Modelling of Cetylpyridinium Chloride Availability in Complex Mixtures for the Prediction of Anti-Microbial Activity Using Diffusion Ordered Spectroscopy, Saturation Transfer Difference and 1D NMR
Abstract
:1. Introduction
Rationale
- (A)
- Full formulations (Section 3.1)
- Excipient interactions, e.g., block copolymers.
- CPC diffusion NMR correlation with disk retention assay and antimicrobial activity.
- Solubilised hydroxyethyl cellulose as a potential DRA mimic.
- (B)
- Experimental formulations (Section 3.2)
- Using PCA to evaluate different excipients to better understand the mixed micellisation and availability of CPC.
- Establishing impact on observed diffusion of CPC of a broad range of experimental formulations.
- Using CPC NMR diffusion data to optimise availability and antimicrobial activity of CPC.
2. Results and Discussion
2.1. Full Formulation
2.1.1. Representative Excipient Interactions—Block Copolymers, Parabens and Phosphate
2.1.2. Hydroxyethyl Cellulose (HEC) as a DRA Proxy for Full Formulations
2.1.3. Evaluation of DOSY NMR Signals for CPC Compared with DRA/Antimicrobial Data
2.1.4. Considering Other CPC NMR Signal Characteristics in the Presence and Absence of HEC
2.2. Experimental Formulations
2.2.1. Antimicrobial Activity vs. Available CPC Based on qNMR and Diffusion Parameter
2.2.2. Hydroxyethyl Cellulose (HEC) as a DRA Proxy for Experimental Formulations
2.2.3. PCA Models for Experimental Formulations
3. Materials and Methods
3.1. General
3.2. Full Formulations Used
3.3. Experimental Formulations Prepared
3.4. Sample Preparation
3.5. Disk Retention Assay
3.6. M10 Time KillTime Kill (E. coli)
3.7. Nuclear Magnetic Resonance (NMR)
3.7.1. Saturation Transfer Difference (STD)
3.7.2. Diffusion Ordered Spectroscopy (DOSY)
3.7.3. qNMR
3.7.4. Hydroxyethyl Cellulose (HEC) Experiments Procedure and qNMR
3.8. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Werner, C.W.A.; Seymour, R.A. Are Alcohol-Containing Mouthwashes Safe? Br. Dent. J. 2009, 207, 522. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.-H. Parabens as chemicals of emerging concern in the environment and humans: A review. Sci. Total. Environ. 2021, 778, 146150. [Google Scholar] [CrossRef] [PubMed]
- Yap, A. Oral Health Equals Total Health: A Brief Review. J. Dent. Indones. 2017, 24, 59–62. [Google Scholar] [CrossRef]
- Meurman, J.; Bascones-Martinez, A. Oral Infections and Systemic Health: More than Just Links to Cardiovascular Diseases. Oral Health Prev. Dent. 2021, 19, 441–448. [Google Scholar] [CrossRef]
- Iva, S.; Maria, C.; John, D. The Impact of Oral Health on Overall Wellness. J. Clin. Dent. 2009, 20, 55–61. [Google Scholar]
- Seminario-Amez, M.; López-López, J.; Estrugo-Devesa, A.; Ayuso-Montero, R.; Jané-Salas, E. Probiotics and Oral Health: A Systematic Review. Med. Oral Patol. Oral Cir. Bucal 2017, 22, e282. [Google Scholar] [CrossRef]
- Abiko, Y.; Saitoh, M. Salivary Defensins and Their Importance in Oral Health and Disease. Curr. Pharm. Des. 2007, 13, 3065–3072. [Google Scholar] [CrossRef]
- Crespo, E. The Importance of Oral Health in Immigrant and Refugee Children. Children 2019, 6, 102. [Google Scholar] [CrossRef]
- Hunter-Rinderle, S.J.; Bacca, L.A.; McLaughlin, K.T.; Macksood, D.; Lanzalaco, A.C.; Parran, J.; Doyle, M.J. Evaluation of Cetylpyridinium Chloride-Containing Mouthwashes Using In Vitro Disk Retention and Ex Vivo Plaque Glycolysis Methods. J. Clin. Dent. 1997, 8, 107–113. [Google Scholar]
- LeBel, G.; Vaillancourt, K.; Morin, M.; Grenier, D. Antimicrobial Activity, Biocompatibility, and Anti-inflammatory Properties of Cetylpyridinium Chloride-Based Mouthwash Containing Sodium Fluoride and Xylitol: An In Vitro Study. Oral Health Prev. Dent. 2020, 18, 1069–1076. [Google Scholar] [CrossRef]
- Elias-Boneta, A.R.; Toro, M.J.; Noboa, J.; Romeu, F.L.; Mateo, L.R.; Ahmed, R.; Chaknis, P.; Morrison, B.M.; Miller, J.M.; Pilch, S.; et al. Efficacy of CPC and essential oils mouthwashes compared to a negative control mouthwash in controlling established dental plaque and gingivitis: A 6-week, randomized clinical trial. Am. J. Dent. 2015, 28, 21A–26A. [Google Scholar] [PubMed]
- Rawlinson, A.; Pollington, S.; Walsh, T.F.; Lamb, D.J.; Marlow, I.; Haywood, J.; Wright, P. Efficacy of Two Alcohol-Free Cetylpyridinium Chloride Mouthwashes: A Randomized Double-Blind Crossover Study. J. Clin. Periodontol. 2008, 35, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Rösing, C.K.; Cavagni, J.; Gaio, E.J.; Muniz, F.W.M.G.; Ranzan, N.; Oballe, H.J.R.; Friedrich, S.A.; Severo, R.M.; Stewart, B.; Zhang, Y.P. Efficacy of Two Mouthwashes with Cetylpyridinium Chloride: A Controlled Randomized Clinical Trial. Braz. Oral Res. 2017, 31, e47. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Basagoiti, J.; Perez-Zsolt, D.; León, R.; Blanc, V.; Raïch-Regué, D.; Cano-Sarabia, M.; Trinité, B.; Pradenas, E.; Blanco, J.; Gispert, J.; et al. Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro. J. Dent. Res. 2021, 100, 1265–1272. [Google Scholar] [CrossRef]
- Weber, J.; Bonn, E.L.; Auer, D.L.; Kirschneck, C.; Buchalla, W.; Scholz, K.J.; Cieplik, F. Preprocedural Mouthwashes for Infection Control in Dentistry: An Update. Clin. Oral Investig. 2023, 27 (Suppl. S1), 33–44. [Google Scholar] [CrossRef]
- Vergara-Buenaventura, A.; Castro-Ruiz, C. Use of Mouthwashes Against COVID-19 in Dentistry. Br. J. Oral Maxillofac. Surg. 2020, 58, 924–927. [Google Scholar] [CrossRef]
- Calleri, E.; Marrubini, G.; Brusotti, G.; Massolini, G.; Caccialanza, G. Development and Integration of an Immunoaffinity Monolithic Disk for the On-line Solid-Phase Extraction and HPLC Determination with Fluorescence Detection of Aflatoxin B1 in Aqueous Solutions. J. Pharm. Biomed. Anal. 2007, 44, 396–403. [Google Scholar] [CrossRef]
- Garcia-Godoy, F.; Klukowska, M.A.; Zhang, Y.H.; Anastasia, K.; Cheng, R.; Gabbard, M.; Coggan, J.; White, D.J. Comparative bioa-vailability and antimicrobial activity of cetylpyridinium chloride mouthrinses in vitro and in vivo. Am. J. Dent. 2014, 27, 185–190. [Google Scholar] [PubMed]
- Ball, E.H.; Basilone, N.T. Filter Paper Disks as a Matrix for Manipulation of Recombinant Proteins. Anal. Biochem. 2022, 655, 114841. [Google Scholar] [CrossRef]
- Yaqoob, T.; Shaukat, S.; Alonaizan, R.; Ullah, R.; Khan, I.; Nazar, M.F.; Rahman, H.M.A.U. Solubilization of Reactive Red 2 in the Mixed Micelles of Cetylpyridinium Chloride and TX-114. Molecules 2023, 28, 3952. [Google Scholar] [CrossRef]
- Alam, S.S.; Mather, C.B.; Seo, Y.; Lapitsky, Y. Poly(allylamine)/tripolyphosphate coacervates for encapsulation and long-term release of cetylpyridinium chloride. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 629, 127490. [Google Scholar] [CrossRef]
- Dal Poggetto, G.; Antunes, V.; Nilsson, M.; Morris, G.; Tormena, C. 19F NMR Matrix-Assisted DOSY: A Versatile Tool for Differentiating Fluorinated Species in Mixtures. Magn. Reson. Chem. 2017, 55, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Awad, T.; Asker, D.; Romsted, L. Evidence of Coexisting Microemulsion Droplets in Oil-in-Water Emulsions Revealed by 2D DOSY 1H NMR. J. Colloid Interface Sci. 2018, 514, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Godoy, F.; Klukowska, M.; Zhang, Y.; Anastasia, K.; Cheng, R. Comparative Antiplaque and Antigingivitis Efficacy of a Stannous Fluoride Dentifrice and a Cetylpyridinium Chloride Mouth Rinse: A 6-Week Randomized Clinical Study. Am. J. Dent. 2020, 33, 291–296. [Google Scholar]
- De Kruif, C.; Weinbreck, F.; De Vries, R. Complex Coacervation of Proteins and Anionic Polysaccharides. Curr. Opin. Colloid Interface Sci. 2004, 9, 340–349. [Google Scholar] [CrossRef]
- Bronstein, L.M.; Chernyshov, D.M.; Timofeeva, G.I.; Dubrovina, L.V.; Valetsky, P.M.; Obolonkova, E.S.; Khokhlov, A.R. Interaction of Polystyrene-Block-Poly(ethylene oxide) Micelles with Cationic Surfactant in Aqueous Solutions: Metal Colloid Formation in Hybrid Systems. Langmuir 2000, 16, 3626–3632. [Google Scholar] [CrossRef]
- Faes, H.; DeSchryver, F.; Sein, A.; Bijma, K.; Kevelam, J.; Engberts, J. Study of Self-Associating Amphiphilic Copolymers and Their Interaction with Surfactants. Macromolecules 1996, 29, 3875–3880. [Google Scholar] [CrossRef]
- Choi, C.; Chae, S.Y.; Kim, T.; Kweon, J.K.; Cho, C.S.; Jang, M.; Nah, J. Synthesis and Physicochemical Characterization of Amphiphilic Block Copolymer Self-Aggregates Formed by Poly(ethylene glycol)-block-Poly(ε-caprolactone). J. Appl. Polym. Sci. 2006, 99, 3520–3527. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, W.; Dong, R.; Hao, J. Phase Structure Transition and Properties of Salt-Free Phosphoric Acid/Non-ionic Surfactants in Water. Langmuir 2016, 32, 8366–8373. [Google Scholar] [CrossRef]
- Yumoto, H.; Hirota, K.; Hirao, K.; Miyazaki, T.; Yamamoto, N.; Miyamoto, K.; Murakami, K.; Fujiwara, N.; Matsuo, T.; Miyake, Y. Anti-inflammatory and Protective Effects of 2-Methacryloyloxyethyl Phosphorylcholine Polymer on Oral Epithelial Cells. J. Biomed. Mater. Res. A 2015, 103, 555–563. [Google Scholar] [CrossRef]
- Komesvarakul, N.; Nguyen, T.; Do, L.; Scamehorn, J. Colloid-Enhanced Ultrafiltration of Chlorophenols in Wastewater: Part V. Simultaneous Removal of a Chlorophenol and a Metal Ion. Sep. Sci. Technol. 2005, 40, 2803–2818. [Google Scholar] [CrossRef]
- Timofeeva, G.I.; Dubrovina, L.V.; Bronshtejn, L.M.; Chernyshov, D.M.; Bragina, T.P.; Valetskij, P.M.; Khokhlov, A.R. Interaction of Poly(styrene)-block-Poly(ethylene oxide) Copolymer with Cetylpyridinium Chloride in Aqueous Solution. Polym. Sci. Ser. A 2001, 43, 669–674. [Google Scholar]
- Cameron, K.S.; Fielding, L. NMR Diffusion Spectroscopy as a Measure of Host-Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 2001, 66, 6891–6895. [Google Scholar] [CrossRef] [PubMed]
- Le Gresley, A.; Fardus, F.; Warren, J. Bias and Uncertainty in Non-Ideal qNMR Analysis. Crit. Rev. Anal. Chem. 2014, 45, 300–310. [Google Scholar] [CrossRef]
Label | Component | Label | Component |
---|---|---|---|
A | Tego betaine | R | Sodium Benzoate |
B | Cremaphor RH 60 | S | Benzoic Acid |
C | Pluronic F108 | T | IPMP |
D | Polaxomer 188 Micronised | U | Xylitol |
E | Polaxomer 407 | V | Stevia |
F | Xanthan Gum | W | Sucralose |
G | Methyl parahydroxybenzoate | Y | Cratos EU FlavourOptamint Pallas Symrise |
H | Propyl hydroxybenzoate, Propyl paraben | Y | PVPPlasdone |
I | Sodium salt of Methyl paraben | Z | Guar Gum |
J | Sodium Salt of Propyl paraben | AA | Potassium sorbate |
K | Potassium sorbate | AB | Chitosan |
CPC Conc. | Cetylpyridinium Chloride | Diff | Diffusion Coefficient (Log10) |
M | Zinc Chloride/Lactate/Gluconate | MK | Micro Kill |
N | Zinc citrate | Diff Change | Diff. Coeff. Difference ± HEC |
O | Citric acid | DRA | DRA |
P | Sodium Fluoride | CPC Free | CPC Mass mg/mL |
Q | Flavour 508016T Mint Fizz protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robertson, C.; Batabyal, S.; Whitworth, D.; Coban, T.; Smith, A.; Montesanto, A.; Lucas, R.; Le Gresley, A. Modelling of Cetylpyridinium Chloride Availability in Complex Mixtures for the Prediction of Anti-Microbial Activity Using Diffusion Ordered Spectroscopy, Saturation Transfer Difference and 1D NMR. Pharmaceuticals 2024, 17, 1570. https://doi.org/10.3390/ph17121570
Robertson C, Batabyal S, Whitworth D, Coban T, Smith A, Montesanto A, Lucas R, Le Gresley A. Modelling of Cetylpyridinium Chloride Availability in Complex Mixtures for the Prediction of Anti-Microbial Activity Using Diffusion Ordered Spectroscopy, Saturation Transfer Difference and 1D NMR. Pharmaceuticals. 2024; 17(12):1570. https://doi.org/10.3390/ph17121570
Chicago/Turabian StyleRobertson, Cameron, Sayoni Batabyal, Darren Whitworth, Tomris Coban, Angharad Smith, Alessandra Montesanto, Robert Lucas, and Adam Le Gresley. 2024. "Modelling of Cetylpyridinium Chloride Availability in Complex Mixtures for the Prediction of Anti-Microbial Activity Using Diffusion Ordered Spectroscopy, Saturation Transfer Difference and 1D NMR" Pharmaceuticals 17, no. 12: 1570. https://doi.org/10.3390/ph17121570
APA StyleRobertson, C., Batabyal, S., Whitworth, D., Coban, T., Smith, A., Montesanto, A., Lucas, R., & Le Gresley, A. (2024). Modelling of Cetylpyridinium Chloride Availability in Complex Mixtures for the Prediction of Anti-Microbial Activity Using Diffusion Ordered Spectroscopy, Saturation Transfer Difference and 1D NMR. Pharmaceuticals, 17(12), 1570. https://doi.org/10.3390/ph17121570