. [Google Scholar] [CrossRef]
- Ghosal, S.; Razdan, S. (+)-Epimaritidine, an alkaloid from Zephyranthes rosea. Phytochemistry 1985, 24, 635–637. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Olin, J.T.; Wechsler, M.E. Asthma: Pathogenesis and novel drugs for treatment. BMJ 2014, 349, g5517. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, J.-Y.; Bousquet, J.; Chanez, P.; Van Vyve, T.; Simony-Lafontaine, J.; Lequeu, N.; Vic, P.; Enander, I.; Godard, P.; Michel, F.B. Eosinophilic and inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 1993, 92, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Zareba, L.; Szymanski, J.; Homoncik, Z.; Czystowska-Kuzmicz, M. Evs from balf—Mediators of inflammation and potential biomarkers in lung diseases. Int. J. Mol. Sci. 2021, 22, 3651. [Google Scholar] [CrossRef]
- Shen, L.; Lu, J.; Wang, G.; Wang, C.; Li, Z. Molecular mechanism of YuPingFeng in the treatment of asthma based on network pharmacology and molecular docking technology. Comput. Math. Methods Med. 2022, 2022, 7364126. [Google Scholar] [CrossRef]
- Rincon, M.; Irvin, C.G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci. 2012, 8, 1281. [Google Scholar] [CrossRef]
- Tundwal, K.; Alam, R. JAK and Src tyrosine kinase signaling in asthma. Front. Biosci. 2012, 17, 2107–2121. [Google Scholar] [CrossRef]
- Rehman, Z.; Rasheed, H.M.; Bashir, K.; Gurgul, A.; Wahid, F.; Che, C.T.; Shahzadi, I.; Khan, T. UHPLC-MS/MS-GNPS based phytochemical investigation of Dryopteris ramosa (Hope) C. Chr. and evaluation of cytotoxicity against liver and prostate cancer cell lines. Heliyon 2022, 8, e11286. [Google Scholar] [CrossRef]
- Rasheed, H.M.; Wahid, F.; Ikram, M.; Qaisar, M.; Shah, A.J.; Khan, T. Chemical profiling and anti-breast cancer potential of hexane fraction of Sphaeranthus indicus flowers. Trop. J. Pharm. Res. 2021, 20, 1931–1939. [Google Scholar] [CrossRef]
- Njokua, D.; Chidiebene, D.I.; Oguzie, K.L.; Ogukwu, C.E.; Oguzie, E.E. Corrosion inhibition of mild steel in hydrochloric acid solution by the leaf extract of Nicotiana tabacum. Adv. Mater. Corros. 2013, 2, 54–61. [Google Scholar]
- Gherman, C.; Culea, M.; Cozar, O. Comparative analysis of some active principles of herb plants by GC/MS. Talanta 2000, 53, 253–262. [Google Scholar] [CrossRef]
- Shilovskiy, I. Experimental protocol for development of adjuvant-free murine chronic model of allergic asthma. J. Immunol. Methods 2019, 468, 10–19. [Google Scholar] [CrossRef]
- Nana, W.Y.; Gilbert, A.; Marius, M.; Shamim, K.; Rasheed, H.M.; Albert, A.; Shah, A.J.; Albert, K.; Khan, T. Antidiarrheal potential of Distemonanthus benthamianus Baillon. extracts via inhibiting voltage-dependent calcium channels and cholinergic receptors. Asian Pac. J. Trop. Biomed. 2019, 9, 449–455. [Google Scholar]
- Muhammad, H.; Salahuddin, Z.; Akhtar, T.; Aftab, U.; Rafi, A.; Hussain, S.; Shahzad, M. Immunomodulatory effect of glabridin in ovalbumin induced allergic asthma and its comparison with methylprednisolone in a preclinical rodent model. J. Cell Biochem. 2023, 124, 1503–1515. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Mehrabi Nasab, E.; Athari, S.M.; Athari, S.S. Anti-inflammatory effect of herbal traditional medicine extract on molecular regulation in allergic asthma. Allergol. Select 2021, 5, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Slaoui, M.; Fiette, L. Histopathology procedures: From tissue sampling to histopathological evaluation. Methods Mol. Biol. 2011, 691, 69–82. [Google Scholar]
- Doleshal, M.; Magotra, A.A.; Choudhury, B.; Cannon, B.D.; Labourier, E.; Szafranska, A.E. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2008, 10, 203–211. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
- Kim, S. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, J.C.; VENNY. An Interactive Tool for Comparing Lists with Venn Diagrams. 2007. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 28 October 2024).
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Mering, C.V. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003, 31, 258–261. [Google Scholar] [CrossRef]
- Dennis, G. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, 1–11. [Google Scholar] [CrossRef]
- Consortium, G.O. The gene ontology (GO) project in 2006. Nucleic Acids Res. 2006, 34 (Suppl. 1), D322–D326. [Google Scholar] [CrossRef]
- Jia, A.; Xu, L.; Wang, Y. Venn diagrams in bioinformatics. Brief. Bioinform. 2021, 22, bbab108. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Gurbani, D.; Du, G.; Henning, N.J.; Rao, S.; Bera, A.K.; Zhang, T.; Gray, N.S.; Westover, K.D. Structure and characterization of a covalent inhibitor of Src kinase. Front. Mol. Biosci. 2020, 7, 81. [Google Scholar] [CrossRef]
- Lapierre, J.M.; Eathiraj, S.; Vensel, D.; Liu, Y.; Bull, C.O.; Cornell-Kennon, S.; Iimura, S.; Kelleher, E.W.; Kizer, D.E.; Koerner, S.; et al. Discovery of 3-(3-(4-(1-Aminocyclobutyl) phenyl)-5-phenyl-3 H-imidazo [4, 5-b] pyridin-2-yl) pyridin-2-amine (ARQ 092): An orally bioavailable, selective, and potent allosteric AKT inhibitor. J. Med. Chem. 2016, 59, 6455–6469. [Google Scholar] [CrossRef]
- Blanchetot, C.; De Jonge, N.; Desmyter, A.; Ongenae, N.; Hofman, E.; Klarenbeek, A.; Sadi, A.; Hultberg, A.; Kretz-Rommel, A.; Spinelli, S.; et al. Structural mimicry of receptor interaction by antagonistic interleukin-6 (IL-6) antibodies. J. Biol. Chem. 2016, 291, 13846–13854. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | RT (mins) | Area | Area (%) | Chemical Class |
---|---|---|---|---|---|
1 | 1-Butoxypropan-2-yl isobutyl carbonate | 3.393 | 6053538 | 0.72 | Carbonate ester |
2 | 1,2,4-Cyclopentanetrione, 3-methyl- | 3.718 | 17545163 | 2.10 | Polyketone |
3 | Acrylic acid isoamyl ester | 4.729 | 9183173 | 1.10 | Fatty acid |
4 | 5-Hydroxymethylfurfural | 6.576 | 8142970 | 0.97 | Phenolic compounds |
5 | 2-Furylglycolic acid | 8.771 | 45694341 | 5.47 | Phenolic compounds |
6 | 1-tert-Butoxypropan-2-yl 3-methylbutanoate | 9.690 | 50895896 | 6.09 | Fatty acid ester |
7 | 1-Isopropoxy-2,2,3-trimethyl aziridine | 9.802, 9.827 | 58936863, 15624290 | 7.05, 1.87 | Alkaloid |
8 | 1,2-Epithio-3-hexanol | 9.843 | 11749572 | 1.41 | Alcohol |
9 | 2-Ethyl-oxetane | 9.871, 9.946 | 21729648, 35449679 | 2.60, 4.24 | Terpene |
10 | Diallyl glycol | 9.930 | 49736001 | 5.95 | Phenolic compounds |
11 | alpha-D-Galactopyranoside, methyl | 11.372 | 10043589 | 1.20 | Glycoside |
12 | 3-Deoxy-d-mannoic lactone | 12.065 | 22446954 | 2.69 | Lactone |
13 | d-Glycero-l-gluco-heptose | 12.372 | 10916512 | 1.31 | Carbohydrate |
14 | Hexadecanoic acid, methyl ester | 12.727 | 21531557 | 2.58 | Fatty acid |
15 | n-Hexadecanoic acid | 13.309 | 51201496 | 6.12 | Fatty acid |
16 | 9-Octadecenoic acid, methyl ester, (E)- | 14.570 | 16087543 | 1.92 | Fatty acid |
17 | Haemanthamine | 14.656 | 65354444 | 7.82 | Alkaloid |
18 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | 14.849 | 5136398 | 0.61 | Fatty acid |
19 | Oleic Acid | 15.146 | 18413061 | 2.20 | Fatty acid |
20 | 9,12-Octadecadienoic acid (Z,Z)- | 15.248 | 93534451 | 11.19 | Fatty acid |
21 | Linoelaidic acid | 15.431 | 6106553 | 0.73 | Fatty acid |
22 | Docosanoic acid, methyl ester | 17.769 | 1575866 | 0.19 | Fatty acid |
23 | Phenol, 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 18.046 | 4933954 | 0.59 | Phenol |
24 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 18.167 | 20460597 | 2.45 | Fatty acid |
25 | Bis(2-ethylhexyl) phthalate | 18.233 | 4950238 | 0.59 | Alkyl esters |
26 | Galantamin | 18.477 | 13325481 | 1.59 | Alkaloid |
27 | Lycoramine | 18.563 | 4486526 | 0.54 | Alkaloid |
28 | 4-Fluoro-5-methoxy-2-nitrobenzoic acid, trimethylsilyl ester | 18.611 | 21714000 | 2.60 | Phenol |
29 | Crinamine | 18.713 | 13994306 | 1.67 | Alkaloid |
30 | Tricyclo [6.6.0.0(3,6)]tetradeca-1(8),4,11-triene | 18.775 | 2617101 | 0.31 | Diterpene |
31 | Squalene | 18.806 | 6705499 | 0.80 | Triterpene |
32 | cis-Vaccenic acid | 18.859 | 8191844 | 0.98 | Fatty acid |
33 | 9,12-Octadecadienoyl chloride, (Z,Z)- | 18.900 | 8343481 | 1.00 | Fatty acid |
34 | Estragole | 18.961 | 4929956 | 0.59 | Pheno |
35 | Crinamidine | 18.988 | 6180864 | 0.74 | Alkaloid |
36 | 1,3-cis-Dihydroxycrinane | 19.122 | 26832642 | 3.21 | Triterpenoid |
37 | 8H-Benzo[g]-1,3-benzodioxolo[6,5,4-de]quinolin-8-one | 19.362 | 30788521 | 3.68 | Phenol |
38 | Daniquidone | 19.709 | 4456513 | 0.53 | Phenol |
Compounds | Lipinski Rules | Lipinski’s Violations | Bioavailability Score | TPSA (A2) | ||||
---|---|---|---|---|---|---|---|---|
MW | HBA | HBD | MLogP | |||||
No. | <500 | <10 | ≤5 | ≤4.15 | ≤1 | >0.1 | <140 | |
1 | 1-Butoxypropan-2-yl isobutyl carbonate | 232.32 | 4 | 0 | 1.83 | 0 | 0.55 | 44.76 |
2 | 1,2,4-Cyclopentanetrione, 3-methyl- | 126.11 | 3 | 0 | −1.02 | 0 | 0.55 | 51.21 |
3 | Acrylic acid isoamyl ester | 142.2 | 2 | 0 | 1.85 | 0 | 0.55 | 26.3 |
4 | 5-Hydroxymethylfurfural | 126.11 | 3 | 1 | −1.06 | 0 | 0.55 | 50.44 |
5 | 2-Furylglycolic acid | 142.11 | 4 | 2 | −1.1 | 0 | 0.85 | 70.67 |
6 | 1-tert-Butoxypropan-2-yl 3-methylbutanoate | 216.32 | 3 | 0 | 2.27 | 0 | 0.55 | 35.53 |
7 | 1-Isopropoxy-2,2,3-trimethyl aziridine | 143.23 | 2 | 0 | 1.71 | 0 | 0.55 | 12.24 |
8 | 1,2-Epithio-3-hexanol | 132.22 | 1 | 1 | 1.14 | 0 | 0.55 | 45.53 |
9 | 2-Ethyl-oxetane | 86.13 | 1 | 0 | 0.76 | 0 | 0.55 | 9.23 |
10 | Diallyl glycol | 142.2 | 2 | 0 | 1.04 | 0 | 0.55 | 18.46 |
11 | alpha-D-Galactopyranoside, methyl | 194.18 | 6 | 4 | −2.4 | 0 | 0.55 | 99.38 |
12 | 3-Deoxy-d-mannoic lactone | 162.14 | 5 | 3 | −1.68 | 0 | 0.55 | 86.99 |
13 | d-Glycero-l-gluco-heptose | 210.18 | 7 | 6 | −3.36 | 1 | 0.55 | 138.45 |
14 | Hexadecanoic acid, methyl ester | 270.45 | 2 | 0 | 4.44 | 1 | 0.55 | 26.3 |
15 | n-Hexadecanoic acid | 256.42 | 2 | 1 | 4.19 | 1 | 0.85 | 37.3 |
16 | 9-Octadecenoic acid, methyl ester, (E)- | 296.49 | 2 | 0 | 4.8 | 1 | 0.55 | 26.3 |
17 | Haemanthamine | 301.34 | 5 | 1 | 1.32 | 0 | 0.55 | 51.16 |
18 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | 292.46 | 2 | 0 | 1.32 | 0 | 0.55 | 26.3 |
19 | Oleic Acid | 282.46 | 2 | 1 | 4.57 | 1 | 0.85 | 37.3 |
20 | 9,12-Octadecadienoic acid (Z,Z)- | 280.45 | 2 | 1 | 4.57 | 1 | 0.85 | 37.3 |
21 | Linoelaidic acid | 280.45 | 2 | 1 | 4.47 | 1 | 0.85 | 37.3 |
22 | Docosanoic acid, methyl ester | 354.61 | 2 | 0 | 5.79 | 1 | 0.55 | 26.3 |
23 | Phenol, 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 340.5 | 2 | 2 | 5.05 | 1 | 0.55 | 40.46 |
24 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 330.5 | 4 | 2 | 3.18 | 0 | 0.55 | 66.76 |
25 | Bis(2-ethylhexyl) phthalate | 390.56 | 4 | 0 | 5.24 | 1 | 0.55 | 52.6 |
26 | Galantamin | 287.35 | 4 | 1 | 1.74 | 0 | 0.55 | 41.93 |
27 | Lycoramine | 289.37 | 4 | 1 | 1.83 | 0 | 0.55 | 41.93 |
28 | 4-Fluoro-5-methoxy-2-nitrobenzoic acid, trimethylsilyl ester | 287.32 | 6 | 0 | 1.62 | 0 | 0.55 | 81.35 |
29 | Crinamine | 301.34 | 5 | 1 | 1.32 | 0 | 0.55 | 51.16 |
30 | Tricyclo [6.6.0.0(3,6)]tetradeca-1(8),4,11-triene | 186.29 | 0 | 0 | 4.28 | 1 | 0.55 | 0 |
31 | Squalene | 410.72 | 0 | 0 | 4.28 | 1 | 0.55 | 0 |
32 | cis-Vaccenic acid | 282.46 | 2 | 1 | 4.57 | 1 | 0.85 | 37.3 |
33 | 9,12-Octadecadienoyl chloride, (Z,Z)- | 298.89 | 1 | 0 | 4.57 | 1 | 0.85 | 17.07 |
34 | Estragole | 148.2 | 1 | 0 | 2.67 | 0 | 0.55 | 9.23 |
35 | Crinamidine | 317.34 | 6 | 1 | 0.87 | 0 | 0.55 | 63.69 |
36 | 1,3-cis-Dihydroxycrinane | 289.33 | 5 | 2 | 1.17 | 0 | 0.55 | 62.16 |
37 | 8H-Benzo[g]-1,3-benzodioxolo[6,5,4-de]quinolin-8-one | 335.31 | 6 | 0 | 1.07 | 0 | 0.55 | 66.88 |
38 | Daniquidone | 249.27 | 2 | 1 | 2.68 | 0 | 0.55 | 58.69 |
Parameter | Unit | Normal Control | Diseased Control | Positive Control | Z. rosea 200 | Z. rosea 400 | Z. rosea 600 |
---|---|---|---|---|---|---|---|
Lymphocytes | % | 32.67 ± 0.88 | 72.67 ± 1.2 | 34.0 ± 0.58 | 69.32 ± 0.88 | 59.31 ± 0.88 | 57.62 ± 1.2 |
Monocytes | % | 1.71 ± 0.33 | 4.72 ± 0.33 | 2.42 ± 0.33 | 3.05 ± 0.33 | 2.92 ± 0.58 | 2.79 ± 0.33 |
Sample | mRNA Expression Levels of Cytokines (Mean ± S.D) | |||||
---|---|---|---|---|---|---|
IL-4 | IL-6 | IL-1β | IL-10 | IL-13 | TGF-β1 | |
Normal Control | 1.153 ± 0.005 | 1.134 ± 0.014 | 0.222 ± 0.005 | 0.536 ± 0.006 | 1.770 ± 0.065 | 0.140 ± 0.008 |
Disease Control | 2.917 ± 0.006 | 1.784 ± 0.098 | 5.590 ± 0.010 | 2.447 ± 0.061 | 3.489 ± 0.002 | 5.237 ± 0.064 |
Positive Control | 0.577 ± 0.004 | 0.573 ± 0.014 | 0.444 ± 0.007 | 0.577 ± 0.019 | 0.155 ± 0.026 | 0.309 ± 0.014 |
Z. rosea 200 | 0.976 ± 0.007 | 1.390 ± 0.019 | 0.406 ± 0.004 | 0.470 ± 0.035 | 1.562 ± 0.029 | 1.308 ± 0.058 |
Z. rosea 400 | 0.617 ± 0.007 | 0.930 ± 0.051 | 0.105 ± 0.004 | 0.482 ± 0.013 | 0.247 ± 0.026 | 0.080 ± 0.017 |
Z. rosea 600 | 0.595 ± 0.005 | 0.129 ± 0.011 | 0.105 ± 0.006 | 0.535 ± 0.052 | 0.206 ± 0.025 | 0.069 ± 0.002 |
No | Target | Degree | No | Target | Degree |
---|---|---|---|---|---|
1 | IL6 | 165 | 26 | MAPK1 | 72 |
2 | AKT1 | 150 | 27 | MMP2 | 72 |
3 | SRC | 138 | 28 | FGF2 | 70 |
4 | STAT3 | 127 | 29 | KDR | 69 |
5 | EGFR | 119 | 30 | JAK2 | 68 |
6 | CASP3 | 118 | 31 | ACE | 67 |
7 | BCL2 | 118 | 32 | MAPK14 | 64 |
8 | PTGS2 | 113 | 33 | KIT | 62 |
9 | PPARG | 106 | 34 | PARP1 | 62 |
10 | TGFB1 | 106 | 35 | NR3C1 | 61 |
11 | MMP9 | 106 | 36 | PRKCA | 61 |
12 | JUN | 105 | 37 | AGTR1 | 59 |
13 | CTNNB1 | 105 | 38 | TNFRSF1A | 59 |
14 | MAPK3 | 104 | 39 | MPO | 58 |
15 | ESR1 | 100 | 40 | MAPK8 | 57 |
16 | HSP90AA1 | 97 | 41 | PTPN11 | 57 |
17 | ICAM1 | 91 | 42 | IGF1R | 57 |
18 | IL2 | 86 | 43 | PPARA | 56 |
19 | ERBB2 | 85 | 44 | PDGFRB | 53 |
20 | MTOR | 82 | 45 | ABL1 | 53 |
21 | PTPRC | 80 | 46 | FYN | 52 |
22 | VCAM1 | 79 | 47 | NOS3 | 51 |
23 | CCND1 | 78 | 48 | PTK2 | 50 |
24 | GSK3B | 78 | 49 | IKBKB | 50 |
25 | BCL2L1 | 73 | 50 | HDAC1 | 50 |
Compound Name | S Score (kcal/mol) | RMSD (Å) | Atom of Compounds | Atom of Receptors | Residue of Receptor | Type of Interaction Bond | Distance (Å) |
---|---|---|---|---|---|---|---|
Interleukin 6 (PDB ID: 4ZS7) | |||||||
9,12-Octadecadienoic acid (Z,Z)- | −6.71 | 2.74 | O-52 C-14 | OG1 5-ring | THR 120 HIS 173 | H-acceptor H-pi | 2.82 4.25 |
Linoelaidic acid | −6.84 | 2.76 | O-3 | O | THR 174 | H-donor | 2.86 |
Methylprednisolone (Standard) | −6.29 | 1.69 | O-1 | OG1 | THR 120 | H-acceptor | 2.83 |
Compound Name | S Score (kcal/mol) | RMSD (Å) | Atom of Compounds | Atom of Receptors | Residue of Receptor | Type of Interaction Bond | Distance (Å) |
---|---|---|---|---|---|---|---|
AKT1 (PDB ID: 5KCV) | |||||||
Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | −8.19 | 1.93 | O-59 O-59 | NE NH2 | ARG 273 ARG 273 | H-acceptor H-acceptor | 3.09 |
Methylprednisolone (Standard) | −7.62 | 1.98 | O-40 O-36 O-40 | OD2 NE NH2 | ASP 274 ARG 273 ARG 273 | H-donor H-acceptor H-acceptor | 3.23 2.98 3.14 |
Compound Name | S Score (kcal/mol) | RMSD (Å) | Atom of Compounds | Atom of Receptors | Residue of Receptor | Type of Interaction Bond | Distance (Å) |
---|---|---|---|---|---|---|---|
Src (PDB ID: 6E6E) | |||||||
1-Butoxypropan-2-yl isobutyl carbonate | −5.55 | 1.44 | O-1 C-37 | NH2 6-ring | ARG 391 PHE 281 | H-acceptor H-pi | 2.95 4.18 |
9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | −6.95 | 0.74 | O-53 | OG | SER 348 | H-acceptor | 3.06 |
8H-Benzo[g]-1,3-benzodioxolo[6,5,4-de]quinolin-8-one | −7.18 | 1.15 | 6-ring | CG1 | VAL 284 | pi-H | 3.67 |
Daniquidone | −6.22 | 1.81 | N-22 O-1 | OE2 N | GLU 313 MET 344 | H-donor H-acceptor | 3.16 3.06 |
Methylprednisolone (Standard) | −6.36 | 1.62 | O-40 O-26 O-26 | OD2 NH1 NH2 | ASP 407 ARG 391 ARG 391 | H-donor H-acceptor H-acceptor | 2.95 3.21 3.22 |
Gene | Primer | Sequence |
---|---|---|
IL-4 | GTACCGGGAACGGTATCCAC | Forward |
TGGTGTTCCTTGTTGCCGTA | Reverse | |
IL-6 | GATGAGGCTTCCTGTCCCTACT | Forward |
TGACAGGTTTTGGAATAGCATTTCC | Reverse | |
IL-10 | GGAGTCCCCATCCCAACTCA | Forward |
GCCCATAACCCCCACAACAC | Reverse | |
TGF-β1 | TGATACGCCTGAGTGGCTGTCT | Forward |
TGATACGCCTGAGTGGCTGTCT | Reverse | |
IL-13 | AACGGCAGCATGGTATGGAGTG | Forward |
TGGGTCCTGTAGATGGCATTGC | Reverse | |
IL-1β | GATGAGGCTTCGTGTCCCTACT | Forward |
GATGAGGCTTCGTGTCCCTACT | Reverse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Rasheed, H.M.; Ansari, S.A.; Ansari, S.A.; Alkahtani, H.M. Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model. Pharmaceuticals 2024, 17, 1558. https://doi.org/10.3390/ph17111558
Ali A, Rasheed HM, Ansari SA, Ansari SA, Alkahtani HM. Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model. Pharmaceuticals. 2024; 17(11):1558. https://doi.org/10.3390/ph17111558
Chicago/Turabian StyleAli, Amir, Hafiz Majid Rasheed, Siddique Akber Ansari, Shoeb Anwar Ansari, and Hamad M. Alkahtani. 2024. "Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model" Pharmaceuticals 17, no. 11: 1558. https://doi.org/10.3390/ph17111558
APA StyleAli, A., Rasheed, H. M., Ansari, S. A., Ansari, S. A., & Alkahtani, H. M. (2024). Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model. Pharmaceuticals, 17(11), 1558. https://doi.org/10.3390/ph17111558