Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure
Abstract
:1. Introduction
Design Strategy
2. Results and Discussion
2.1. Molecular Modeling Studies
2.2. Antimicrobial Investigation
2.3. Correlating Structure to Biological Activity
2.4. In-Silico Investigation of Physicochemical Properties and Drug Likeness
3. Materials and Methods
3.1. Moelcular Modeling
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of 4i–iii and 8i–iii
3.2.2. General Procedures for the Synthesis of Series 12i–iii
3.3. Antimicrobial Agents
3.4. Organisms
3.5. Agar Well Diffusion Assay
3.6. Serial Dilution Susceptibilty Test
3.7. In-Silico Investigations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.; Sayed, M.; Saber, A.F.; Hassanien, R.; Kamal El-Dean, A.M.; Tolba, M.S. Synthesis, characterization, and antimicrobial activity of new thienopyrimidine derivatives. Polycycl. Aromat. Compd. 2022, 42, 3079–3088. [Google Scholar] [CrossRef]
- Rashad, A.E.; Shamroukh, A.H.; Abdel-Megeid, R.E.; Mostafa, A.; El-Shesheny, R.; Kandeil, A.; Ali, M.A.; Banert, K. Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur. J. Med. Chem. 2010, 45, 5251–5257. [Google Scholar] [CrossRef]
- Tolba, M.S.; Sayed, A.M.; Sayed, M.; Ahmed, M. Design, synthesis, biological evaluation, and molecular docking of some new Thieno[2,3-d] pyrimidine derivatives. J. Mol. Struct. 2021, 1246, 131179. [Google Scholar] [CrossRef]
- Tolba, M.S.; Ahmed, M.; Kamal El-Dean, A.M.; Hassanien, R.; Farouk, M. Synthesis of New Fused Thienopyrimidines Derivatives as Anti-Inflammatory Agents. J. Heterocycl. Chem. 2018, 55, 408–418. [Google Scholar] [CrossRef]
- Tasler, S.; Baumgartner, R.; Ammendola, A.; Schachtner, J.; Wieber, T.; Blisse, M.; Rath, S.; Zaja, M.; Klahn, P.; Quotschalla, U. Thienopyrimidines as β3-adrenoceptor agonists: Hit-to-lead optimization. Bioorg. Med. Chem. Lett. 2010, 20, 6108–6115. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Vilchèze, C.; Chakraborty, S.; Wang, X.; Kim, H.; Anisetti, M.; Ekins, S.; Rhee, K.Y.; Jacobs, W.R.; Freundlich, J.S. Evolution of a thienopyrimidine antitubercular relying on medicinal chemistry and metabolomics insights. Tetrahedron Lett. 2015, 56, 3246–3250. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.S.; Yu, Z.; Hutton, J.A.; Wright, M.H.; Brannigan, J.A.; Paape, D.; Roberts, S.M.; Sutherell, C.L.; Ritzefeld, M.; Wilkinson, A.J. Novel thienopyrimidine inhibitors of Leishmania N-myristoyltransferase with on-target activity in intracellular amastigotes. J. Med. Chem. 2020, 63, 7740–7765. [Google Scholar] [CrossRef]
- Ghith, A.; Ismail, N.S.M.; Youssef, K.; Abouzid, K.A.M. Medicinal Attributes of Thienopyrimidine Based Scaffold Targeting Tyrosine Kinases and Their Potential Anticancer Activities. Arch. Pharm. 2017, 350, 1700242. [Google Scholar] [CrossRef]
- Elmongy, E.I. Thieno[2,3-d] pyrimidine derivatives: Synthetic approaches and their FLT3 kinase inhibition. J. Heterocycl. Chem. 2020, 57, 2067–2078. [Google Scholar] [CrossRef]
- Elmongy, E.I.; Altwaijry, N.; Attallah, N.G.; AlKahtani, M.M.; Henidi, H.A. In-silico screening of novel synthesized thienopyrimidines targeting fms related receptor tyrosine kinase-3 and their in-vitro biological evaluation. Pharmaceuticals 2022, 15, 170. [Google Scholar] [CrossRef]
- Elmongy, E.I.; Henidi, H.A. In Silico Evaluation of a Promising Key Intermediate Thieno[2,3-d] Pyrimidine Derivative with Expected JAK2 Kinase Inhibitory Activity. Molbank 2022, 2022, M1352. [Google Scholar] [CrossRef]
- Elsebaie, H.A.; El-Moselhy, T.F.; El-Bastawissy, E.A.; Elberembally, K.M.; Badi, R.M.; Elkaeed, E.B.; Shaldam, M.A.; Eldehna, W.M.; Tawfik, H.O. Development of new thieno[2,3-d]pyrimidines as dual EGFR and STAT3 inhibitors endowed with anticancer and pro-apoptotic activities. Bioorg. Chem. 2024, 143, 107101. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; Abdelkhalek, A.S.; Rezq, S.; Abu Kull, M.E.; Romero, D.G.; Kothayer, H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur. J. Med. Chem. 2023, 260, 115724. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, E.; Kedr, M.; Abotaleb, N.; Abbas, S. Design and synthesis of new thienopyrimidine derivatives along with their antioxidant activity. Egypt. J. Chem. 2021, 64, 6857–6867. [Google Scholar] [CrossRef]
- Eissa, K.I.; Kamel, M.M.; Mohamed, L.W.; Doghish, A.S.; Alnajjar, R.; Al-Karmalawy, A.A.; Kassab, A.E. Design, synthesis, and biological evaluation of thienopyrimidine derivatives as multifunctional agents against Alzheimer’s disease. Drug Dev. Res. 2023, 84, 937–961. [Google Scholar] [CrossRef] [PubMed]
- Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Rao, C.V. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno [2,3-d] pyrimidine derivatives. Eur. J. Med. Chem. 2012, 58, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sharaky, M.; Kamel, M.; Aziz, M.A.; Omran, M.; Rageh, M.M.; Abouzid, K.A.; Shouman, S.A. Design, synthesis and biological evaluation of a new thieno[2,3-d]pyrimidine-based urea derivative with potential antitumor activity against tamoxifen sensitive and resistant breast cancer cell lines. J. Enzym. Inhib. Med. Chem. 2020, 35, 1641–1656. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, E.I.; Attallah, N.G.M.; Altwaijry, N.; AlKahtani, M.M.; Henidi, H.A. Design and synthesis of new thiophene/thieno[2,3-d]pyrimidines along with their cytotoxic biological evaluation as tyrosine kinase inhibitors in addition to their apoptotic and autophagic induction. Molecules 2021, 27, 123. [Google Scholar] [CrossRef]
- Sayed, M.T.M.; Hassan, R.A.; Halim, P.A.; El-Ansary, A.K. Recent updates on thienopyrimidine derivatives as anticancer agents. Med. Chem. Res. 2023, 32, 659–681. [Google Scholar] [CrossRef]
- Abu-Hashem, A.A.; Abu-Zied, K.M.; AbdelSalam Zaki, M.E.; El-Shehry, M.F.; Awad, H.M.; Khedr, M.A. Design, synthesis, and anticancer potential of the enzyme (PARP-1) inhibitor with computational studies of new triazole, thiazolidinone, -thieno [2,3-d] pyrimidinones. Lett. Drug Des. Discov. 2020, 17, 799–817. [Google Scholar] [CrossRef]
- Kousovista, R.; Athanasiou, C.; Liaskonis, K.; Ivopoulou, O.; Karalis, V. Association of antibiotic use with the resistance epidemiology of Pseudomonas aeruginosa in a hospital setting: A four-year retrospective time series analysis. Sci. Pharm. 2021, 89, 13. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Kartsev, V.G.; Geronikaki, A.; Spinelli, D.; Petrou, A.; Hakobyan, E.K.; Glamoclija, J.; Ivanov, M.; Sokovic, M.; Hovakimyan, A.A. Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1, 3-thiazol-2-ylacetamides of Condensed Pyrido [3′,2′:4,5] furo (thieno)[3,2-d] pyrimidines. Curr. Top. Med. Chem. 2020, 20, 2192–2209. [Google Scholar] [CrossRef] [PubMed]
- Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hakobyan, E.K.; Kartsev, V.G.; Petrou, A.; Hovakimyan, A.A. Synthesis and antimicrobial activity of new amino derivatives of pyrano [4″,3″:4′,5′] pyrido [3′,2′:4,5] thieno [3,2-d] pyrimidine. An. Acad. Bras. Ciências 2018, 90, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Aruna Kumari, M.; Triloknadh, S.; Harikrishna, N.; Vijjulatha, M.; Venkata Rao, C. Synthesis, Antibacterial Activity, and Docking Studies of 1,2,3-triazole-tagged Thieno [2,3-d] pyrimidinone Derivatives. J. Heterocycl. Chem. 2017, 54, 3672–3681. [Google Scholar] [CrossRef]
- Lagardère, P.; Fersing, C.; Masurier, N.; Lisowski, V. Thienopyrimidine: A promising Scaffold to access anti-infective agents. Pharmaceuticals 2021, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Ezabadi, I.R.; Camoutsis, C.; Zoumpoulakis, P.; Geronikaki, A.; Soković, M.; Glamočilija, J.; Ćirić, A. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg. Med. Chem. 2008, 16, 1150–1161. [Google Scholar] [CrossRef]
- Mohi El-Deen, E.M.; Anwar, M.M.; El-Gwaad, A.A.A.; Karam, E.A.; El-Ashrey, M.K.; Kassab, R.R. Novel pyridothienopyrimidine derivatives: Design, synthesis and biological evaluation as antimicrobial and anticancer agents. Molecules 2022, 27, 803. [Google Scholar] [CrossRef]
- Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Elaasser, M.M.; Abdel-Aziz, M.M. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur. J. Med. Chem. 2014, 85, 480–486. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. Sulfa and trimethoprim-like drugs–antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J. Enzym. Inhib. Med. Chem. 2014, 29, 379–387. [Google Scholar] [CrossRef]
- Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A.H.; Croft, S.L. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. Med. Chem. Lett. 2001, 11, 2655–2657. [Google Scholar] [CrossRef]
- Scarim, C.B.; Chelucci, R.C.; Dos Santos, J.L.; Chin, C.M. The use of Sulfonamide Derivatives in the Treatment of Trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. Med. Chem. 2020, 16, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Q.; Flavin, M.T.; Flavin, J. Combating multidrug-resistant Gram-negative bacterial infections. Expert Opin. Investig. Drugs 2014, 23, 163–182. [Google Scholar] [CrossRef]
- Zakšauskas, A.; Čapkauskaitė, E.; Jezepčikas, L.; Linkuvienė, V.; Paketurytė, V.; Smirnov, A.; Leitans, J.; Kazaks, A.; Dvinskis, E.; Manakova, E. Halogenated and di-substituted benzenesulfonamides as selective inhibitors of carbonic anhydrase isoforms. Eur. J. Med. Chem. 2020, 185, 111825. [Google Scholar] [CrossRef]
- Ammar, Y.A.; El-Sharief, A.M.S.; Belal, A.; Abbas, S.Y.; Mohamed, Y.A.; Mehany, A.B.; Ragab, A. Design, synthesis, antiproliferative activity, molecular docking and cell cycle analysis of some novel (morpholinosulfonyl) isatins with potential EGFR inhibitory activity. Eur. J. Med. Chem. 2018, 156, 918–932. [Google Scholar] [CrossRef]
- El-Sharief, A.M.S.; Ammar, Y.A.; Belal, A.; El-Sharief, M.A.S.; Mohamed, Y.A.; Mehany, A.B.; Ali, G.A.E.; Ragab, A. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers. Bioorg. Chem. 2019, 85, 399–412. [Google Scholar] [CrossRef]
- Isik, S.; Kockar, F.; Aydin, M.; Arslan, O.; Guler, O.O.; Innocenti, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates. Bioorg. Med. Chem. 2009, 17, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Bouissane, L.; El Kazzouli, S.; Léonce, S.; Pfeiffer, B.; Rakib, E.; Khouili, M.; Guillaumet, G. Synthesis and biological evaluation of N-(7-indazolyl) benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg. Med. Chem. 2006, 14, 1078–1088. [Google Scholar] [CrossRef]
- Camoutsis, C.; Geronikaki, A.; Ciric, A.; Soković, M.; Zoumpoulakis, P.; Zervou, M. Sulfonamide-1,2,4-thiadiazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Chem. Pharm. Bull. 2010, 58, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004, 47, 550–557. [Google Scholar] [CrossRef]
- Ammar, Y.A.; El-Sharief, A.; Mohamed, Y.A.; Mehany, A.B.; Ragab, A. Synthesis, spectral characterization and pharmacological evaluation of novel thiazole-oxoindole hybrid compounds as potential anticancer agents. Al-Azhar Bull. Sci. 2018, 29, 25–37. [Google Scholar]
- Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M. Synthesis and biological evaluation of the 1, 5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib). J. Med. Chem. 1997, 40, 1347–1365. [Google Scholar] [CrossRef] [PubMed]
- Castaño, L.F.; Quiroga, J.; Abonia, R.; Insuasty, D.; Vidal, O.M.; Seña, R.; Rubio, V.; Puerto, G.; Nogueras, M.; Cobo, J. Synthesis, Anticancer and Antitubercular Properties of New Chalcones and Their Nitrogen-Containing Five-Membered Heterocyclic Hybrids Bearing Sulfonamide Moiety. Int. J. Mol. Sci. 2022, 23, 12589. [Google Scholar] [CrossRef] [PubMed]
- Eldeeb, M.; Sanad, E.F.; Ragab, A.; Ammar, Y.A.; Mahmoud, K.; Ali, M.M.; Hamdy, N.M. Anticancer effects with molecular docking confirmation of newly synthesized isatin sulfonamide molecular hybrid derivatives against hepatic cancer cell lines. Biomedicines 2022, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine hybrid with some new pyridine-2-one derivatives: Design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics 2021, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.L.; Agarwal, S.M.; Chavalitshewinkoon-Petmitr, P.; Suksangpleng, T.; Ahmad, K.; Avecilla, F.; Azam, A. Thienopyrimidine sulphonamide hybrids: Design, synthesis, antiprotozoal activity and molecular docking studies. RSC Adv. 2016, 6, 90371–90383. [Google Scholar] [CrossRef]
- Sławiński, J.; Żołnowska, B.; Pirska, D.; Kędzia, A.; Kwapisz, E. Synthesis and antibacterial activity of novel 4-chloro-2-mercaptobenzenesulfonamide derivatives. J. Enzym. Inhib. Med. Chem. 2013, 28, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, S.V.; Vlasova, O.D.; Severina, H.I.; Krolenko, K.Y.; Borysov, O.V.; Abu Sharkh, A.I.M.; Vlasov, V.S.; Georgiyants, V.A. Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno [2,3-d]pyrimidines. Sci. Pharm. 2021, 89, 49. [Google Scholar] [CrossRef]
- Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021, 13, 259–272. [Google Scholar] [CrossRef]
- Teng, X.; Wang, Y.; Gu, J.; Shi, P.; Shen, Z.; Ye, L. Antifungal agents: Design, synthesis, antifungal activity and molecular docking of phloroglucinol derivatives. Molecules 2018, 23, 3116. [Google Scholar] [CrossRef]
- Malwal, S.R.; Shang, N.; Liu, W.; Li, X.; Zhang, L.; Chen, C.-C.; Guo, R.-T.; Oldfield, E. A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins. ACS Omega 2022, 7, 22601–22612. [Google Scholar] [CrossRef]
- Prabhakar, V.; Babu, K.S.; Ravindranath, L.; Venkateswarlu, B. Synthesis and biological activities of novel thieno[3,2-d] pyrimidine derivatives. Asian J. Res. Chem. 2017, 10, 280–290. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Fields, U.A.P. MolSoft ICM Quarterly; MolSoft LLC: San Diego, CA, USA, 2012. [Google Scholar]
- Elmongy, E.I.; Binjubair, F.A.; Alshehri, O.Y.; Baeshen, K.A.; Almukhalfi, Z.A.; Henidi, H.A. In Silico Screening and Anticancer-Apoptotic Evaluation of Newly Synthesized Thienopyrimidine/Sulfonamide Hybrids. Int. J. Mol. Sci. 2023, 24, 10827. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today 2011, 16, 65–72. [Google Scholar] [CrossRef]
- Heaslet, H.; Harris, M.; Fahnoe, K.; Sarver, R.; Putz, H.; Chang, J.; Subramanyam, C.; Barreiro, G.; Miller, J.R. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins Struct. Funct. Bioinform. 2009, 76, 706–717. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Archer, M.; Martel, P.; Miranda, S.; Thomaz, M.; Enguita, F.J.; Baptista, R.P.; Pinho e Melo, E.; Sousa, N.; Cravador, A.; et al. Crystal structures of the free and sterol-bound forms of β-cinnamomin. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2006, 1764, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, E.I.; Ahmed, A.A.S.; El Sayed, I.E.T.; Fathy, G.; Awad, H.M.; Salman, A.U.; Hamed, M.A. Synthesis, Biocidal and Antibiofilm Activities of New Isatin–Quinoline Conjugates against Multidrug-Resistant Bacterial Pathogens along with Their In-Silico Screening. Antibiotics 2022, 11, 1507. [Google Scholar] [CrossRef]
- Gewald, K.; Schinke, E.; Böttcher, H. Heterocyclen aus CH-aciden Nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem. Berichte 1966, 99, 94–100. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Alsulami, M.A.; Bukhari, S.I.; Moubayed, N.M.S.; Al-Mutairi, M.S.; Attia, M.I. Design, Synthesis, and Antimicrobial Activity of Certain New Indole-1,2,4 Triazole Conjugates. Molecules 2021, 26, 2292. [Google Scholar] [CrossRef]
Compound | Binding Energy (kcal/mol) | RMSD (Å) | Residues Involved in Binding and Types of Interaction |
---|---|---|---|
4i | −7.1696 | 1.4085 | ASN 18 (H-donor) ASN 18 (H-donor) |
4ii | −7.8730 | 1.3052 | ASN 18 (H-donor) THR 46 (H-acceptor) |
4iii | −8.2734 | 1.7984 | GLN 95 (H-acceptor) PHE 92 (H-pi) |
8i | −8.3354 | 1.2613 | ALA 7 (H-acceptor) THR 46 (pi H) |
8ii | −8.3557 | 1.6653 | ASN 18 (H-donor) GLN 95 (H-acceptor) THR 46 (H-acceptor) |
8iii | −8.1394 | 1.9062 | ASP 27 (A) H-donor |
12i | −7.2966 | 1.2439 | THR 46 (H-donor) GLN 95(H-acceptor) ASN 18 (pi H) |
12ii | −8.7115 | 1.3166 | THR 46 (H-donor), LYS 45 (H-acceptor), GLN 95 (H-acceptor) |
12iii | −7.8747 | 1.6470 | THR 46 (H-donor) LYS 45 (pi-cation) GLN 95 (pi H) THR 96 (pi H) |
Compound | Binding Energy (kcal/mol) | RMSD (Å) | Residues Involved in Binding and Types of Interaction |
---|---|---|---|
4i | −7.2835 | 1.4140 | MET 50 (H-donor) |
4ii | −7.9393 | 1.2122 | THR 74 (H-donor) TYR 47 H-acceptor VAL 75 (pi-H) TYR 87 (pi-H) |
4iii | −6.8607 | 1.3582 | THR 74 (H-donor) VAL75 (pi-H) |
8i | −7.6390 | 1.3130 | THR 74 (H-donor) |
8ii | −7.9635 | 1.4180 | MET 35 (pi H) |
8iii | −8.2032 | 1.8383 | TYR 47 (H-donor) TYR 47 (H-donor) |
12i | −8.3712 | 1.8964 | TYR 12 (H-donor) LEU 19 (pi H) |
12ii | −9.3391 | 1.7258 | MET 50 (H-donor) TYR 47 (H-acceptor) |
12iii | −9.1466 | 1.4663 | MET 50 (H-donor) TYR 12 (H-donor) |
Compounds | Gram-Positive Bacteria | Gram-Negative Bacteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | S. epidermidis | E. faecalis | E. coli | P. aeruginosa | K. pneumoniae | |||||||
*GIZ | MIC | *GIZ | MIC | *GIZ | MIC | *GIZ | MIC | *GIZ | MIC | *GIZ | MIC | |
4i | 0 | - | 0 | - | 0 | - | 0 | 0 | - | 0 | - | |
4ii | 15.33 ± 1.15 | 500 | 0 | - | 0 | - | 18 ± 0 | 125 | 0 | - | 0 | - |
4iii | 0 | - | 0 | - | 0 | - | 0 | - | 0 | - | 0 | - |
8i | 0 | - | 0 | - | 0 | - | 0 | - | 0 | - | 0 | - |
8ii | 16 ± 1 | 500 | 0 | - | 0 | - | 17 ± 0 | 125 | 0 | - | 0 | - |
8iii | 22.33 ± 0.58 | 250 | 0 | - | 0 | - | 17.33 ± 0.58 | 125 | 0 | - | 0 | - |
12i | 0 | - | 0 | - | 0 | - | 0 | 0 | - | 0 | - | |
12ii | 24.67 ± 0.58 | 125 | 0 | - | 0 | - | 23.67 ± 1.53 | 125 | 0 | - | 0 | - |
12iii | 19 ± 1 | 250 | 0 | - | 0 | - | 19.67 ± 0.58 | 125 | 0 | - | 0 | - |
Sulfadiazine | 29.67 ± 0.58 | 250 | 0 | - | 0 | - | 27.67 ± 1.15 | 31.25 | 0 | - | 0 | - |
Sulfamethoxazole | 37.67 ± 1.15 | 125 | 15 ± 0 | - | 0 | - | 30.67 ± 1.15 | 15.625 | 0 | - | 0 | - |
Compounds | C. albicans | C. parapsilosis | ||
---|---|---|---|---|
*GIZ | MIC | *GIZ | MIC | |
4i | 0 | - | 0 | - |
4ii | 9 ± 0 | 62.5 | 8.33 ± 0.58 | 125 |
4iii | 0 | - | 0 | - |
8i | 0 | - | 0 | - |
8ii | 9.33 ± 0.58 | 62.5 | 9 ± 0 | 125 |
8iii | 17.67 ± 0.58 | 31.25 | 15.67 ± 0.58 | 62.5 |
12i | 11.67 ± 1.15 | 125 | 10.33 ± 0.58 | 125 |
12ii | 7.67 ± 0.58 | 250 | 8.67 ± 0.58 | 500 |
12iii | 10.33 ± 0.58 | 125 | 9.33 ± 0.58 | 125 |
Sulfadiazine | 8.67 ± 1.15 | 125 | 9 ± 0 | 125 |
Sulfamethoxazole | 10.67 ± 0.58 | 62.5 | 10.67 ± 0.58 | 62.5 |
Compounds | M.Wt | HBA | HBD | TPSA | Rotatable Bonds | Lipophilicity | Log S | iLog P | Lipinski Violations | Drug Likeness |
---|---|---|---|---|---|---|---|---|---|---|
4i | 402.49 | 5 | 4 | 170.47 | 5 | 2.92 | −4.26 | 1.51 | 0 | 1.58 |
4ii | 438.53 | 6 | 2 | 146.38 | 5 | 3.8 | −5.14 | 2.66 | 0 | 1.03 |
4iii | 441.53 | 6 | 2 | 146.63 | 5 | 4.36 | −5.49 | 2.59 | 0 | 1.08 |
8i | 434.49 | 7 | 4 | 196.77 | 8 | 2.61 | −4.03 | 1.75 | 0 | 1.19 |
8ii | 470.52 | 8 | 2 | 172.68 | 8 | 3.48 | −4.91 | 2.78 | 0 | 0.88 |
8iii | 473.53 | 8 | 2 | 172.93 | 8 | 4.05 | −5.26 | 3.1 | 0 | 0.73 |
12i | 489.13 | 6 | 5 | 208.68 | 8 | 1.6 | −3.69 | 2 | 1 | 1.23 |
12ii | 525.60 | 7 | 3 | 184.59 | 8 | 2.47 | −4.56 | 2.23 | 2 | 1.35 |
12iii | 528.60 | 7 | 3 | 184.84 | 8 | 3.04 | −4.92 | 2.11 | 2 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmongy, E.I.; Alanazi, W.S.; Aldawsari, A.I.; Alfaouri, A.A.; Binsuwaidan, R. Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals 2024, 17, 188. https://doi.org/10.3390/ph17020188
Elmongy EI, Alanazi WS, Aldawsari AI, Alfaouri AA, Binsuwaidan R. Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals. 2024; 17(2):188. https://doi.org/10.3390/ph17020188
Chicago/Turabian StyleElmongy, Elshaymaa I., Wejdan S. Alanazi, Alhanouf I. Aldawsari, Asma A. Alfaouri, and Reem Binsuwaidan. 2024. "Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure" Pharmaceuticals 17, no. 2: 188. https://doi.org/10.3390/ph17020188
APA StyleElmongy, E. I., Alanazi, W. S., Aldawsari, A. I., Alfaouri, A. A., & Binsuwaidan, R. (2024). Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals, 17(2), 188. https://doi.org/10.3390/ph17020188