Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Microparticles
2.1.1. Microparticle Morphology
2.1.2. Microparticle Size Distribution and Specific Surface Area
2.1.3. Structure for the Fourier Transform Infrared Spectroscopy (FTIR)
2.1.4. Thermogravimetric Analysis (TGA)
2.1.5. Moisture Absorption
2.2. Bioactive Characterization of Microparticles
2.2.1. Cytotoxic Effect
2.2.2. Effect on the Nitric Oxide (NO) Production
2.2.3. Antimicrobial Evaluation
3. Materials and Methods
3.1. Materials
3.2. Plant Material and Extract Elaboration
3.3. Obtaining Microparticles
3.4. Physicochemical Characterization of Microparticles
3.4.1. Scanning Electron Microscope (SEM) and Optical Microscopy (OM)
3.4.2. Specific Surface Area (SSA)
3.4.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.4.4. Thermalgravimetric Analysis (TGA)
3.4.5. Moisture Absorption
3.5. In Vitro Analysis of Microparticles
3.5.1. Sample Sterilization
3.5.2. Cell Culture
3.5.3. Cytotoxic Effect
3.5.4. Quantification of Nitric Oxide (NO) Production
3.5.5. Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, B.; Singh, P. Inflammation: Biochemistry, Cellular Targets, Anti-Inflammatory Agents and Challenges with Special Emphasis on Cyclooxygenase-2. Bioorg. Chem. 2022, 121, 105663. [Google Scholar] [CrossRef]
- Ishitsuka, Y.; Kondo, Y.; Kadowaki, D. Toxicological Property of Acetaminophen: The Dark Side of a Safe Antipyretic/Analgesic Drug? Biol. Pharm. Bull. 2020, 43, 195–206. [Google Scholar] [CrossRef]
- Sohail, R.; Mathew, M.; Patel, K.K.; Reddy, S.A.; Haider, Z.; Naria, M.; Habib, A.; Abdin, Z.U.; Razzaq Chaudhry, W.; Akbar, A. Effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023, 14, e37080. [Google Scholar] [CrossRef]
- Ghosh, R.; Alajbegovic, A.; Gomes, A.V. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species. Oxid. Med. Cell. Longev. 2015, 2015, 536962. [Google Scholar] [CrossRef]
- Mohi-ud-din, R.; Chawla, A.; Sharma, P.; Mir, P.A.; Potoo, F.H.; Reiner, Ž.; Reiner, I.; Ateşşahin, D.A.; Sharifi-Rad, J.; Mir, R.H.; et al. Repurposing Approved Non-Oncology Drugs for Cancer Therapy: A Comprehensive Review of Mechanisms, Efficacy, and Clinical Prospects. Eur. J. Med. Res. 2023, 28, 345. [Google Scholar] [CrossRef]
- Godman, B.; McCabe, H.; D Leong, T.; Mueller, D.; Martin, A.P.; Hoxha, I.; Mwita, J.C.; Rwegerera, G.M.; Massele, A.; Costa, J.; et al. Fixed Dose Drug Combinations—Are They Pharmacoeconomically Sound? Findings and Implications Especially for Lower- and Middle-Income Countries. Expert Rev. Pharmacoecon. Outcomes Res. 2020, 20, 1–26. [Google Scholar] [CrossRef]
- Li, Y.; Xia, X.; Hou, W.; Lv, H.; Liu, J.; Li, X. How Effective Are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int. J. Nanomed. 2023, 18, 1109–1128. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Tălăpan, D.; Sandu, A.-M.; Rafila, A. Antimicrobial Resistance of Staphylococcus Aureus Isolated between 2017 and 2022 from Infections at a Tertiary Care Hospital in Romania. Antibiotics 2023, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Cocoletzi, H.H.; Almanza, E.Á.; Agustin, O.F.; Nava, E.L.V.; Cassellis, E.R. Obtaining and Characterizing Chitosan from Shrimp Exoskeletons. Surfaces and Void 2009, 22, 57–60. Available online: https://www.researchgate.net/publication/260992204_Obtencion_y_caracterizacion_de_quitosano_a_partir_de_exoesqueletos_de_camaron (accessed on 31 October 2024).
- Huang, Y.; Onyeri, S.; Siewe, M.; Moshfeghian, A.; Madihally, S.V. In Vitro Characterization of Chitosan-Gelatin Scaffolds for Tissue Engineering. Biomaterials 2005, 26, 7616–7627. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A. Chitosan as a Biomedical Material: Properties and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 139–154. [Google Scholar]
- Kumar, S.; Ye, F.; Dobretsov, S.; Dutta, J. Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. Appl. Sci. 2019, 9, 2409. [Google Scholar] [CrossRef]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.G.; Shirsat, N.S.; Mishra, A.C.; Waghulde, S.O.; Kale, M.K. A Review on Chitosan Nanoparticles Applications in Drug Delivery. J. Pharmacogn. Phytochem. 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Reyna-Urrutia, V.A.; Mata-Haro, V.; Cauich-Rodriguez, J.V.; Herrera-Kao, W.A.; Cervantes-Uc, J.M. Effect of Two Crosslinking Methods on the Physicochemical and Biological Properties of the Collagen-Chitosan Scaffolds. Eur. Polym. J. 2019, 117, 424–433. [Google Scholar] [CrossRef]
- Bianchi, E.; Caldwell, M.E.; Cole, J.R. Antitumor Agents from Bursera microphylla (Burseraceae) I. Isolation and Characterization of Deoxypodophyllotoxin. J. Pharm. Sci. 1968, 57, 696–697. [Google Scholar] [CrossRef]
- Gigliarelli, G.; Zadra, C.; Cossignani, L.; Robles Zepeda, R.E.; Rascón-Valenzuela, L.A.; Velázquez-Contreras, C.A.; Marcotullio, M.C. Two New Lignans from the Resin of Bursera microphylla A. Gray and Their Cytotoxic Activity. Nat. Prod. Res. 2018, 32, 2646–2651. [Google Scholar] [CrossRef] [PubMed]
- Adorisio, S.; Fierabracci, A.; Gigliarelli, G.; Muscari, I.; Cannarile, L.; Liberati, A.M.; Marcotullio, M.C.; Riccardi, C.; Curini, M.; Robles Zepeda, R.E.; et al. The Hexane Fraction of Bursera microphylla A Gray Induces p21-Mediated Antiproliferative and Proapoptotic Effects in Human Cancer–Derived Cell Lines. Integr. Cancer Ther. 2017, 16, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moreno, H.; López-Romero, J.C.; Vidal-Gutiérrez, M.; Rodríguez-Martínez, K.L.; Robles-Zepeda, R.E.; Vilegas, W.; Velarde-Rodríguez, G.M. Seasonality Impact on the Anti-Inflammatory, Antiproliferative Potential and the Lignan Composition of Bursera microphylla. Ind. Crops Prod. 2022, 184, 115095. [Google Scholar] [CrossRef]
- Vidal Gutiérrez, M.; Torres Moreno, H.; Velázquez Contreras, C.A.; Rascón Valenzuela, L.A.; Robles Zepeda, R.E. Actividad Antioxidante Y Antiproliferativa de Seis Plantas Medicinales Del Noroeste de México. Biotecnia 2020, 22, 40–45. [Google Scholar] [CrossRef]
- Marisa Ribeiro, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of Polyphenols—The Specific Case of the Microencapsulation of Sambucus Nigra L. Extracts—A Review. Trends Food Sci. Technol. 2020, 105, 454–467. [Google Scholar] [CrossRef]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [Google Scholar] [CrossRef] [PubMed]
- Tamilarasi, G.P.; Krishnan, M.; Sabarees, G.; Gouthaman, S.; Alagarsamy, V.; Solomon, V.R. Emerging Trends in Curcumin Embedded Electrospun Nanofibers for Impaired Diabetic Wound Healing. Appl. Nano 2022, 3, 202–232. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez, B.; Munekata, P.E.S.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef] [PubMed]
- Min, J.B.; Kim, E.S.; Lee, J.-S.; Lee, H.G. Preparation, Characterization, and Cellular Uptake of Resveratrol-Loaded Trimethyl Chitosan Nanoparticles. Food Sci. Biotechnol. 2017, 27, 441–450. [Google Scholar] [CrossRef]
- Azlan, K.; Wan Saime, W.N.; Lai Ken, L. Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. J. Environ. Sci. 2009, 21, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Piyamongkala, K.; Mekasut, L.; Pongstabodee, S. Cutting Fluid Effluent Removal by Adsorption on Chitosan and Sds-Modified Chitosan. Macromol. Res. 2008, 16, 492–502. [Google Scholar] [CrossRef]
- Pivarčiová, L.; Rosskopfová, O.; Galamboš, M.; Rajec, P.; Hudec, P. Sorption of Pertechnetate Anions on Chitosan. J. Radioanal. Nucl. Chem. 2016, 308, 93–98. [Google Scholar] [CrossRef]
- Luo, W.; Bai, Z.; Zhu, Y. Fast Removal of Co(II) from Aqueous Solution Using Porous Carboxymethyl Chitosan Beads and Its Adsorption Mechanism. RSC Adv. 2018, 8, 13370–13387. [Google Scholar] [CrossRef]
- Shekhawat, A.; Kahu, S.; Saravanan, D.; Jugade, R. Tin(IV) Cross-Linked Chitosan for the Removal of As(III). Carbohydr. Polym. 2017, 172, 205–212. [Google Scholar] [CrossRef]
- Rajeswari, A.; Amalraj, A.; Pius, A. Adsorption Studies for the Removal of Nitrate Using chitosan/PEG and chitosan/PVA Polymer Composites. J. Water Process Eng. 2016, 9, 123–134. [Google Scholar] [CrossRef]
- Cui, H.; Chen, J.; Yang, H.; Wang, W.; Liu, Y.; Zou, D.; Liu, W.; Men, G. Preparation and Application of Aliquat 336 Functionalized Chitosan Adsorbent for the Removal of Pb(II). Chem. Eng. J. 2013, 232, 372–379. [Google Scholar] [CrossRef]
- Santos-López, G.; Argüelles-Monal, W.; Carvajal-Millan, E.; López-Franco, Y.L.; Recillas-Mota, M.T.; Lizardi-Mendoza, J. Aerogels from Chitosan Solutions in Ionic Liquids. Polymers 2017, 9, 722. [Google Scholar] [CrossRef]
- Malheiro, V.N.; Caridade, S.G.; Alves, N.M.; Mano, J.F. New Poly(ε-Caprolactone)/chitosan Blend Fibers for Tissue Engineering Applications. Acta Biomater. 2010, 6, 418–428. [Google Scholar] [CrossRef]
- Thein-Han, W.W.; Kitiyanant, Y.; Misra, R.D.K. Chitosan as Scaffold Matrix for Tissue Engineering. Mater. Sci. Technol. 2013, 24, 1062–1075. [Google Scholar] [CrossRef]
- Bolaina-Lorenzo, E.; Martinez-Ramos, C.; Monleón-Pradas, M.; Herrera-Kao, W.; Cauich-Rodriguez, J.V.; Cervantes-Uc, J.M. Electrospun Polycaprolactone/chitosan Scaffolds for Nerve Tissue Engineering: Physicochemical Characterization and Schwann Cell Biocompatibility. Biomed. Mater. 2017, 12, 015008. [Google Scholar] [CrossRef] [PubMed]
- Ellerbrock, R.H.; Gerke, H.H. FTIR Spectral Band Shifts Explained by OM–cation Interactions. J. Plant Nutr. Soil Sci. 2021, 184, 388–397. [Google Scholar] [CrossRef]
- Antunes, J.C.; Domingues, J.M.; Miranda, C.S.; Silva, A.F.G.; Homem, N.C.; Amorim, M.T.P.; Felgueiras, H.P. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar. Drugs 2021, 19, 359. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Urrutia, V.A.; Estevez, M.; González-González, A.M.; Rosales-Ibáñez, R. 3D Scaffolds of Caprolactone/chitosan/polyvinyl Alcohol/hydroxyapatite Stabilized by Physical Bonds Seeded with Swine Dental Pulp Stem Cell for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2022, 33, 81. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Baran, T.; Mentes, A.; Asaroglu, M.; Sezen, G.; Tozak, K.O. Extraction and Characterization of A-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophys. 2014, 9, 145–157. [Google Scholar] [CrossRef]
- Ferfera-Harrar, H.; Dairi, N. Green Nanocomposite Films Based on Cellulose Acetate and Biopolymer-Modified Nanoclays: Studies on Morphology and Properties. Iran. Polym. J. 2014, 23, 917–931. [Google Scholar] [CrossRef]
- Reyna-Urrutia, V.A.; Rosales-Ibáñez, R.; González-González, A.M.; Estevez, M.; Rodríguez-Martínez, J.J.; González-Reyna, M. Biological Activity of a Chitosan-Carboxymethylcellulose-Zinc Oxide and Calcium Carbonate in 3D Scaffolds Stabilized by Physical Links for Bone Tissue Engineering. J. Biomater. Appl. 2023, 37, 1776–1788. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Lim, C.; Israelachvili, J.N.; Hwang, D.S. Strong Adhesion and Cohesion of Chitosan in Aqueous Solutions. Langmuir 2013, 29, 14222–14229. [Google Scholar] [CrossRef]
- Araújo, L.C.C.; Aguiar, J.S.; Napoleão, T.H.; Mota, F.V.B.; Barros, A.L.S.; Moura, M.C.; Coriolano, M.C.; Coelho, L.C.B.B.; Silva, T.G.; Paiva, P.M.G. Evaluation of Cytotoxic and Anti-Inflammatory Activities of Extracts and Lectins from Moringa Oleifera Seeds. PLoS ONE 2013, 8, e81973. [Google Scholar] [CrossRef]
- Vidal-Gutiérrez, M.; Robles-Zepeda, R.E.; Vilegas, W.; Gonzalez-Aguilar, G.A.; Torres-Moreno, H.; López-Romero, J.C. Phenolic Composition and Antioxidant Activity of Bursera Microphylla A. Gray. Ind. Crops Prod. 2020, 152, 112412. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic inflammation. In StatPearls [Internet]; LLCStatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Futur. Pharmacol. 2022, 2, 460–498. [Google Scholar] [CrossRef]
- Chen, X.; Lan, W.; Xie, J. Natural Phenolic Compounds: Antimicrobial Properties, Antimicrobial Mechanisms, and Potential Utilization in the Preservation of Aquatic Products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhu, H.; Huang, J.; Zhao, J.; Yan, B.; Ma, S.; Zhang, H.; Fan, D. The Physicochemical Properties of Chitosan Prepared by Microwave Heating. Food Sci. Nutr. 2020, 8, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Lv, H.; Yang, B.; Chen, X.; Sun, H. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules 2015, 20, 11034–11045. [Google Scholar] [CrossRef] [PubMed]
- Montembault, A.; Viton, C.; Domard, A.; Genevrier, L.; Goa, D.; Moulins, Z.I.L.T. Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent. Biomacromolecules 2005, 6, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Vecstaudža, J. Amorphous Calcium Phosphate Biomaterials with High Specific Surface Area; Riga Technical University: Latvia, Riga, 2021. [Google Scholar] [CrossRef]
- Trzaskowska, M.; Vivcharenko, V.; Przekora, A. The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. Int. J. Mol. Sci. 2023, 24, 5083. [Google Scholar] [CrossRef]
- Ghasemi-Mobarakeh, L.; Kolahreez, D.; Ramakrishna, S.; Williams, D. Key Terminology in Biomaterials and Biocompatibility. Curr. Opin. Biomed. Eng. 2019, 10, 45–50. [Google Scholar] [CrossRef]
- Robitzer, M.; David, L.; Rochas, C.; Di Renzo, F.; Quignard, F. Supercritically-Dried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromol. Symp. 2008, 273, 80–84. [Google Scholar] [CrossRef]
- Stefan, M.; Vlaicu, I.D.; Nistor, L.C.; Ghica, D.; Nistor, S.V. Origin and Chemical Composition of the Amorphous Material from the Intergrain Pores of Self-Assembled Cubic ZnS:Mn Nanocrystals. Appl. Surf. Sci. 2017, 426, 342–350. [Google Scholar] [CrossRef]
- Basiuk, V.A. Quantum Chemical Calculations of Infrared Spectra for the Identification of Unknown Compounds by GC/FTIR/MS in Exobiological Simulation Experiments. Adv. Sp. Res. 2001, 27, 255–260. [Google Scholar] [CrossRef]
- Kowalczuk, D.; Pitucha, M. Application of FTIR Method for the Assessment of Immobilization of Active Substances in the Matrix of Biomedical Materials. Materials 2019, 12, 2972. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Akinlabi, S.A.; Mashinini, M.P.; Fatoba, S.O.; Ajayi, O.O. Thermo-Gravimetric Characterization of Biomass Properties: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 423, 12175. [Google Scholar] [CrossRef]
- Liu, S.; Yu, D.; Chen, Y.; Shi, R.; Zhou, F.; Mu, T. High-Resolution Thermogravimetric Analysis Is Required for Evaluating the Thermal Stability of Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2022, 61, 14347–14354. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A.I.; Starkova, O. Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers 2022, 14, 216. [Google Scholar] [CrossRef]
- Lee, P.-C.; Kang, D.; Oh, J.T.; Seo, J.Y.; Shin, D.; Jung, J.-U.; Ko, Y.K.; Ha, J.U.; Kim, M.-G. Reducing Moisture Absorption in Polypropylene Nanocomposites for Automotive Headlamps Using Hydrophobicity-Modified Graphene/Montmorillonite. Nanomaterials 2023, 13, 1439. [Google Scholar] [CrossRef] [PubMed]
- Torres-Moreno, H.; López-Romero, J.C.; Vázquez-Solorio, J.Y.; Velázquez-Contreras, C.A.; Garibay-Escobar, A.; Díaz-López, R.; Robles-Zepeda, R.E. Antioxidant, Anti-Inflammatory and Antiproliferative Properties of Ibervillea Sonorae. S. Afr. J. Bot. 2019, 125, 207–213. [Google Scholar] [CrossRef]
Composition | SSA (m2/g) | Reference |
---|---|---|
Cs | 05.753 | This work |
CsB-0.5 | 12.111 | This work |
CsB-1.0 | 03.220 | This work |
Cs-ethylene glycol diglycidyl ether | 00.620 | [28] |
Cs-sodium lauryl sulphate | 00.670 | [29] |
Cs | 01.200 | [30] |
Carboxymethyl-Cs | 00.490 | [31] |
Tin (IV)-Cs | 0.3020 | [32] |
Polyvinyl alcohol-Cs | 01.948 | [33] |
Polyethylene glycol-Cs | 02.679 | [33] |
Aliquant 336-Cs | 02.430 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyna-Urrutia, V.A.; Robles-Zepeda, R.E.; Estevez, M.; Gonzalez-Reyna, M.A.; Alonso-Martínez, G.V.; Cáñez-Orozco, J.R.; López-Romero, J.C.; Torres-Moreno, H. Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity. Pharmaceuticals 2024, 17, 1565. https://doi.org/10.3390/ph17121565
Reyna-Urrutia VA, Robles-Zepeda RE, Estevez M, Gonzalez-Reyna MA, Alonso-Martínez GV, Cáñez-Orozco JR, López-Romero JC, Torres-Moreno H. Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity. Pharmaceuticals. 2024; 17(12):1565. https://doi.org/10.3390/ph17121565
Chicago/Turabian StyleReyna-Urrutia, Víctor Alonso, Ramón Enrique Robles-Zepeda, Miriam Estevez, Marlen Alexis Gonzalez-Reyna, Grecia Vianney Alonso-Martínez, Juan Ramón Cáñez-Orozco, Julio César López-Romero, and Heriberto Torres-Moreno. 2024. "Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity" Pharmaceuticals 17, no. 12: 1565. https://doi.org/10.3390/ph17121565
APA StyleReyna-Urrutia, V. A., Robles-Zepeda, R. E., Estevez, M., Gonzalez-Reyna, M. A., Alonso-Martínez, G. V., Cáñez-Orozco, J. R., López-Romero, J. C., & Torres-Moreno, H. (2024). Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity. Pharmaceuticals, 17(12), 1565. https://doi.org/10.3390/ph17121565