The Comparative Effect of Morphine on Proliferation of Cancer Cell Lines Originating from Different Organs: An In Vitro Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Cell Maintenance
5.3. Cell Proliferation Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
Appendix B
References
- Snijders, R.A.H.; Brom, L.; Theunissen, M.; van den Beuken-van Everdingen, M.H.J. Update on Prevalence of Pain in Patients with Cancer 2022: A Systematic Literature Review and Meta-Analysis. Cancers 2023, 15, 591. [Google Scholar] [CrossRef] [PubMed]
- McGuire, D.B. Occurrence of cancer pain. J. Natl. Cancer Inst. Monogr. 2004, 2004, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Abdel Shaheed, C.; Hayes, C.; Maher, C.G.; Ballantyne, J.C.; Underwood, M.; McLachlan, A.J.; Martin, J.H.; Narayan, S.W.; Sidhom, M.A. Opioid analgesics for nociceptive cancer pain: A comprehensive review. CA Cancer J. Clin. 2024, 74, 286–313. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Mathieson, S.; Wertheimer, G.; Maher, C.G.; Christine Lin, C.W.; McLachlan, A.J.; Buchbinder, R.; Pearson, S.A.; Underwood, M. What proportion of patients with chronic noncancer pain are prescribed an opioid medicine? Systematic review and meta-regression of observational studies. J. Intern. Med. 2020, 287, 458–474. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ahn, H.J.; Kim, J.K.; Kim, J.; Lee, S.H.; Chae, H.B. Morphine Suppresses Lung Cancer Cell Proliferation Through the Interaction with Opioid Growth Factor Receptor: An In Vitro and Human Lung Tissue Study. Anesth. Analg. 2016, 123, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Vaseghi, G.; Dana, N.; Ghasemi, A.; Abediny, R.; Laher, I.; Javanmard, S.H. Morphine promotes migration and lung metastasis of mouse melanoma cells. Braz. J. Anesthesiol. (Engl. Ed.) 2023, 73, 441–445. [Google Scholar] [CrossRef]
- Harimaya, Y.; Koizumi, K.; Andoh, T.; Nojima, H.; Kuraishi, Y.; Saiki, I. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett. 2002, 187, 121–127. [Google Scholar] [CrossRef]
- Ishikawa, M.; Tanno, K.; Kamo, A.; Takayanagi, Y.; Sasaki, K. Enhancement of tumor growth by morphine and its possible mechanism in mice. Biol. Pharm. Bull. 1993, 16, 762–766. [Google Scholar] [CrossRef]
- Yeager, M.P.; Colacchio, T.A. Effect of morphine on growth of metastatic colon cancer in vivo. Arch. Surg 1991, 126, 454–456. [Google Scholar] [CrossRef]
- Koodie, L.; Ramakrishnan, S.; Roy, S. Morphine suppresses tumor angiogenesis through a HIF-1α/p38MAPK pathway. Am. J. Pathol. 2010, 177, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Sasamura, T.; Nakamura, S.; Iida, Y.; Fujii, H.; Murata, J.; Saiki, I.; Nojima, H.; Kuraishi, Y. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur. J. Pharmacol. 2002, 441, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Jin, L.; Li, R.; Zhu, S.; Ji, M.; Li, W. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line. Exp. Ther. Med. 2016, 12, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Hatsukari, I.; Hitosugi, N.; Ohno, R.; Hashimoto, K.; Nakamura, S.; Satoh, K.; Nagasaka, H.; Matsumoto, I.; Sakagami, H. Induction of apoptosis by morphine in human tumor cell lines. Anticancer. Res. 2007, 27, 857–864. [Google Scholar]
- Nguyen, J.; Luk, K.; Vang, D.; Soto, W.; Vincent, L.; Robiner, S.; Saavedra, R.; Li, Y.; Gupta, P.; Gupta, K. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. Br. J. Anaesth. 2014, 113, 4–13. [Google Scholar] [CrossRef]
- Gonzalez-Nunez, V.; Noriega-Prieto, J.A.; Rodríguez, R.E. Morphine modulates cell proliferation through mir133b & mir128 in the neuroblastoma SH-SY5Y cell line. Bba-Mol. Basis Dis. 2014, 1842, 566–572. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, J.; Yang, C.W.; Huang, X.; Han, M.M.; Kang, F.; Li, J. Morphine promotes the malignant biological behavior of non-small cell lung cancer cells through the MOR/Src/mTOR pathway. Cancer Cell Int. 2021, 21, 622. [Google Scholar] [CrossRef]
- Harper, P.; Hald, O.; Lwaleed, B.A.; Kyyaly, A.; Johnston, D.; Cooper, A.J.; Birch, B. The impact of morphine treatment on bladder cancer cell proliferation and apoptosis: In vitro studies. Exp. Oncol. 2018, 40, 190–193. [Google Scholar] [CrossRef]
- Levi, L.; Hikri, E.; Popovtzer, A.; Dayan, A.; Levi, A.; Bachar, G.; Mizrachi, A.; Shoffel-Havakuk, H. Effect of Opioid Receptor Activation and Blockage on the Progression and Response to Treatment of Head and Neck Squamous Cell Carcinoma. J. Clin. Med. 2023, 12, 1277. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Wang, Y.; Deng, L. Sufentanil Inhibits the Proliferation and Metastasis of Esophageal Cancer by Inhibiting the NF-kappaB and Snail Signaling Pathways. J. Oncol. 2021, 2021, 7586100. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, N.; Tian, S. Morphine Stimulates Migration and Growth and Alleviates the Effects of Chemo Drugs via AMPK-Dependent Induction of Epithelial-Mesenchymal Transition in Esophageal Carcinoma Cells. Biol. Pharm. Bull. 2020, 43, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N.; Sueoka, E.; Okabe, S.; Fujiki, H. Anti-cancer effects of morphine through inhibition of tumour necrosis factor-alpha release and mRNA expression. Carcinogenesis 1996, 17, 2337–2341. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, D.; Duan, J.; Xu, H.; Li, L.; Tan, D.; Yan, H. The pro- and anti-cancer effects of oxycodone are associated with epithelial growth factor receptor level in cancer cells. Biosci. Rep. 2020, 40, BSR20193524. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Z.; Tang, S.; Wu, Z. Morphine suppresses the immune function of lung cancer by up-regulating MAEL expression. BMC Pharmacol. Toxicol. 2022, 23, 92. [Google Scholar] [CrossRef]
- IARC Monographs Vol 126 Group. Carcinogenicity of opium consumption. Lancet Oncol. 2020, 21, 1407–1408. [Google Scholar] [CrossRef]
- Sheikh, M.; Alcala, K.; Mariosa, D.; Feng, X.; Sarich, P.; Weber, M.; Fournier, A.; Brennan, P.; Parat, M.O.; Pearson, S.A.; et al. MA03.08 Regular Use of Pharmaceutical Opioids and Subsequent Risk of Lung Cancer. J. Thorac. Oncol. 2023, 18, S107–S108. [Google Scholar] [CrossRef]
- Sheikh, M.; Brennan, P.; Mariosa, D.; Robbins, H.A. Opioid medications: An emerging cancer risk factor? Br. J. Anaesth. 2023, 130, e401–e403. [Google Scholar] [CrossRef]
- IARC Working Group on the Identification of Carcinogenic Hazards to Humans. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Opium Consum. 2021, 126, 1–253. [Google Scholar]
- Graves, D.A.; Arrigo, J.M.; Foster, T.S.; Baumann, T.J.; Batenhorst, R.L. Relationship between Plasma Morphine Concentrations and Pharmacologic Effects in Postoperative-Patients Using Patient-Controlled Analgesia. Clin. Pharm. 1985, 4, 41–47. [Google Scholar]
- Fiore, G.; Ghelardini, C.; Bruni, G.; Guarna, M.; Bianchi, E. Differentiation state affects morphine induced cell regulation in neuroblastoma cultured cells. Neurosci. Lett. 2013, 555, 51–56. [Google Scholar] [CrossRef]
- Aherne, G.W.; Piall, E.M.; Twycross, R.G. Serum morphine concentration after oral administration of diamorphine hydrochloride and morphine sulphate. Br. J. Clin. Pharmacol. 1979, 8, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Hatsukari, I.; Hitosugi, N.; Matsumoto, I.; Nagasaka, H.; Sakagami, H. Induction of early apoptosis marker by morphine in human lung and breast carcinoma cell lines. Anticancer. Res. 2003, 23, 2413–2417. [Google Scholar] [PubMed]
- Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; LaRiviere, P.J.; Chen, C.T.; Garcia, J.G.; et al. The novel role of the mu opioid receptor in lung cancer progression: A laboratory investigation. Anesth. Analg. 2011, 112, 558–567. [Google Scholar] [CrossRef]
- Fujioka, N.; Nguyen, J.; Chen, C.; Li, Y.; Pasrija, T.; Niehans, G.; Johnson, K.N.; Gupta, V.; Kratzke, R.A.; Gupta, K. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth. Analg. 2011, 113, 1353–1364. [Google Scholar] [CrossRef]
- Maneckjee, R.; Biswas, R.; Vonderhaar, B.K. Binding of Opioids to Human MCF-7 Breast Cancer Cells and Their Effects on Growth. Cancer Res. 1990, 50, 2234–2238. [Google Scholar]
- Urla, C.; Corteletti, I.; Raible, A.S.; Handgretinger, R.; Fuchs, J.; Warmann, S.W.; Schmid, E. D,L-Methadone enhances the cytotoxic activity of standard chemotherapeutic agents on pediatric rhabdomyosarcoma. J. Cancer Res. Clin. Oncol. 2022, 148, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Nylund, G.; Pettersson, A.; Bengtsson, C.; Khorram-Manesh, A.; Nordgren, S.; Delbro, D.S. Functional expression of mu-opioid receptors in the human colon cancer cell line, HT-29, and their localization in human colon. Dig. Dis. Sci. 2008, 53, 461–466. [Google Scholar] [CrossRef]
- Cheng, S.; Li, L.; Yu, X. PCTA, a pan-cancer cell line transcriptome atlas. Cancer Lett. 2024, 588, 216808. [Google Scholar] [CrossRef]
- Chen, Y.H.; Qin, Y.; Li, L.; Chen, J.; Zhang, X.; Xie, Y.B. Morphine Can Inhibit the Growth of Breast Cancer MCF-7 Cells by Arresting the Cell Cycle and Inducing Apoptosis. Biol. Pharm. Bull. 2017, 40, 1686–1692. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Hui, L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015, 368, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.J.; Lau, P.K.H.; Unsworth, A.S.; Loi, S.; Darcy, P.K.; Kershaw, M.H.; Slaney, C.Y. Tissue-Dependent Tumor Microenvironments and Their impact on immunotherapy Responses. Front. Immunol. 2018, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.W.; Braden, J.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V.; Pires da Silva, I. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy. Front. Immunol. 2022, 13, 1030147. [Google Scholar] [CrossRef]
- Boland, J.W.; McWilliams, K.; Ahmedzai, S.H.; Pockley, A.G. Effects of opioids on immunologic parameters that are relevant to anti-tumour immune potential in patients with cancer: A systematic literature review. Br. J. Cancer 2014, 111, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Aird, W.C. Endothelial cell heterogeneity. Crit. Care Med. 2003, 31, S221–S230. [Google Scholar] [CrossRef]
- Conway, E.M.; Carmeliet, P. The diversity of endothelial cells: A challenge for therapeutic angiogenesis. Genome Biol. 2004, 5, 207. [Google Scholar] [CrossRef]
- Maharaj, A.S.; Saint-Geniez, M.; Maldonado, A.E.; D’Amore, P.A. Vascular endothelial growth factor localization in the adult. Am. J. Pathol. 2006, 168, 639–648. [Google Scholar] [CrossRef]
- Perez-Gutierrez, L.; Li, P.; Ferrara, N. Endothelial cell diversity: The many facets of the crystal. Febs. J. 2024, 291, 3287–3302. [Google Scholar] [CrossRef]
- van Leeuwen, A.L.I.; Dekker, N.A.M.; Ibelings, R.; Tuip-de Boer, A.M.; van Meurs, M.; Molema, G.; van den Brom, C.E. Modulation of angiopoietin-2 and Tie2: Organ specific effects of microvascular leakage and edema in mice. Microvasc. Res. 2024, 154, 104694. [Google Scholar] [CrossRef]
- Minder, P.; Zajac, E.; Quigley, J.P.; Deryugina, E.I. EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 2015, 17, 634–649. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Sun, Z. Spectrum of EGFR aberrations and potential clinical implications: Insights from integrative pan-cancer analysis. Cancer Commun. 2020, 40, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Poroyko, V.A.; Salgia, R.; Moss, J.; Singleton, P.A. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS ONE 2014, 9, e91577. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitham, L.; Sheikh, M.; Hollmann, M.W.; Parat, M.-O. The Comparative Effect of Morphine on Proliferation of Cancer Cell Lines Originating from Different Organs: An In Vitro Study. Pharmaceuticals 2024, 17, 1656. https://doi.org/10.3390/ph17121656
Whitham L, Sheikh M, Hollmann MW, Parat M-O. The Comparative Effect of Morphine on Proliferation of Cancer Cell Lines Originating from Different Organs: An In Vitro Study. Pharmaceuticals. 2024; 17(12):1656. https://doi.org/10.3390/ph17121656
Chicago/Turabian StyleWhitham, Lydia, Mahdi Sheikh, Markus W. Hollmann, and Marie-Odile Parat. 2024. "The Comparative Effect of Morphine on Proliferation of Cancer Cell Lines Originating from Different Organs: An In Vitro Study" Pharmaceuticals 17, no. 12: 1656. https://doi.org/10.3390/ph17121656
APA StyleWhitham, L., Sheikh, M., Hollmann, M. W., & Parat, M.-O. (2024). The Comparative Effect of Morphine on Proliferation of Cancer Cell Lines Originating from Different Organs: An In Vitro Study. Pharmaceuticals, 17(12), 1656. https://doi.org/10.3390/ph17121656