Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review
Abstract
:1. Introduction
2. Radiopharmaceutical Characteristics of I-123 MIBG
2.1. Radiochemistry of I-123 MIBG
2.2. Pharmacokinetics of I-123 MIBG
2.2.1. Distribution
2.2.2. Metabolism and Excretion
2.2.3. Factors Influencing I-123 MIBG Pharmacokinetics
3. Diagnostic Applications of I-123 MIBG
3.1. Neuroendocrine Tumor Imaging
3.1.1. Applications in Pheochromocytomas and Paragangliomas
3.1.2. Applications in Neuroblastomas
3.2. Cardiac Imaging
3.2.1. Role of I-123 MIBG in Assessing Cardiac Sympathetic Innervation
3.2.2. Applications in Heart Failure and Arrhythmias
3.3. Neurological Disorders
3.3.1. Applications in Parkinson’s Disease and Related Movement Disorders
3.3.2. Applications in Dementia
4. Clinical Studies and Research on New Indications for I-123 MIBG
4.1. Comparative Analyses and Meta-Analyses
4.2. Ongoing Research and Potential Areas for Exploration
5. Challenges to and Considerations of I-123 MIBG Imaging and Therapy
5.1. Strategies for Overcoming Limitations
5.2. Radiation Safety
5.3. Guidelines and Best Practices
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tanaka, T.; Aizawa, T.; Kato, K.; Ogasawara, K.; Sakuma, T.; Kirigaya, H.; Hirosaka, A.; Nakano, H.; Igarashi, M. Denervated myocardium detected by I-123 metaiodobenzylguanidine myocardial imaging following successful percutaneous transluminal coronary thrombolysis. J. Cardiol. 1990, 20, 583–588. [Google Scholar] [PubMed]
- Wieland, D.M.; Wu, J.; Brown, L.E.; Mangner, T.J.; Swanson, D.P.; Beierwaltes, W.H. Radiolabeled adrenergi neuron-blocking agents: Adrenomedullary imaging with [131I]iodobenzylguanidine. J. Nucl. Med. 1980, 21, 349–353. [Google Scholar] [PubMed]
- Wieland, D.M.; Swanson, D.P.; Brown, L.E.; Beierwaltes, W.H. Imaging the adrenal medulla with an I-131-labeled antiadrenergic agent. J. Nucl. Med. 1979, 20, 155–158. [Google Scholar] [PubMed]
- Lurie, K.G.; Dae, M.W.; Dutton, J.; Velazquez-Rocha, S.J.; O’Connell, J.W. Metaiodobenzylguanidine as an index of atrioventricular nodal adrenergic activity. J. Nucl. Med. 1995, 36, 1096–1101. [Google Scholar] [PubMed]
- Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.; Chartrand, C.; Wieland, D.M.; Lepanto, L.; Legault, F.; Suissa, S.; Rosenthall, L.; Burgess, J.H. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure. Circ. Res. 1987, 61, 797–804. [Google Scholar] [CrossRef]
- Hudson, F.R.; Glass, H.I.; Waters, S.L. The assay of iodine-123. J. Nucl. Med. 1976, 17, 220–222. [Google Scholar]
- Kim, P.D.; Tran, H.D. I-123 Uptake; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Eckerman, K.F.; Endo, A. MIRD Radionuclide Data and Decay Schemes; SNMMI: Reston, VA, USA, 2007. [Google Scholar]
- NNDC. National Nuclear Data Center Dataset. Available online: https://www.nndc.bnl.gov/nudat3/decaysearchdirect.jsp?nuc=123I&unc=NDS (accessed on 13 November 2024).
- Biermann, M.; Schwarzlmuller, T.; Fasmer, K.E.; Reitan, B.C.; Johnsen, B.; Rosendahl, K. Is there a role for PET-CT and SPECT-CT in pediatric oncology? Acta Radiol. 2013, 54, 1037–1045. [Google Scholar] [CrossRef]
- Von der Hardt, K.; Bair, H.J.; Kirchner, T.; Feistel, H.; Beck, J. Positive I-123-MIBG-scintigraphy in osteosarcoma. Nuklearmedizin 1998, 37, 73–75. [Google Scholar]
- Pappachan, J.M.; Tun, N.N.; Arunagirinathan, G.; Sodi, R.; Hanna, F.W.F. Pheochromocytomas and Hypertension. Curr. Hypertens. Rep. 2018, 20, 3. [Google Scholar] [CrossRef]
- Mena, A.; Lawson, M.; Kabadi, U.M. Pheochromocytoma. Endocrine practice. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 1997, 3, 98–105. [Google Scholar] [CrossRef]
- Park, J.R.; Eggert, A.; Caron, H. Neuroblastoma: Biology, prognosis, and treatment. Hematol./Oncol. Clin. N. Am. 2010, 24, 65–86. [Google Scholar] [CrossRef]
- Matthay, K.K. Neuroblastoma: Biology and therapy. Oncology 1997, 11, 1857–1866; discussion 1869–1872,1875. [Google Scholar]
- Paltiel, H.J.; Gelfand, M.J.; Elgazzar, A.H.; Washburn, L.C.; Harris, R.E.; Masters, P.R.; Golsch, G.J. Neural crest tumors: I-123 MIBG imaging in children. Radiology 1994, 190, 117–121. [Google Scholar] [CrossRef]
- Somers, G.; Vanden Houte, K.; Segers, O.; Bossuyt, A. Iodine-123 MIBG imaging in a generalized pancreatic polypeptide-gastrin-serotonin secreting tumor. Clin. Nucl. Med. 1988, 13, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Seto, H.; Ishiki, M.; Shimizu, M.; Kageyama, M.; Wu, Y.W.; Nagayoshi, T.; Kamisaki, Y.; Kakishita, M. I-123 MIBG imaging of metastatic carcinoid tumor from the rectum. Clin. Nucl. Med. 1995, 20, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.B.; Kahn, J.K.; Corbett, J.R.; Jansen, D.E.; Pippin, J.J.; Kulkarni, P.; Ugolini, V.; Akers, M.S.; Hansen, C.; Buja, L.M.; et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988, 78, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Soman, P.; Travin, M.I.; Gerson, M.; Cullom, S.J.; Thompson, R. I-123 MIBG Cardiac Imaging. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2015, 22, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Gerson, M.C.; Craft, L.L.; McGuire, N.; Suresh, D.P.; Abraham, W.T.; Wagoner, L.E. Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2002, 9, 608–615. [Google Scholar] [CrossRef]
- Gerson, M.C.; Wagoner, L.E.; McGuire, N.; Liggett, S.B. Activity of the uptake-1 norepinephrine transporter as measured by I-123 MIBG in heart failure patients with a loss-of-function polymorphism of the presynaptic alpha2C-adrenergic receptor. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2003, 10, 583–589. [Google Scholar] [CrossRef]
- Monzio Compagnoni, G.; Appollonio, I.; Ferrarese, C. The role of 123-I-MIBG cardiac scintigraphy in the differential diagnosis between dementia with Lewy bodies and Alzheimer’s disease. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2024, 45, 3599–3609. [Google Scholar] [CrossRef]
- Nihashi, T.; Ito, K.; Terasawa, T. Diagnostic accuracy of DAT-SPECT and MIBG scintigraphy for dementia with Lewy bodies: An updated systematic review and Bayesian latent class model meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1984–1997. [Google Scholar] [CrossRef]
- Taki, J.; Yoshita, M.; Yamada, M.; Tonami, N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: It can be a specific marker for Lewy body disease. Ann. Nucl. Med. 2004, 18, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Wieland, D.M.; Brown, L.E.; Rogers, W.L.; Worthington, K.C.; Wu, J.L.; Clinthorne, N.H.; Otto, C.A.; Swanson, D.P.; Beierwaltes, W.H. Myocardial imaging with a radioiodinated norepinephrine storage analog. J. Nucl. Med. 1981, 22, 22–31. [Google Scholar] [PubMed]
- Dubost, E.; McErlain, H.; Babin, V.; Sutherland, A.; Cailly, T. Recent Advances in Synthetic Methods for Radioiodination. J. Org. Chem. 2020, 85, 8300–8310. [Google Scholar] [CrossRef] [PubMed]
- Katsifis, A.; Papazian, V.; Jackson, T.; Loc’h, C. A rapid and efficient preparation of [123I]radiopharmaceuticals using a small HPLC (Rocket) column. Appl. Radiat. Isot. Incl. Data Instrum. Methods Use Agric. Ind. Med. 2006, 64, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, R.F. Fast high-yield labelling and quality control of [123I]- and [131I]MIBG. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1987, 38, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Lopez Quinones, A.J.; Wagner, D.J.; Wang, J. Characterization of Meta-Iodobenzylguanidine (mIBG) Transport by Polyspecific Organic Cation Transporters: Implication for mIBG Therapy. Mol. Pharmacol. 2020, 98, 109–119. [Google Scholar] [CrossRef]
- Merlet, P.; Dubois-Rande, J.L.; Adnot, S.; Bourguignon, M.H.; Benvenuti, C.; Loisance, D.; Valette, H.; Castaigne, A.; Syrota, A. Myocardial beta-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy. J. Cardiovasc. Pharmacol. 1992, 19, 10–16. [Google Scholar] [CrossRef]
- Homma, K.; Hayashi, K.; Wakino, S.; Irie, R.; Mukai, M.; Kumagai, H.; Shibata, H.; Saruta, T. Primary malignant hepatic pheochromocytoma with negative adrenal scintigraphy. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2006, 29, 551–554. [Google Scholar] [CrossRef]
- Blake, G.M.; Lewington, V.J.; Zivanovic, M.A.; Ackery, D.M. Glomerular filtration rate and the kinetics of 123I-metaiodobenzylguanidine. Eur. J. Nucl. Med. 1989, 15, 618–623. [Google Scholar] [CrossRef]
- Lipsic, E.; Balazovjech, I.; Kosmalova, V.; Makaiova, I.; Dekret, J.; Zanou, D.F. Epinephrine producing pheochromocytoma. Is the secretory pattern decisive for the clinical manifestation? J. Endocrinol. Investig. 2004, 27, 691–694. [Google Scholar] [CrossRef]
- Rasmussen, T.; de Nijs, R.; Kjaer Olsen, L.; Kamper, A.L.; Evi Bang, L.; Frimodt-Moller, M.; Kelbaek, H.; Schwartz Sorensen, S.; Kjaer, A.; Feldt-Rasmussen, B.; et al. Renal (123)I-MIBG Uptake before and after Live-Donor Kidney Transplantation. Diagnostics 2020, 10, 802. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.F.; White, S.; Travin, M.I.; Tseng, C. Impact of concomitant medication use on myocardial 123I-mIBG imaging results in patients with heart failure. Nucl. Med. Commun. 2017, 38, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, A.; Treglia, G.; Bruno, I.; Rufini, V.; Giordano, A. Pharmacological interference with 123I-metaiodobenzylguanidine: A limitation to developing cardiac innervation imaging in clinical practice? Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1326–1333. [Google Scholar] [PubMed]
- Kolby, L.; Bernhardt, P.; Levin-Jakobsen, A.M.; Johanson, V.; Wangberg, B.; Ahlman, H.; Forssell-Aronsson, E.; Nilsson, O. Uptake of meta-iodobenzylguanidine in neuroendocrine tumours is mediated by vesicular monoamine transporters. Br. J. Cancer 2003, 89, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Tsuchimochi, S.; Tamaki, N.; Tadamura, E.; Kawamoto, M.; Fujita, T.; Yonekura, Y.; Konishi, J. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J. Nucl. Med. 1995, 36, 969–974. [Google Scholar]
- Rengo, G.; Pagano, G.; Vitale, D.F.; Formisano, R.; Komici, K.; Petraglia, L.; Parisi, V.; Femminella, G.D.; de Lucia, C.; Paolillo, S.; et al. Impact of aging on cardiac sympathetic innervation measured by (123)I-mIBG imaging in patients with systolic heart failure. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2392–2400. [Google Scholar] [CrossRef]
- Shulkin, B.L.; Shapiro, B. Current concepts on the diagnostic use of MIBG in children. J. Nucl. Med. 1998, 39, 679–688. [Google Scholar]
- Bomanji, J.; Levison, D.A.; Flatman, W.D.; Horne, T.; Bouloux, P.M.; Ross, G.; Britton, K.E.; Besser, G.M. Uptake of iodine-123 MIBG by pheochromocytomas, paragangliomas, and neuroblastomas: A histopathological comparison. J. Nucl. Med. 1987, 28, 973–978. [Google Scholar]
- Izumi, C.; Himura, Y.; Konishi, T. Abnormal cardiac sympathetic nerve function in a patient with pheochromocytoma. An analysis using 123I metaiodobenzylguanidine scintigraphy. Int. J. Cardiol. 1995, 50, 189–192. [Google Scholar] [CrossRef]
- Raffel, D.M.; Jung, Y.W.; Gildersleeve, D.L.; Sherman, P.S.; Moskwa, J.J.; Tluczek, L.J.; Chen, W. Radiolabeled phenethylguanidines: Novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J. Med. Chem. 2007, 50, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, G.A.; Pacak, K.; O’Dorisio, M.S.; Neumann, D.R.; Waxman, A.D.; Mankoff, D.A.; Heiba, S.I.; Serafini, A.N.; Tumeh, S.S.; Khutoryansky, N.; et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: Results from a prospective multicenter trial. J. Nucl. Med. 2009, 50, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Lumachi, F.; Tregnaghi, A.; Zucchetta, P.; Cristina Marzola, M.; Cecchin, D.; Grassetto, G.; Bui, F. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: A prospective study. Nucl. Med. Commun. 2006, 27, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Milardovic, R.; Corssmit, E.P.; Stokkel, M. Value of 123I-MIBG Scintigraphy in Paraganglioma. Neuroendocrinology 2010, 91, 94–100. [Google Scholar] [CrossRef]
- Granberg, D.; Juhlin, C.C.; Falhammar, H. Metastatic Pheochromocytomas and Abdominal Paragangliomas. J. Clin. Endocrinol. Metab. 2021, 106, e1937–e1952. [Google Scholar] [CrossRef]
- Rao, D.; van Berkel, A.; Piscaer, I.; Young, W.F.; Gruber, L.; Deutschbein, T.; Fassnacht, M.; Beuschlein, F.; Spyroglou, A.; Prejbisz, A.; et al. Impact of 123I-MIBG Scintigraphy on Clinical Decision-Making in Pheochromocytoma and Paraganglioma. J. Clin. Endocrinol. Metab. 2019, 104, 3812–3820. [Google Scholar] [CrossRef]
- Mena Bares, L.M.; Benitez Velazco, A.; Perez Cuenca, E.; Maza Muret, F.R.; Hidalgo Ramos, F.J.; Pacheco Capote, C.; Contreras Puertas, P.I.; Latre Romero, J.M. Utility of the scintigraphy with (123)I MIBG in the diagnosis of neuroblastoma bone metastasis. Rev. Esp. Med. Nucl. 2009, 28, 208–209. [Google Scholar] [CrossRef]
- Nilsson, O.; Jakobsen, A.M.; Kolby, L.; Bernhardt, P.; Forssell-Aronsson, E.; Ahlman, H. Importance of vesicle proteins in the diagnosis and treatment of neuroendocrine tumors. Ann. N. Y. Acad. Sci. 2004, 1014, 280–283. [Google Scholar] [CrossRef]
- Okuyama, C.; Ushijima, Y.; Sugihara, H.; Okitsu, S.; Maeda, T. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the staging of neuroblastoma. Kaku Igaku Jpn. J. Nucl. Med. 1998, 35, 835–842. [Google Scholar]
- Okuyama, C.; Ushijima, Y.; Watanabe, K.; Sugihara, H.; Nishimura, T. Iodine-123-MIBG scintigraphy in neuroblastoma; relationship between the intensity of uptake and tumor characteristics. Kaku Igaku Jpn. J. Nucl. Med. 1999, 36, 827–834. [Google Scholar]
- Ishii, K.; Kubo, A.; Kusakabe, K.; Murata, H.; Masaki, H.; Horiike, S.; Hayashi, A.; Hara, Y. Evaluation of clinical utility of 123I-MIBG scintigraphy in localization of tumors of sympathetic and adrenomedullary origin—A report of multicenter phase III clinical trials. Kaku Igaku. Jpn. J. Nucl. Med. 2000, 37, 43–59. [Google Scholar]
- Lu, M.Y.; Liu, Y.L.; Chang, H.H.; Jou, S.T.; Yang, Y.L.; Lin, K.H.; Lin, D.T.; Lee, Y.L.; Lee, H.; Wu, P.Y.; et al. Characterization of neuroblastic tumors using 18F-FDOPA PET. J. Nucl. Med. 2013, 54, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Servaes, S.; Zhuang, H. SPECT/CT MIBG Imaging Is Crucial in the Follow-up of the Patients With High-Risk Neuroblastoma. Clin. Nucl. Med. 2018, 43, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, A.; Parisi, M.T.; Shulkin, B.L.; London, W.B.; Matthay, K.K.; Kreissman, S.G.; Yanik, G.A. Comparison of (1)(2)(3)I-metaiodobenzylguanidine (MIBG) and (1)(3)(1)I-MIBG semi-quantitative scores in predicting survival in patients with stage 4 neuroblastoma: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2011, 56, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Makis, W.; McCann, K.; McEwan, A.J. Incidental Acinic Cell Carcinoma of the Parotid Gland Discordant on 123I-MIBG, 111In-Octreotide, and 18F-FDG PET/CT in a Patient With Neuroendocrine Tumor of the Cecum. Clin. Nucl. Med. 2015, 40, 676–678. [Google Scholar] [CrossRef]
- Binderup, T.; Knigge, U.; Loft, A.; Mortensen, J.; Pfeifer, A.; Federspiel, B.; Hansen, C.P.; Hojgaard, L.; Kjaer, A. Functional imaging of neuroendocrine tumors: A head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J. Nucl. Med. 2010, 51, 704–712. [Google Scholar] [CrossRef]
- AlSadi, R.; Maaz, A.U.R.; Bouhali, O.; Djekidel, M. (68)Ga-DOTATATE PET in Restaging and Response to Therapy in Neuroblastoma: A Case Series and a Mini Review. J. Nucl. Med. Technol. 2023, 51, 140–146. [Google Scholar] [CrossRef]
- Nomura, M.; Nada, T.; Endo, J.; Kondo, Y.; Yukinaka, M.; Saito, K.; Ito, S.; Mori, H.; Nakaya, Y.; Shinomiya, H. Brugada syndrome associated with an autonomic disorder. Heart 1998, 80, 194–196. [Google Scholar] [CrossRef]
- Gordan, R.; Gwathmey, J.K.; Xie, L.H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 2015, 7, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Gargiulo, P.; Acampa, W.; Asile, G.; Abbate, V.; Nardi, E.; Marzano, F.; Assante, R.; Nappi, C.; Parlati, A.L.M.; Basile, C.; et al. (123)I-MIBG imaging in heart failure: Impact of comorbidities on cardiac sympathetic innervation. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.; Kane, J.P.M.; Lloyd, J.; Firbank, M.; Donaghy, P.C.; Petrides, G.S.; Taylor, J.P.; O’Brien, J.; Thomas, A.J. Can early phase cardiac [123I]mIBG images be used to diagnose Lewy body disease? Nucl. Med. Commun. 2022, 43, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.W.; Sood, N.; Ahlberg, A.W.; Jacobson, A.F.; Heller, G.V.; Lundbye, J.B. Relationship between quantitative cardiac neuronal imaging with (1)(2)(3)I-meta-iodobenzylguanidine and hospitalization in patients with heart failure. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1666–1672. [Google Scholar] [CrossRef]
- Bencivenga, L.; Komici, K.; Paolillo, S.; Nappi, C.; Gargiulo, P.; Assante, R.; Gambino, G.; Santillo, F.; Femminella, G.D.; Corbi, G.M.; et al. Cardiac sympathetic innervation and mortality risk scores in patients with heart failure. Eur. J. Clin. Investig. 2023, 53, e13948. [Google Scholar] [CrossRef] [PubMed]
- Verschure, D.O.; Nakajima, K.; Verberne, H.J. Cardiac (123)I-mIBG Imaging in Heart Failure. Pharmaceuticals 2022, 15, 656. [Google Scholar] [CrossRef]
- Nakajima, K.; Nakata, T.; Yamada, T.; Yamashina, S.; Momose, M.; Kasama, S.; Matsui, T.; Matsuo, S.; Travin, M.I.; Jacobson, A.F. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using (1)(2)(3)I-metaiodobenzylguanidine imaging. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1673–1682. [Google Scholar] [CrossRef]
- Sunaga, A.; Hikoso, S.; Yamada, T.; Yasumura, Y.; Uematsu, M.; Abe, H.; Nakagawa, Y.; Higuchi, Y.; Fuji, H.; Mano, T.; et al. Abdominal obesity, and not general obesity, is associated with a lower 123I MIBG heart-to-mediastinum ratio in heart failure patients with preserved ejection fraction. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 609–618. [Google Scholar] [CrossRef]
- Verschure, D.O.; van Eck-Smit, B.L.; Somsen, G.A.; Knol, R.J.; Verberne, H.J. Cardiac sympathetic activity in chronic heart failure: Cardiac (123)I-mIBG scintigraphy to improve patient selection for ICD implantation. Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found. 2016, 24, 701–708. [Google Scholar] [CrossRef]
- Chirumamilla, A.; Travin, M.I. Cardiac applications of 123I-mIBG imaging. Semin. Nucl. Med. 2011, 41, 374–387. [Google Scholar] [CrossRef]
- Matsunari, I.; Taki, J.; Nakajima, K.; Kinuya, S. 123I-metaiodobenzylguanidine imaging in the era of implantable cardioverter defibrillators: Beyond ejection fraction. J. Nucl. Med. 2010, 51, 1171–1173. [Google Scholar] [CrossRef]
- Tsutamoto, T.; Tanaka, T.; Sakai, H.; Nishiyama, K.; Fujii, M.; Yamamoto, T.; Nakae, I.; Ohnishi, M.; Wada, A.; Horie, M. Beneficial effect of perindopril on cardiac sympathetic nerve activity and brain natriuretic peptide in patients with chronic heart failure: Comparison with enalapril. Circ. J. Off. J. Jpn. Circ. Soc. 2008, 72, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Nakata, T.; Wakabayashi, T.; Kyuma, M.; Takahashi, T.; Tsuchihashi, K.; Shimamoto, K. Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Okishige, K.; Sasano, T.; Yano, K.; Azegami, K.; Suzuki, K.; Itoh, K. Serious arrhythmias in patients with apical hypertrophic cardiomyopathy. Intern. Med. 2001, 40, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.; Minin, S.; Nikitin, N.; Ponomarev, D.; Shabanov, V.; Losik, D.; Steinberg, J.S. The relationship between global cardiac and regional left atrial sympathetic innervation and epicardial fat in patients with atrial fibrillation. Ann. Nucl. Med. 2021, 35, 1079–1088. [Google Scholar] [CrossRef]
- Orimo, S.; Takahashi, A.; Uchihara, T.; Mori, F.; Kakita, A.; Wakabayashi, K.; Takahashi, H. Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol. 2007, 17, 24–30. [Google Scholar] [CrossRef]
- Hanyu, H.; Shimizu, S.; Hirao, K.; Sakurai, H.; Iwamoto, T.; Chikamori, T.; Hida, S.; Yamashina, A.; Koizumi, K.; Abe, K. The role of 123I-metaiodobenzylguanidine myocardial scintigraphy in the diagnosis of Lewy body disease in patients with dementia in a memory clinic. Dement. Geriatr. Cogn. Disord. 2006, 22, 379–384. [Google Scholar] [CrossRef]
- Chen, Z.; Li, G.; Liu, J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 2020, 134, 104700. [Google Scholar] [CrossRef]
- Pitton Rissardo, J.; Fornari Caprara, A.L. Cardiac 123I-Metaiodobenzylguanidine (MIBG) Scintigraphy in Parkinson’s Disease: A Comprehensive Review. Brain Sci. 2023, 13, 1471. [Google Scholar] [CrossRef] [PubMed]
- Orimo, S.; Suzuki, M.; Inaba, A.; Mizusawa, H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: A systematic review and meta-analysis. Park. Relat. Disord. 2012, 18, 494–500. [Google Scholar] [CrossRef]
- Orimo, S.; Kanazawa, T.; Nakamura, A.; Uchihara, T.; Mori, F.; Kakita, A.; Wakabayashi, K.; Takahashi, H. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007, 113, 81–86. [Google Scholar] [CrossRef]
- Skowronek, C.; Zange, L.; Lipp, A. Cardiac 123I-MIBG Scintigraphy in Neurodegenerative Parkinson Syndromes: Performance and Pitfalls in Clinical Practice. Front. Neurol. 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.T.; Amtage, F.; Hellwig, S. Differential diagnostics of Parkinson’s disease with nuclear medicine procedures. Nervenarzt 2014, 85, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K. Imaging diagnosis of dementia. Nihon Rinsho Jpn. J. Clin. Med. 2014, 72, 681–686. [Google Scholar]
- Urso, D.; Gnoni, V.; De Blasi, R.; Anastasia, A.; Aarsland, D.; Chaudhuri Ray, K.; Logroscino, G. Neuroimaging Biomarkers in a Patient With Probable Psychiatric-Onset Prodromal Dementia With Lewy Bodies. Neurology 2022, 99, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Hoyuela Garcia, J.M.; Campos Arillo, V.; Rebollo Aguirre, A.C.; Gomez Doblas, J.J.; Gutierrez Hurtado, A. Early alteration of adrenergic cardiac function in parkinsonisms with Lewy bodies. Rev. Esp. Med. Nucl. 2005, 24, 93–100. [Google Scholar] [CrossRef]
- Boubaker, A.; Bischof Delaloye, A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q. J. Nucl. Med. Mol. Imaging Off. Publ. Ital. Assoc. Nucl. Med. 2008, 52, 388–402. [Google Scholar]
- Kushner, B.H.; Yeh, S.D.; Kramer, K.; Larson, S.M.; Cheung, N.K. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J. Clin. Oncol. 2003, 21, 1082–1086. [Google Scholar] [CrossRef]
- Giovanni, S.; Stefano, M.; Teresa, S.M.; Margherita, C.; Giovanni, B.; Umberto, P.; Paola, P.; Giacomo, C.; Pierfranco, D.; Alfonso, G.; et al. Incremental prognostic value of myocardial neuroadrenergic damage in patients with chronic congestive heart failure: An iodine-123 meta-iodobenzylguanidine scintigraphy study. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2020, 27, 1787–1797. [Google Scholar] [CrossRef]
- Nakajima, K.; Nakata, T.; Matsuo, S.; Jacobson, A.F. Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure: 2- and 5-year risk models. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1138–1145. [Google Scholar] [CrossRef]
- Ryu, D.W.; Kim, J.S.; Lee, J.E.; Oh, Y.S.; Yoo, S.W.; Yoo, I.R.; Lee, K.S. Initial Versus Follow-up Sequential Myocardial 123I-MIBG Scintigraphy to Discriminate Parkinson Disease From Atypical Parkinsonian Syndromes. Clin. Nucl. Med. 2019, 44, 282–288. [Google Scholar] [CrossRef]
- Hirahara, M.; Nakajo, M.; Kitazano, I.; Jinguji, M.; Tani, A.; Takumi, K.; Kamimura, K.; Tanimoto, A.; Yoshiura, T. Usefulness of the Primary Tumor Standardized Uptake Value of Iodine-123 Metaiodobenzylguanidine for Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma. Mol. Imaging Biol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Shimasaki, R.; Kurihara, M.; Hatano, K.; Goto, R.; Taira, K.; Ihara, R.; Higashihara, M.; Nishina, Y.; Kameyama, M.; Iwata, A. Associations of cerebrospinal fluid monoamine metabolites with striatal dopamine transporter binding and (123)I-meta-iodobenzylguanidine cardiac scintigraphy in Parkinson’s disease: Multivariate analyses. Park. Relat. Disord. 2024, 128, 107129. [Google Scholar] [CrossRef]
- Umehara, T.; Mimori, M.; Kokubu, T.; Ozawa, M.; Shiraishi, T.; Sato, T.; Onda, A.; Matsuno, H.; Omoto, S.; Murakami, H.; et al. Serum phosphorus levels associated with nigrostriatal dopaminergic deficits in drug-naïve Parkinson’s disease. J. Neurol. Sci. 2024, 464, 123165. [Google Scholar] [CrossRef]
- Nakajima, K.; Nakata, T.; Doi, T.; Verschure, D.O.; Frantellizzi, V.; De Feo, M.S.; Tada, H.; Verberne, H.J. Cardiac sympathetic activity and lethal arrhythmic events: Insight into bell-shaped relationship between (123)I-meta-iodobenzylguanidine activity and event rates. Eur. J. Nucl. Med. Mol. Imaging Res. 2024, 14, 67. [Google Scholar] [CrossRef]
- Hagen, J.M.; Zacherl, M.J.; Brendel, M.; Clauß, S.; Kääb, S.; Bartenstein, P.; Todica, A.; Böning, G.; Fischer, M. Quantitative assessment of cardiac (123)iodo-metaiodobenzylguanidine SPECT/CT in patients with arrhythmogenic right ventricular cardiomyopathy: Novel insight in disease monitoring. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2024, 39, 101911. [Google Scholar] [CrossRef]
- Borgwardt, L.; Brok, J.; Andersen, K.F.; Madsen, J.; Gillings, N.; Fosbøl, M.; Denholt, C.L.; Petersen, I.N.; Sørensen, L.S.; Enevoldsen, L.H.; et al. Performing [(18)F]MFBG Long-Axial-Field-of-View PET/CT Without Sedation or General Anesthesia for Imaging of Children with Neuroblastoma. J. Nucl. Med. 2024, 65, 1286–1292. [Google Scholar] [CrossRef]
- Mizukami, H.; Shiraishi, M.; Hino, S.; Kaburagi, M.; Matsumoto, H.; Hagiwara, Y.; Yamano, Y. Utility of Combining Transcranial Sonography and MIBG Myocardial Scintigraphy to Evaluate Substantia Nigra in Patients with Parkinson’s Disease. Brain Sci. 2024, 14, 524. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Matsumura, T.; Komatsu, J.; Wakabayashi, H.; Ono, K.; Kinuya, S. Sympathetic (123)I-metaiodobenzylguanidine index for Lewy body disease: Probability-based diagnosis and identifying patients exempt from late imaging. Ann. Nucl. Med. 2024, 38, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Wakabayashi, H.; Saito, S.; Nakajima, K.; Yoshida, K.; Hiromasa, T.; Kinuya, S. Evaluating the diagnostic efficacy of whole-body MRI versus (123)I-mIBG/(131)I-mIBG imaging in metastatic pheochromocytoma and paraganglioma. Sci. Rep. 2024, 14, 13828. [Google Scholar] [CrossRef]
- Saito, S.; Nakajima, K.; Komatsu, J.; Shibutani, T.; Wakabayashi, H.; Mori, H.; Takata, A.; Ono, K.; Kinuya, S. Absolute quantitation of sympathetic nerve activity using [(123)I] metaiodobenzylguanidine SPECT-CT in neurology. Eur. J. Nucl. Med. Mol. Imaging Rep. 2024, 8, 15. [Google Scholar] [CrossRef]
- Miyamoto, T.; Miyamoto, M. Reduced cardiac (123)I-MIBG uptake is a robust biomarker of Lewy body disease in isolated rapid eye movement sleep behaviour disorder. Brain Commun. 2024, 6, fcae148. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lee, E.S.; Woo, S.K.; Lee, K.C.; Chung, H.K.; Kang, J.H. Feasibility Study of Single-Photon Emission Computed Tomography with Iodine-123 Labeled Metaiodobenzylguanidine for Preclinical Evaluation of Labetalol as a β-Adrenergic Receptor Blocker. Mol. Pharm. 2024, 21, 2435–2440. [Google Scholar] [CrossRef]
- Xavier de Brito, A.S.; Bronchtein, A.I.; Schaustz, E.B.; Glavam, A.P.; Pinheiro, M.V.T.; Secco, J.C.P.; Camargo, G.C.; Almeida, S.A.; Quintella, T.A.; Albuquerque, D.C.; et al. Value of (123)I-MIBG SPECT for the assessment of dysautonomia in patients with long COVID. Int. J. Cardiol. Heart Vasc. 2024, 52, 101413. [Google Scholar] [CrossRef]
- Saito, S.; Nakajima, K.; Shibutani, T.; Wakabayashi, H.; Yoneyama, H.; Konishi, T.; Mori, H.; Takata, A.; Kinuya, S. Three-Dimensional Heart Segmentation and Absolute Quantitation of Cardiac (123)I-metaiodobenzylguanidine Sympathetic Imaging Using SPECT/CT. Ann. Nucl. Cardiol. 2023, 9, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yang, X.; Wang, C.; Zhang, H.; Wang, W.; Yang, J. Predicting event-free survival after induction of remission in high-risk pediatric neuroblastoma: Combining (123)I-MIBG SPECT-CT radiomics and clinical factors. Pediatr. Radiol. 2024, 54, 805–819. [Google Scholar] [CrossRef]
- Ozawa, M.; Morishima, R.; Shimizu, T.; Takahashi, K. Correlation with sympathetic skin response, (123)I-MIBG scintigraphy, and (123)I-FP-CIT SPECT in Parkinson’s disease. Neurophysiol. Clin. 2024, 54, 102956. [Google Scholar] [CrossRef]
- Ebina, J.; Mizumura, S.; Morioka, H.; Shibukawa, M.; Nagasawa, J.; Yanagihashi, M.; Hirayama, T.; Ishii, N.; Kobayashi, Y.; Inaba, A.; et al. Clinical characteristics of patients with Parkinson’s disease with reduced (123)I-metaiodobenzylguanidine uptake in the major salivary glands and heart. J. Neurol. Sci. 2024, 458, 122932. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.K.; Borghammer, P.; Finnerup, N.B.; Jensen, T.S.; Hansen, J.; Knudsen, K.; Singer, W.; Lamotte, G.; Terkelsen, A.J. Functional and (123)I-MIBG scintigraphy assessment of cardiac adrenergic dysfunction in diabetes. Auton. Neurosci. 2024, 252, 103155. [Google Scholar] [CrossRef]
- Sung, C.; Lee, H.S.; Lee, D.Y.; Kim, Y.I.; Kim, J.E.; Lee, S.J.; Oh, S.J.; Sung, T.Y.; Lee, Y.M.; Kim, Y.H.; et al. A Prospective Comparative Study of 18 F-FDOPA PET/CT Versus 123 I-MIBG Scintigraphy With SPECT/CT for the Diagnosis of Pheochromocytoma and Paraganglioma. Clin. Nucl. Med. 2024, 49, 27–36. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Kasama, S.; Kurabayashi, M.; Ishii, H. Validation of a Five-Year Prognostic Model Using (123)I-metaiodobenzylguanidine Scintigraphy in Patients with Heart Failure. Ann. Nucl. Cardiol. 2023, 9, 40–47. [Google Scholar] [CrossRef]
- Totsune, T.; Baba, T.; Sugimura, Y.; Oizumi, H.; Tanaka, H.; Takahashi, T.; Yoshioka, M.; Nagamatsu, K.I.; Takeda, A. Nuclear Imaging Data-Driven Classification of Parkinson’s Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2023, 38, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; De Feo, M.S.; Frantellizzi, V.; Di Rocco, A.; Farcomeni, A.; De Cristofaro, F.; Maria, R.; Pisani, A.R.; Rubini, G.; De Vincentis, G. Sex differences in (123)I-mIBG scintigraphy imaging techniques in patients with heart failure. Expert. Rev. Med. Devices 2023, 20, 769–778. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, G.; Qian, L.; Liu, J.; Yang, X.; Zhang, S.; Zhang, M.; Kan, Y.; Wang, W.; Yang, J. Evaluation of iodine-123-labeled metaiodobenzylguanidine single-photon emission computed tomography/computed tomography based on the International Society of Pediatric Oncology Europe Neuroblastoma score in children with neuroblastoma. Quant. Imaging Med. Surg. 2023, 13, 3841–3851. [Google Scholar] [CrossRef] [PubMed]
- Ebina, J.; Mizumura, S.; Ishii, N.; Kobayashi, Y.; Shibukawa, M.; Morioka, H.; Nagasawa, J.; Yanagihashi, M.; Hirayama, T.; Kawabe, K.; et al. Reduced (123)I-MIBG uptake in the parotid and submandibular glands in patients with Parkinson’s disease identified using a quantitative semi-automatic method. J. Neurol. 2023, 270, 4385–4392. [Google Scholar] [CrossRef] [PubMed]
- Chun, I.K. Optimal Protocol and Clinical Usefulness of (123)I-MIBG Cardiac Scintigraphy for Differentiation of Parkinson’s Disease and Dementia with Lewy Body from Non-Parkinson’s Diseases. Nucl. Med. Mol. Imaging 2023, 57, 145–154. [Google Scholar] [CrossRef]
- Fedorova, T.D.; Knudsen, K.; Rasmussen, T.K.; Horsager, J.; Nahimi, A.; Skjærbæk, C.; Schaeffer, E.; Berg, D.; Terkelsen, A.J.; Borghammer, P. Thyroid [(123)I]MIBG uptake in Parkinson’s disease and diabetes mellitus. IBRO Neurosci. Rep. 2023, 14, 342–345. [Google Scholar] [CrossRef]
- Okuda, K.; Nakajima, K.; Kitamura, C.; Ljungberg, M.; Hosoya, T.; Kirihara, Y.; Hashimoto, M. Machine learning-based prediction of conversion coefficients for I-123 metaiodobenzylguanidine heart-to-mediastinum ratio. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2023, 30, 1630–1641. [Google Scholar] [CrossRef]
- Yasumoto, Y.; Daisaki, H.; Nakahara, T.; Ito, R.; Fujita, I. Three-dimensional Quantitative Evaluation Method in (123)I-MIBG Myocardial SPECT-CT. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023, 79, 25–37. [Google Scholar] [CrossRef]
- Nakajo, M.; Horizoe, Y.; Kawaji, K.; Jinguji, M.; Tani, A.; Fukukura, Y.; Ohishi, M.; Yoshiura, T. Application of (123)I-MIBG myocardial maximum standardized uptake value to characterize cardiac function in patients with pheochromocytoma: Comparison with echocardiography. Jpn. J. Radiol. 2023, 41, 437–448. [Google Scholar] [CrossRef]
- Oh, J.; Gutkin, P.; Wang, Y.P.; Sandhu, N.; Majzner, R.G.; Nadel, H.; Shimada, H.; Lansinger, O.; von Eyben, R.; Donaldson, S.; et al. Time to resolution of iodine-123 metaiodobenzylguanidine ((123) I-MIBG) avidity and local control outcomes for high-risk neuroblastoma following radiation therapy. J. Med. Imaging Radiat. Oncol. 2023, 67, 81–88. [Google Scholar] [CrossRef]
- Mishkina, A.I.; Saushkin, V.V.; Atabekov, T.A.; Sazonova, S.I.; Shipulin, V.V.; Massalha, S.; Batalov, R.E.; Popov, S.V.; Zavadovsky, K.V. The value of cardiac sympathetic activity and mechanical dyssynchrony as cardiac resynchronization therapy response predictors: Comparison between patients with ischemic and non-ischemic heart failure. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2023, 30, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Yadgarov, M.; Kailash, C.; Shamanskaya, T.; Kachanov, D.; Likar, Y. Asphericity of tumor [(123) I]mIBG uptake as a prognostic factor in high-risk neuroblastoma. Pediatr. Blood Cancer 2022, 69, e29849. [Google Scholar] [CrossRef] [PubMed]
- Clement, S.C.; Tytgat, G.A.M.; van Trotsenburg, A.S.P.; Kremer, L.C.M.; van Santen, H.M. Thyroid function after diagnostic (123)I-metaiodobenzylguanidine in children with neuroblastic tumors. Ann. Nucl. Med. 2022, 36, 579–585. [Google Scholar] [CrossRef]
- Lucas, J.T., Jr.; Wakefield, D.V.; Doubrovin, M.; Li, Y.; Santiago, T.; Federico, S.M.; Merchant, T.E.; Davidoff, A.M.; Krasin, M.J.; Shulkin, B.L.; et al. Risk factors associated with metastatic site failure in patients with high-risk neuroblastoma. Clin. Transl. Radiat. Oncol. 2022, 34, 42–50. [Google Scholar] [CrossRef]
- Delgado-Silva, J.; Moreira, A.P.; Costa, G.; Gonçalves, L. Risk Stratification and Cardiac Sympathetic Activity Assessment Using Myocardial [123I] MIBG Imaging in Renal Denervation. Arq. Bras. Cardiol. 2022, 118, 519–524. [Google Scholar] [CrossRef]
- Matsubara, T.; Kameyama, M.; Tanaka, N.; Sengoku, R.; Orita, M.; Furuta, K.; Iwata, A.; Arai, T.; Maruyama, H.; Saito, Y.; et al. Autopsy Validation of the Diagnostic Accuracy of (123)I-Metaiodobenzylguanidine Myocardial Scintigraphy for Lewy Body Disease. Neurology 2022, 98, e1648–e1659. [Google Scholar] [CrossRef]
- Adaniya, S.; Takahashi, M.; Koyama, K.; Ogane, K.; Momose, T. Influence of antidepressant use on (123)I-MIBG heart and lung uptakes in the diagnosis of Lewy body disease. Ann. Nucl. Med. 2022, 36, 488–494. [Google Scholar] [CrossRef]
- Tamaki, S.; Yamada, T.; Watanabe, T.; Morita, T.; Kawasaki, M.; Kikuchi, A.; Kawai, T.; Seo, M.; Nakamura, J.; Kayama, K.; et al. Usefulness of the 2-year iodine-123 metaiodobenzylguanidine-based risk model for post-discharge risk stratification of patients with acute decompensated heart failure. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Park, D.G.; Kang, J.; An, Y.S.; Chang, J.; Yoon, J.H. Association of plasma α-synuclein with cardiac (123)I-MIBG scintigraphy in early Parkinson’s disease. Neurosci. Lett. 2022, 770, 136399. [Google Scholar] [CrossRef]
- Seo, E.S.; Shin, M.; Lim, H.; Cho, H.W.; Ju, H.Y.; Cho, Y.S.; Yoo, K.H.; Koo, H.H.; Lee, J.W.; Sung, K.W. Clinical implication of residual MIBG-positive disease in the follow-up of high-risk neuroblastoma treated with tandem high-dose chemotherapy and autologous stem cell transplantation. Pediatr. Blood Cancer 2022, 69, e29502. [Google Scholar] [CrossRef]
- Nitta, K.; Fukuda, Y.; Takahari, K.; Takeda, A.; Higashihara, T.; Morita, Y.; Watanabe, N.; Ikenaga, H.; Utsunomiya, H.; Ishibashi, K.; et al. Factors Influencing Cardiac Sympathetic Nervous Function in Patients With Severe Aortic Stenosis: Assessment by (123)I-Metaiodobenzylguanidine Myocardial Scintigraphy. Heart Lung Circ. 2022, 31, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Vancraeynest, E.; Renard, M.; Tousseyn, T.; Deroose, C.M.; Uyttebroeck, A.; Boeckx, N. The role of microscopic bone marrow examination and [(123)I]MIBG scintigraphy in detection of bone marrow involvement in patients with neuroblastoma. Acta Clin. Belg. 2022, 77, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Yamada, T.; Tamaki, S.; Watanabe, T.; Morita, T.; Furukawa, Y.; Kawasaki, M.; Kikuchi, A.; Kawai, T.; Nakamura, J.; et al. Prognostic Significance of Cardiac (123)I-MIBG SPECT Imaging in Heart Failure Patients With Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2022, 15, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, Y.; Zen, K.; Tamaki, N.; Nakamura, S.; Fujimoto, T.; Yashige, M.; Takamatsu, K.; Ito, N.; Yamano, M.; Yamano, T.; et al. Serial changes in cardiac sympathetic nervous function after transcatheter aortic valve replacement: A prospective observational study using (123)I-meta-iodobenzylguanidine imaging. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2022, 29, 2652–2663. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Baba, S.; Isoda, T.; Maruoka, Y.; Sasaki, M.; Nishie, A.; Ishigami, K. Usefulness of semi-quantitative analysis in (123)I metaiodobenzylguanidine SPECT/CT for the differentiation of pheochromocytoma and cortical adenoma. Ann. Nucl. Med. 2022, 36, 95–102. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mizutani, A.; Muranaka, Y.; Nishi, K.; Komori, H.; Nishii, R.; Shikano, N.; Nakanishi, T.; Tamai, I.; Kawai, K. Biological Distribution of Orally Administered [(123)I]MIBG for Estimating Gastrointestinal Tract Absorption. Pharmaceutics 2021, 14, 10061. [Google Scholar] [CrossRef]
- Kumakura, Y.; Shimizu, Y.; Hariu, M.; Ichikawa, K.I.; Yoshida, N.; Suzuki, M.; Oji, S.; Narukawa, S.; Yoshimasu, H.; Nomura, K. Dynamic planar scintigraphy for the rapid kinetic measurement of myocardial (123)I-MIBG turnover can identify Lewy body disease. Eur. J. Nucl. Med. Mol. Imaging Res. 2021, 11, 122. [Google Scholar] [CrossRef]
- Lange, P.S.; Wenning, C.; Avramovic, N.; Leitz, P.; Larbig, R.; Frommeyer, G.; Schäfers, M.; Eckardt, L. Cardiac Sympathetic Activity and Rhythm Control Following Pulmonary Vein Isolation in Patients with Paroxysmal Atrial Fibrillation-A Prospective (123)I-mIBG-SPECT/CT Imaging Study. J. Pers. Med. 2021, 11, 995. [Google Scholar] [CrossRef]
- Jacobson, A.F.; Deng, H.; Lombard, J.; Lessig, H.J.; Black, R.R. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: Results of a meta-analysis. J. Clin. Endocrinol. Metab. 2010, 95, 2596–2606. [Google Scholar] [CrossRef]
- Verschure, D.O.; Veltman, C.E.; Manrique, A.; Somsen, G.A.; Koutelou, M.; Katsikis, A.; Agostini, D.; Gerson, M.C.; van Eck-Smit, B.L.; Scholte, A.J.; et al. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with chronic heart failure? Results of a pooled individual patient data meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 996–1003. [Google Scholar] [CrossRef]
- King, A.E.; Mintz, J.; Royall, D.R. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov. Disord. Off. J. Mov. Disord. Soc. 2011, 26, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Chrapko, B.; Grzebalska, A.; Nocun, A.; Ksiazek, A.; Drop, A. Cardiac sympathetic hyperactivity in chronic kidney disease--a comparison between haemodialysis and peritoneal dialysis patients. Nucl. Med. Rev. Cent. East. Eur. 2014, 17, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Gonias, S.; Goldsby, R.; Matthay, K.K.; Hawkins, R.; Price, D.; Huberty, J.; Damon, L.; Linker, C.; Sznewajs, A.; Shiboski, S.; et al. Phase II study of high-dose [131I]metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J. Clin. Oncol. 2009, 27, 4162–4168. [Google Scholar] [CrossRef]
- Chatal, J.F.; Le Bodic, M.F.; Kraeber-Bodere, F.; Rousseau, C.; Resche, I. Nuclear medicine applications for neuroendocrine tumors. World J. Surg. 2000, 24, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M.; Kuci, Z.; Schomig, E.; Grundemann, D.; Dittmann, H.; Handgretinger, R.; Bruchelt, G. Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: Potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells. Nucl. Med. Biol. 2009, 36, 287–294. [Google Scholar] [CrossRef]
- Kiuchi, S.; Hisatake, S.; Kabuki, T.; Oka, T.; Dobashi, S.; Fujii, T.; Ikeda, T. Effect of Switching from Cilnidipine to Azelnidipine on Cardiac Sympathetic Nerve Function in Patients with Heart Failure Preserved Ejection Fraction. Int. Heart J. 2018, 59, 120–125. [Google Scholar] [CrossRef]
Feature | Iodine-123 MIBG | Iodine-131 MIBG | Iodine-124 MIBG |
---|---|---|---|
Purpose | Diagnostic imaging for nerve and heart health | Primarily treatment; some diagnostic use | PET imaging for cancer and molecular studies |
Image Quality | High-resolution, clear images | Lower image quality, less clear | High-resolution PET images |
Radiation Dose | Lower exposure, safer for repeated scans | Higher exposure, less ideal for frequent use | Higher radiation dose due to longer half-life |
Half-Life | Shorter (13 h), with reduced radiation over time | Longer (8 days); stays in body longer | Longer (4.2 days); useful for tracking metabolic processes |
Thyroid Safety | Lower risk, minimal need for blocking | Higher risk, requires thyroid-blocking medicine | Similar risk, may need thyroid-blocking medicine |
Cost & Availability | More expensive, limited to specialized centers | Less expensive, more widely available | High cost, limited availability in PET centers |
Primary Use Cases | Neurodegenerative and cardiac disease diagnosis | Treatment of certain cancers, limited cardiac diagnosis | PET imaging in cancer, long-term tracking |
Patient Isolation | Not required after scan | May require temporary isolation after treatment | Not usually required, but depends on dose |
Study | Objective | Findings | Conclusions |
---|---|---|---|
Hirahara et al. 2024 [94] | Predict metastatic potential in pheochromocytoma (PHEO) and paraganglioma (PGL). | I-123 MIBG uptake scores and SUV-related parameters significantly differed between tumors with various adrenal gland scaled scores. | I-123 MIBG uptake assessment using SUV-related parameters can be an imaging tool for predicting metastatic potential in PHEO/PGL. |
Shimasaki et al. 2024 [95] | Study the associations between homovanillic acid (HVA), striatal dopamine transporter (DAT), 5-hydroxyindole acetic acid (5-HIAA), and cardiac I-123 MIBG findings. | MIBG positivity was associated with 5-HIAA level. DAT-specific binding ratio correlated with both HVA and 5-HIAA. HVA was the only significant variable associated with Z-score of striatal DAT-specific binding ratio. | There are direct associations between 5-HIAA and cardiac MIBG and between HVA and striatal DAT binding. |
Umehara et al. 2024 [96] | Investigate the associations between serum phosphorus levels and phenotypes and degeneration of cardiac sympathetic and nigrostriatal dopaminergic neurons in Parkinson’s disease (PD). | Serum phosphorus levels were significantly lower in PD with decreased heart-to-mediastinum (H/M) ratio than PD with normal H/M ratio. Lower serum phosphorus levels were significantly associated with more severe degeneration of nigrostriatal dopaminergic neurons. | Serum phosphorus levels and their association with nigrostriatal dopaminergic degeneration are different in patients with different H/M ratios. Serum phosphorus levels may reflect the degree of nigrostriatal dopaminergic degeneration in patients with decreased H/M ratio. |
Nakajima et al. 2024 [97] | Determine the relationship between I-123 MIBG activity and lethal arrhythmic events (ArE) in Japanese and European cohorts. | Bell-shaped relationship in NYHA classes II/III, high washout rates, and ischemic etiology likely aid in identifying patients at high risk for lethal arrhythmic events. | The relationship between cardiac I-123 MIBG activity and ArE is influenced by the background of patients. |
Hagen et al. 2024 [98] | Correlate echocardiographic parameters with quantitative reconstruction of I-123 MIBG uptake. | Absolute quantification of I-123 MIBG uptake in the LV and RV correlates accurately with the gold standard heart-to-mediastinum ratio. | Cardiac I-123 MIBG imaging using SUV facilitates image-guided therapy in patients diagnosed with arrhythmogenic right ventricular cardiomyopathy. |
Borgwardt et al. 2024 [99] | Replace I-123 MIBG with new PET tracer 18F-MFBG. | Increased number of radiotracer-avid lesions, SIOPEN and Curie score 18F-MFBG LAFOV PET/CT compared with I-123 MIBG SPECT/CT. | 18F-MFBG LAFOV PET/CT shows promise for future staging and response assessment of neuroblastoma. |
Mizukami et al. 2024 [100] | Investigated I-123 MIBG and transcranial sonography (TCS) for diagnosis of high-signal-intensity substantia nigra lesion (HSI-SNL) incidence in Parkinson’s disease. | MIBG findings were normal in 27.3% with HSI-SNL and abnormal in 63.6% without HSI-SNL. | Multiple patients with normal findings during MIBG may have HSI-SNL. Confirmatory imaging of HSI-SNL with TCS may be useful for diagnosis. |
Nakajima et al. 2024 [101] | Establish a diagnostic index for Lewy body diseases (LBD) and criteria for exempting patients from late imaging. | Early or late sympathetic MIBG (SMILe) index using a single heart-to-mediastinum ratio variable discriminated LBD from non-LBD. The AUC values for early and late SMILe indexes were 0.880 and 0.894. The sensitivity and specificity of early and late SMILe indexes were 76% and 90% and 76% and 87%, respectively. | SMILe index for LBD provides likelihood of LBD, and those with a 50% threshold demonstrated optimal diagnostic accuracy. The index values of either <0.3 or >0.7 accurately selected patients who do not need late imaging. |
Mori et al. 2024 [102] | Compare diagnostic accuracy of whole-body MRI and I-123 MIBG in metastatic pheochromocytoma and paraganglioma. | Sensitivity, specificity, accuracy, PPV, NPV, and AUC were 82%, 97%, 90%, 96%, 86%, and 0.92 for WB-MRI images. | Comparable diagnostic accuracy of WB-MRI to I-123 MIBG images. |
Saito et al. 2024 [103] | I-123 MIBG sympathetic nerve imaging with 3D quantitation to the diagnosis of neurological disorders. | Absolute heart counts and SUV determined using I-123 MIBG correlated with findings of conventional planar images in neurological diseases. | I-123 MIBG SPECT/CT imaging might differentiate patients with multiple system atrophy and progressive supranuclear palsy. |
Miyamoto et al. 2024 [104] | Investigate whether cardiac postganglionic denervation is present in sleep behavior disorder and is a marker for Lewy body disease status. | Reduced I-123MIBG uptake was observed in the early and delayed images in 84.4 and 93.4% of patients with isolated rapid eye movement sleep behavior disorder. | Reduced I-123MIBG uptake is a robust maker for Lewy body disease among isolated rapid eye movement sleep behavior disorder patients. |
Choi et al. 2024 [105] | Quantify I-123MIBG uptake in the adrenal glands using SPECT/CT images. | Labetalol inhibited the uptake of I-123 MIBG in cell lines expressing norepinephrine transporter. | SPECT/CT imaging with I-123 MIBG could be applicable for evaluating the preclinical efficacy of labetalol as a β-adrenergic receptor blocker. |
Xavier de Brito et al. 2024 [106] | Investigate autonomic disorders with I-123 MIBG SPECT imaging in patients with long COVID. | 75% of patients with symptoms of dysautonomia related to long COVID had reduced MIBG uptake, suggesting the presence of myocardial sympathetic denervation. | MIBG SPECT can be useful for the evaluation of the extent of myocardial sympathetic denervation; it provides quantitative data that aid the diagnosis of dysautonomia, determination of its prognosis, and evaluation of treatment effects. |
Saito et al. 2024 [107] | Develop new methods for 3D heart segmentation and disease quantitation. | SPECT/CT WRs determined based on SUV closely correlated with planar heart-to-mediastinum ratios. | Sympathetic nervous activity could be absolutely quantified in 3D from I-123 SPECT/CT images. |
Feng et al. 2024 [108] | Develop and validate an I-123 MIBG SPECT/CT-based radiomics nomogram and evaluate its value in predicting event-free survival. | The radiomics model predicted the best prognosis for event-free survival in both the training and validation cohorts, with C-indices of 0.819 and 0.712, and 1-year areas under the curve of 0.899 and 0.748, respectively. | I-123 MIBG SPECT/CT-based radiomics can accurately predict the event-free survival of high-risk neuroblastoma after induction of remission. |
Ozawa et al. 2024 [109] | Study the relationship between sympathetic skin response (SSR), I-123 MIBG cardiac scintigraphy, and DaT scan imaging parameters in Parkinson’s disease (PD) and other Parkinsonian syndromes. | Multiple regression analyses showed a significant relationship between the amplitudes of SSR and DaT scan imaging in PD. | Unlike multiple system atrophy and progressive supranuclear palsy, sudomotor nervous system is parallelly involved with cardiac sympathetic and central dopaminergic dysfunction from the early stage of PD. |
Ebina et al. 2024 [110] | Identify the clinical characteristics of patients with PD with dual SD compared with those with single SD. | Sympathetic denervation in major salivary glands and cardiac MIBG uptakes were significantly reduced in PD. Patients in the dual SD group were older and had more severe hyposmia and autonomic dysfunction, except for motor features. | Patients with PD with dual-sympathetic denervation have more severe non-motor features than other patients. Autonomic dysfunction might progress independently from dopaminergic degeneration. |
Rasmussen et al. 2024 [111] | Assess the agreement between clinical cardiovascular adrenergic function and adrenergic innervation in T2D. | T2D patients had significantly lower early and delayed H/M ratios and lower WR. Lower total recovery and shorter pressure recovery time responses from the Valsalva maneuver were significantly correlated to lower H/M early and lower WR for Total Recovery. | There was impairment of sympathetic innervation in T2D patients based on parameters derived from MIBG cardiac scintigraphy (low early H/M, delayed H/M, and WR). |
Sung et al. 2024 [112] | Compare the diagnostic performances of 18 F-FDOPA PET/CT and I-123 MIBG SPECT/CT for pheochromocytoma and paraganglioma (PPGL). | 18 F-FDOPA PET/CT exhibited noninferior sensitivity (95.7%) compared with I-123 MIBG SPECT/CT (91.3%). 18 F-FDOPA PET/CT demonstrated significantly higher sensitivity compared with 123 I-MIBG SPECT/CT (86.2% vs. 65.5%). | 18 F-FDOPA PET/CT demonstrated noninferior sensitivity and comparable specificity to I-123 MIBG SPECT/CT in diagnosing PPGL. 18 F-FDOPA PET/CT outperformed I-123 MIBG SPECT/CT in the assessment of PPGL recurrence and metastasis. |
Ishibashi et al. 2023 [113] | I-123 MIBG for evaluation of the severity and prognosis of heart failure | Predischarge and 6-month post-discharge survival showed significant differences in groups | Prognostic model using I-123 MIBG scintigraphy was useful in predicting mortality risk in patients with heart failure. |
Totsune et al. 2023 [114] | Identify subtypes of PD using nuclear imaging biomarkers targeting the cardiac sympathetic nervous and nigro-striatal systems | Three clusters were identified and showed distinct characteristics in onset ages and dopamine-replacement therapy and deep brain stimulation requirements. | Nuclear imaging biomarker-based classification can be used to identify clinically and pathologically relevant PD subtypes with distinct disease trajectories. |
Conte et al. 2023 [115] | Evaluate sex differences of heart failures with prediction of cardiac arrhythmic events (AE). | No significant variables for prediction of AE were found in females. Early SS, late SS, ejection fraction, and late heart-to-mediastinum ratio were statistically significant predictors of AE in males. | I-123 MIBG represents a more effective tool for the prediction of AE in male patients than in women. |
Zhou et al. 2023 [116] | Compare the diagnostic ability of minimal residual disease detection and I-123 MIBG SPECT/CT. | The diagnostic accuracy of planar and tomographic imaging was 3.5% and 95.8%, respectively. | I-123 MIBG SPECT/CT improves the diagnostic efficiency of neuroblastoma. |
Ebina et al. 2023 [117] | Analyze I-123 MIBG uptake in parotid and submandibular glands in Parkinson’s disease (PD). | MIBG uptake ratio in the parotid glands/mediastinum (P/M) and submandibular glands/mediastinum (S/M) were significantly reduced in PD patients. Sensitivity and specificity were 54.8% and 59.1% for delayed phase P/M ratio; sensitivity and specificity were 59.5% and 61.0% for delayed phase S/M ratio, respectively. | MIBG uptake in parotid and submandibular glands was reduced PD. Sympathetic denervation in the major salivary glands and myocardium might progress independently. |
Chun et al. 2023 [118] | Compared the diagnostic performances; investigated the optimal imaging protocol of I-123 MIBG cardiac scintigraphy in patients suspected of Parkinson’s disease. | Sensitivity, specificity, accuracy, PPV, and NPV of heart-to-mediastinum ratio and washout rate were maximized at 4 h PPVs persistently >92.7% at earlier time points and shorter time intervals. | 4 h-delayed imaging is recommended for the best diagnostic performances in I-123 MIBG cardiac scintigraphy. Diagnostic performances to differentiate PD, PDD, and DLB from non-Parkinson’s diseases were suboptimal, but it can be used as an auxiliary measure. |
Fedorova et al. 2023 [119] | Investigated thyroid I-123 MIBG uptake in patients with PD and DM | Reduced I-123 MIBG uptake was only observed in the PD group. | Both DM and PD patients showed decreased I-123 MIBG uptake in thyroid gland with the largest reduction seen in DM patients. This finding suggests that thyroid I-123 MIBG uptake is not a good marker to differentiate PD from diabetic patients. |
Okuda et al. 2023 [120] | Developed a method of standardizing the heart-to-mediastinal ratio in I-123 MIBG images. | Conversion coefficients were superior when estimated by machine learning compared with classical multiple linear regression model. The experimental, MC-simulated, and ML-estimated conversion coefficients agreed, being, 0.54, 0.55, and 0.55 for low; 0.74, 0.70, and 0.72 for low–middle; and 0.88, 0.88, and 0.88 for medium energy collimators. | Machine-learning model estimated conversion coefficients without the need for phantom experiments. |
Yasumoto et al. 2023 [121] | Evaluate myocardial SUV and assess its accuracy. | RCs and % CV of maximum SUVmax, and average SUVmaxs were 36.5% and 4.99%; 3.6% and 4.84%, respectively. RC and % CV of H/M ratio were 15.0% and 1.50%. | Myocardial SUV can provide quantitative values slightly closer to theoretical values than the H/M ratios. |
Nakajo et al. 2023 [122] | Examine the usefulness of SUVmax of myocardial I-123 MIBG to characterize myocardial function. | LV diastolic dysfunction was inversely related to myocardial I-123 MIBG uptake. | Myocardial I-123 MIBG SUVmax may be useful for characterizing cardiac function in patients with pheochromocytoma. |
Oh et al. 2023 [123] | Determine time to resolution of I-123 MIBG avidity after RT for neuroblastoma and local failure rate. | Median time to MIBG resolution after RT was 78 days. | Primary lesions without residual disease had excellent local control. |
Gargiulo et al. 2023 [64] | Summarize applications of I-123 MIBG imaging in cardiac sympathetic neuronal function. | HF is frequently associated with comorbidities such as diabetes, obesity, and kidney disease that may affect cardiac adrenergic innervation. | Cardiac imaging with I-123 MIBG can be a useful tool to reduce morbidity and prevent adverse events in heart failure patients. |
Mishkina et al. 2023 [124] | Assess significance of scintigraphic evaluation of cardiac sympathetic innervation and contractility to predict response to cardiac resynchronization therapy (CRT). | One-year follow-up post-CRT, I-123 MIBG uptake ratio was an independent predictor of CRT response in non-ischemic HF patients (OR 1.469; 95% CI 1.076–2.007, p = 0.003) | CRT response can be predicted by cardiac I-123 MIBG scintigraphy, specifically by heart-to-mediastinum ratio in non-ischemic HF and by mechanical dyssynchrony index HBW in ischemic HF. |
Verschure et al. 2022 [68] | The role of I-123 MIBG imaging in chronic heart failure | Linear relationship between I-123 MIBG-derived parameters and overall prognosis. | Cardiac I-123 MIBG scintigraphy is a feasible technique to evaluate the global and regional cardiac sympathetic innervation. |
Yadgarov et al. 2022 [125] | Evaluate the prognostic significance of parameters derived from pretherapeutic I-123 MIBG SPECT/CT in high-risk patients with neuroblastoma (NB). | Multivariable analysis identified high asphericity (≥65%) and metabolic tumor volume (≥50 mL) as the only factors associated with worse event-free survival. | Imaging parameters related to tumor metabolic activity, tumor asphericity, and MTV, provided prognostic value for event-free survival in high-risk NB patients. |
Roberts et al. 2022 [65] | Compare early and delayed heart-to-mediastinum ratios (HMR) and make recommendations for clinical practice. | Histograms of early and delayed HMR showed two groups for delayed imaging. Accuracy results were higher for delayed imaging than early imaging (73 vs. 77%), sensitivity 63 vs. 65%, and specificity 82 vs. 88%. | A delayed image could be acquired only if the early result is borderline. This removes the need for delayed imaging in about 70% of patients and reduces the time patients have to wait. |
Clement et al. 2022 [126] | Evaluate the prevalence of thyroid dysfunction in survivors of a neuroblastic tumor who received diagnostic I-123 MIBG only. | After a median follow-up of 6.6 years, thyroid function was normal in 95.8% of survivors. In 29.2% of the patients and 11.1% of images, I-123 uptake was visible in the thyroid. | Randomized controlled trials are required to investigate whether administration of I-123 MIBG without thyroid protection is harmful to the thyroid gland. |
Lucas et al. 2022 [127] | Identify predictors of metastatic site failure (MSF) at new and/or original sites in high-risk neuroblastoma patients. | Multivariate CPHr identified inability to undergo transplant and/or maintenance chemotherapy and presence of lung metastases at diagnosis as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. | Persistence of MIBG avidity following induction chemotherapy and transplant at metastatic site increased the hazard for MSF. |
Delgado-Silva et al. 2022 [128] | Assess cardiac sympathetic activity and investigate the role of myocardial I-123 MIBG scintigraphy for cardiovascular risk stratification of patients with resistant hypertension treated with renal denervation. | Early heart–mediastinum ratio (HMR) was significantly lower at baseline in responder group. Both the late HMR and the washout rate were identical, and no significant correlation between response to renal denervation or any MIBG imaging index was found. | Renal denervation effectively lowered blood pressure in the majority of patients, but I-123 MIBG was not useful for predicting the response. |
Matsubara et al. 2022 [129] | Validate the diagnostic accuracy of I-123 MIBG myocardial scintigraphy for Lewy body diseases (LBD) against autopsy, the gold standard. | H/M ratio had a sensitivity and specificity of 70.0% and 96.2%. Delayed H/M ratio had a sensitivity and specificity of 80.0% and 92.3%. The washout rate had a sensitivity and specificity of 80.0% and 84.6%. The proportion of residual tyrosine hydroxylase–immunoreactive cardiac sympathetic fibers strongly correlated with the amount of cardiac I-123 MIBG uptake. | I-123 MIBG myocardial scintigraphy could differentiate LBDs from similar diseases. Abnormal I-123 MIBG myocardial scintigraphy findings strongly support the presence of LBD and cardiac sympathetic denervation. |
Adaniya et al. 2022 [130] | Assess the association between a decrease in lung MIBG uptake with antidepressant intake and the myocardial MIBG uptake | All patients with decreased lung uptake were treated with antidepressants. | Antidepressants probably blocked MIBG uptake in lungs, and a remarkable decrease in lung uptake can be a signal to check a patient’s medication status. |
Tamaki et al. 2022 [131] | Validate the risk model to predict post-discharge clinical outcomes in patients with acute decompensated heart failure (ADHF) | There was a significant difference in incidence of cardiac death among groups. The 2-year cardiac mortality risk model had a higher C-statistic for the prediction of cardiac mortality. | 2-year MIBG-based cardiac mortality risk model is useful for predicting post-discharge clinical outcomes in patients with ADHF. |
Park et al. 2022 [132] | Investigate the relationships of plasma α-synuclein levels with cardiac MIBG and striatal DAT uptake. | The plasma α-synuclein level correlated with early and delayed MIBG heart-to-mediastinum ratios, and its correlation with delayed H/M ratio remained significant after adjustment with age, disease duration, motor severity, and striatal DAT uptake. | Plasma α-synuclein levels more readily reflect the peripheral deposition of Lewy bodies than their central deposition. |
Seo et al. 2022 [133] | Investigated the prognostic significance of residual MIBG-positive disease at each treatment phase. | Residual MIBG-positive disease at postinduction and post-tandem HDCT/auto-SCT evaluation was highly correlated with the risk of progression. | Residual MIBG-positive disease during treatment predicted unfavorable outcomes in high-risk neuroblastoma, even under tandem HDCT/auto-SCT. |
Nitta et al. 2022 [134] | Investigate factors influencing CSN activity of patients with severe aortic stenosis | H/M ratio was 3.1 ± 0.5, delayed H/M ratio was 2.8 ± 0.6, and WR was 35% ± 13%. | Coronary artery disease is an independent predictor of delayed H/M ratio, and aortic valve area is an independent predictor of WR in severe AS. |
Vancraeynest et al. 2022 [135] | Assess concordance of I-123 MIBG and microscopic BM examination for detecting BM involvement at diagnosis and before autologous stem cell collection (ASCC). | Concordance rates for I-123 MIBG versus microscopic BM examination were acceptable (77.1% and 85.3%). The concordance rate for biopsy versus aspirate at diagnosis was 80.6%. | I-123 MIBG scintigraphy and a microscopic examination of BM should be used as complementary tools in the evaluation of BM involvement. |
Seo et al. 2022 [136] | Elucidate the prognostic value of cardiac sympathetic nerve dysfunction using I-123MIBG SPECT imaging in heart failure with preserved left ventricular ejection fraction. | Total defect score (TDS) was significantly associated with cardiac events after multivariate Cox adjustment. Patients with high TDS levels had a significantly greater risk of cardiac events. | Cardiac I-123 MIBG SPECT imaging provided useful prognostic information in nonischemic ADHF patients with HFpEF. |
Kadoya et al. 2022 [137] | Examine whether TAVR-dependent early improvements in sympathetic nervous function are transitory or sustainable. | Multivariate analysis revealed mPG as an independent predictor of mid-term improvement in the late H/M. Patients with a high baseline mPG (≥58 mmHg) exhibited a significantly greater increase in the late H/M. | Cardiac sympathetic nervous function demonstrated sustained improvement from within 2 weeks after transcatheter aortic valve replacement (TAVR) until 6 to 12 months later. |
Kitamura et al. 2022 [138] | Introduce a new semi-quantitative analysis using I-123 MIBG SPECT/CT, tumor-to-liver count ratio, and tumor-to-muscle count ratio. | The AUC for T/Mmax was significantly higher than those of the planar score and SPECT score by ROC analysis. | Semi-quantitative value of I-123 MIBG SPECT/CT is more useful than conventional visual evaluation for differentiating pheochromocytomas from cortical adenomas. |
Kobayashi et al. 2021 [139] | Estimate gastrointestinal tract absorption of cationic anticancer drugs and medicines via whole-body imaging following oral I-123 MIBG administration. | Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of I-123 MIBG in blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading, whereas significantly higher stomach and kidney accumulations were observed after I-123 MIBG injection. | Imaging after oral administration can be used to estimate gastrointestinal absorption in small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder. |
Kumakura et al. 2021 [140] | Optimized indices that capture norepinephrine kinetics, tested their diagnostic performance, and determined I-123 MIBG performance. | MIBG loss was highly discriminative, particularly for patients with low myocardial I-123 MIBG trapping, and the new indices outperformed existing ones. | I-123 MIBG turnover can be quantified in 30 min using a three-parameter model based on I-123 MIBG time–activity curves. |
Lange et al. 2021 [141] | Study left ventricular cardiac sympathetic activity in patients treated with pulmonary vein isolation (PVI) and antiarrhythmic drugs. | PVI with point-by-point radiofrequency ablation led to a significantly (p < 0.05) higher visual sympathetic innervation defect score when comparing pre- and post-PVI. Differences in cardiac sympathetic innervation remodeling following PVI suggest an important role of cardiac autonomous nervous system in the maintenance of sinus rhythm following PVI. | PVI results in novel defects of cardiac sympathetic innervation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-C.; Peng, C.-L.; Chen, C.-T.; Shih, Y.-H.; Chen, J.-H.; Tai, Y.-J.; Chiang, Y.-C. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals 2024, 17, 1563. https://doi.org/10.3390/ph17121563
Chang M-C, Peng C-L, Chen C-T, Shih Y-H, Chen J-H, Tai Y-J, Chiang Y-C. Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals. 2024; 17(12):1563. https://doi.org/10.3390/ph17121563
Chicago/Turabian StyleChang, Ming-Cheng, Cheng-Liang Peng, Chun-Tang Chen, Ying-Hsia Shih, Jyun-Hong Chen, Yi-Jou Tai, and Ying-Cheng Chiang. 2024. "Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review" Pharmaceuticals 17, no. 12: 1563. https://doi.org/10.3390/ph17121563
APA StyleChang, M. -C., Peng, C. -L., Chen, C. -T., Shih, Y. -H., Chen, J. -H., Tai, Y. -J., & Chiang, Y. -C. (2024). Iodine-123 Metaiodobenzylguanidine (I-123 MIBG) in Clinical Applications: A Comprehensive Review. Pharmaceuticals, 17(12), 1563. https://doi.org/10.3390/ph17121563