Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration
Abstract
:1. Introduction
2. Results
2.1. Nine-Month-Old Female Rats Had Higher Baseline Relative High Gamma Power
2.2. MK-801 Differentially Affected Spectral Frequency Distribution in 9-Month-Old Female Rats
2.3. Nine-Month-Old Females Display Lower MK-801-Induced Elevations in High Gamma Power Compared to Other Groups
2.4. MK-801 Dose-Dependently Increased Locomotor Activity in All Groups
3. Discussion
Conclusions
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Surgery
4.4. EEG Recordings
4.5. Sleep Staging and Analysis
4.6. qEEG Spectral Power Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.; Ma, X.; Wang, G.; Yang, J.; Wang, C. Why sex differences in schizophrenia? J. Transl. Neurosci. 2016, 1, 37–42. [Google Scholar]
- Brzezinski-Sinai, N.A.; Brzezinski, A. Schizophrenia and Sex Hormones: What Is the Link? Front. Psychiatry 2020, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.A. Sex differences in animal models of schizophrenia shed light on the underlying pathophysiology. Neurosci. Biobehav. Rev. 2016, 67, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Abel, K.M.; Drake, R.; Goldstein, J.M. Sex differences in schizophrenia. Int. Rev. Psychiatry 2010, 22, 417–428. [Google Scholar] [CrossRef] [PubMed]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women’s health at midlife: A progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause 2019, 26, 1213–1227. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Volianskis, A.; Bannister, N.; France, G.; Hanna, L.; Mercier, M.; Tidball, P.; Fang, G.; Irvine, M.W.; Costa, B.M.; et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2013, 64, 13–26. [Google Scholar] [CrossRef]
- Javitt, D.C. Glutamate and Schizophrenia: Phencyclidine, N-Methyl-d-Aspartate Receptors, and Dopamine–Glutamate Interactions. Int. Rev. Neurobiol. 2007, 78, 69–108. [Google Scholar] [CrossRef]
- Jones, C.A.; Watson, D.J.G.; Fone, K. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef]
- Moghaddam, B.; Jackson, M.E. Glutamatergic Animal Models of Schizophrenia. Ann. N. Y. Acad. Sci. 2003, 1003, 131–137. [Google Scholar] [CrossRef]
- Cosgrove, J.; Newell, T.G. Recovery of neuropsychological functions during reduction in use of phencyclidine. J. Clin. Psychol. 1991, 47, 159–169. [Google Scholar] [CrossRef]
- Davies, B.M.; Beech, H.R. The Effect of 1-Arylcyclohexylamine (Sernyl) on Twelve Normal Volunteers. J. Ment. Sci. 1960, 106, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Karper, L.P.; Seibyl, J.P.; Freeman, G.K.; Delaney, R.; Bremner, J.D.; Heninger, G.R.; Bowers, M.B., Jr.; Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994, 51, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Luby, E.D.; Cohen, B.D.; Rosenbaum, G.; Gottlieb, J.S.; Kelley, R. Study of a New Schizophrenomimetic Drug—Sernyl. Arch. Neurol. Psychiatry 1959, 81, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Lahti, A.C.; Koffel, B.; LaPorte, D.; A Tamminga, C. Subanesthetic Doses of Ketamine Stimulate Psychosis in Schizophrenia. Neuropsychopharmacology 1995, 13, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Ju, P.; Cui, D. The involvement of N-methyl-d-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia. Acta Biochim. Biophys. Sin. 2016, 48, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, L.V.; Beneyto, M.; Haroutunian, V.; Meador-Woodruff, J.H. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol. Psychiatry 2006, 11, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Bitanihirwe, B.; Lim, M.; Kelley, J.; Kaneko, T.; Woo, T. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 2009, 9, 71. [Google Scholar] [CrossRef]
- Akbarian, S.; Sucher, N.; Bradley, D.; Tafazzoli, A.; Trinh, D.; Hetrick, W.; Potkin, S.; Sandman, C.; Bunney, W.; Jones, E. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 1996, 16, 19–30. [Google Scholar] [CrossRef]
- Leiser, S.C.; Dunlop, J.; Bowlby, M.R.; Devilbiss, D.M. Aligning strategies for using EEG as a surrogate biomarker: A review of preclinical and clinical research. Biochem. Pharmacol. 2011, 81, 1408–1421. [Google Scholar] [CrossRef]
- A English, B.; Thomas, K.; Johnstone, J.; Bazih, A.; Gertsik, L.; Ereshefsky, L. Use of translational pharmacodynamic biomarkers in early-phase clinical studies for schizophrenia. Biomark. Med. 2014, 8, 29–49. [Google Scholar] [CrossRef]
- Wilson, F.J.; Leiser, S.C.; Ivarsson, M.; Christensen, S.R.; Bastlund, J.F. Can pharmaco-electroencephalography help improve survival of central nervous system drugs in early clinical development? Drug Discov. Today 2014, 19, 282–288. [Google Scholar] [CrossRef]
- Tanaka-Koshiyama, K.; Koshiyama, D.; Miyakoshi, M.; Joshi, Y.B.; Molina, J.L.; Sprock, J.; Braff, D.L.; Light, G.A. Abnormal Spontaneous Gamma Power Is Associated With Verbal Learning and Memory Dysfunction in Schizophrenia. Front. Psychiatry 2020, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Pipa, G.; Neuenschwander, S.; Wibral, M.; Singer, W. A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: Function, mechanisms and impairment. Prog. Biophys. Mol. Biol. 2011, 105, 14–28. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef]
- Yadav, S.; Nizamie, S.H.; Das, B.; Das, J.; Tikka, S.K. Resting state quantitative electroencephalogram gamma power spectra in patients with first episode psychosis: An observational study. Asian J. Psychiatry 2021, 57, 102550. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, T.; Kambe, D.; Karasawa, J.; Chaki, S. Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms. Neuroscience 2014, 280, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Hiyoshi, T.; Kambe, D.; Karasawa, J.-I.; Chaki, S. Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology 2014, 85, 384–396. [Google Scholar] [CrossRef]
- Carlen, M.; Meletis, K.; Siegle, J.H.; Cardin, J.A.; Futai, K.; Vierling-Claassen, D.; Rühlmann, C.; Jones, S.R.; Deisseroth, K.; Sheng, M.; et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol. Psychiatry 2012, 17, 537–548. [Google Scholar] [CrossRef]
- Kocsis, B. Differential Role of NR2A and NR2B Subunits in N-Methyl-D-Aspartate Receptor Antagonist-Induced Aberrant Cortical Gamma Oscillations. Biol. Psychiatry 2012, 71, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.; Cotel, M.; McCarthy, A.; Edgar, D.; Tricklebank, M.; O’neill, M.; Jones, M.; Wafford, K. Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia. Neuropharmacology 2012, 62, 1359–1370. [Google Scholar] [CrossRef]
- Shaw, A.D.; Saxena, N.; Jackson, L.E.; Hall, J.E.; Singh, K.D.; Muthukumaraswamy, S.D. Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. Eur. Neuropsychopharmacol. 2015, 25, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Sibilska, S.; Mofleh, R.; Kocsis, B. Development of network oscillations through adolescence in male and female rats. Front. Cell. Neurosci. 2023, 17, 1135154. [Google Scholar] [CrossRef] [PubMed]
- Swift, K.M.; Keus, K.; Echeverria, C.G.; Cabrera, Y.; Jimenez, J.; Holloway, J.; Clawson, B.C.; Poe, G.R. Sex differences within sleep in gonadally intact rats. Sleep 2020, 43, zsz289. [Google Scholar] [CrossRef] [PubMed]
- Holter, K.M.; Lekander, A.D.; LaValley, C.M.; Bedingham, E.G.; Pierce, B.E.; Sands, L.P.I.; Lindsley, C.W.; Jones, C.K.; Gould, R.W. Partial mGlu5 Negative Allosteric Modulator M-5MPEP Demonstrates Antidepressant-Like Effects on Sleep Without Affecting Cognition or Quantitative EEG. Front. Neurosci. 2021, 15, 700822. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.B.; DeLisi, L.E. Issues related to sex differences in antipsychotic treatment. Curr. Opin. Psychiatry 2016, 29, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Traub, R.D.; Jefferys, J.G.; Whittington, M.A. Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells. J. Comput. Neurosci. 1997, 4, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Homayoun, H.; Moghaddam, B. NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons. J. Neurosci. 2007, 27, 11496–11500. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, G.; Lewis, D.A. NMDA Receptor Hypofunction, Parvalbumin-Positive Neurons, and Cortical Gamma Oscillations in Schizophrenia. Schizophr. Bull. 2012, 38, 950–957. [Google Scholar] [CrossRef]
- Tiesinga, P.; Sejnowski, T.J. Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? Neuron 2009, 63, 727–732. [Google Scholar] [CrossRef]
- Ułas, J.; Cotman, C. Decreased expression of N-methyl-d-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience 1997, 79, 973–982. [Google Scholar] [CrossRef]
- Vyklicky, V.; Korinek, M.; Smejkalova, T.; Balik, A.; Krausova, B.; Kaniakova, M.; Lichnerova, K.; Cerny, J.; Krusek, J.; Dittert, I.; et al. Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiol. Res. 2014, 63, S191–S203. [Google Scholar] [CrossRef]
- McQuail, J.A.; Beas, B.S.; Kelly, K.B.; Hernandez, C.M.; Bizon, J.L.; Frazier, C.J. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021, 197, 108720. [Google Scholar] [CrossRef]
- Magnusson, K.R.; Nelson, S.E.; Young, A.B. Age-related changes in the protein expression of subunits of the NMDA receptor. Mol. Brain Res. 2002, 99, 40–45. [Google Scholar] [CrossRef]
- Piggott, M.A.; Perry, E.K.; Perry, R.H.; Court, J.A. [3H]MK-801 binding to the NMDA receptor complex, and its modulation in human frontal cortex during development and aging. Brain Res. 1992, 588, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Saransaari, P.; Oja, S.S. Dizocilpine binding to cerebral cortical membranes from developing and ageing mice. Mech. Ageing Dev. 1995, 85, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. NMDA Receptor Function During Senescence: Implication on Cognitive Performance. Front. Neurosci. 2015, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Adams, B.W. Reversal of Phencyclidine Effects by a Group II Metabotropic Glutamate Receptor Agonist in Rats. Science 1998, 281, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Andiné, P.; Widermark, N.; Axelsson, R.; Nyberg, G.; Olofsson, U.; Mårtensson, E.; Sandberg, M. Characterization of MK-801-induced behavior as a putative rat model of psychosis. J. Pharmacol. Exp. Ther. 1999, 290, 1393–1408. [Google Scholar] [PubMed]
- Nabeshima, T.; Yamaguchi, K.; Yamada, K.; Hiramatsu, M.; Kuwabara, Y.; Furukawa, H.; Kameyama, T. Sex-dependent differences in the pharmacological actions and pharmacokinetics of phencyclidine in rats. Eur. J. Pharmacol. 1984, 97, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Keavy, D.; Bristow, L.J.; Sivarao, D.V.; Batchelder, M.; King, D.; Thangathirupathy, S.; Macor, J.E.; Weed, M.R. The qEEG Signature of Selective NMDA NR2B Negative Allosteric Modulators; A Potential Translational Biomarker for Drug Development. PLoS ONE 2016, 11, e0152729. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, K.; Zsiros, V.; Jiang, Z.; Nakao, K.; Kolata, S.; Zhang, S.; Belforte, J.E. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2012, 62, 1574–1583. [Google Scholar] [CrossRef]
- Thippaiah, S.M.; Pradhan, B.; Voyiaziakis, E.; Shetty, R.; Iyengar, S.; Olson, C.; Tang, Y.-Y. Possible Role of Parvalbumin Interneurons in Meditation and Psychiatric Illness. J. Neuropsychiatry 2022, 34, 113–123. [Google Scholar] [CrossRef]
- Kustermann, T.; Rockstroh, B.; Kienle, J.; Miller, G.A.; Popov, T. Deficient attention modulation of lateralized alpha power in schizophrenia. Psychophysiology 2016, 53, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Knyazeva, M.G.; Jalili, M.; Meuli, R.; Hasler, M.; De Feo, O.; Do, K.Q. Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatr. Scand. 2008, 118, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Searles, S.; Makarewicz, J.A.; Dumas, J.A. The role of estradiol in schizophrenia diagnosis and symptoms in postmenopausal women. Schizophr. Res. 2018, 196, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Koebele, S.V.; Bimonte-Nelson, H.A. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 2016, 87, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Frick, K.M. Estrogens and age-related memory decline in rodents: What have we learned and where do we go from here? Horm. Behav. 2009, 55, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.M.; Fink, S.E.; Janssen, W.G.; Shah, R.A.; Morrison, J.H. Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J. Comp. Neurol. 2004, 474, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.M.; Morrison, J.H.; Gore, A.C. N-Methyl-d-Aspartate Receptor mRNA Levels Change during Reproductive Senescence in the Hippocampus of Female Rats. Exp. Neurol. 2001, 170, 171–179. [Google Scholar] [CrossRef]
- Cyr, M.; Thibault, C.; Morissette, M.; Landry, M.; Di Paolo, T. Estrogen-like Activity of Tamoxifen and Raloxifene on NMDA Receptor Binding and Expression of its Subunits in Rat Brain. Neuropsychopharmacology 2001, 25, 242–257. [Google Scholar] [CrossRef]
- Gogos, A.; Sbisa, A.M.; Sun, J.; Gibbons, A.; Udawela, M.; Dean, B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int. J. Endocrinol. 2015, 2015, 615356. [Google Scholar] [CrossRef]
- Picard, N.; Takesian, A.E.; Fagiolini, M.; Hensch, T.K. NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity. Mol. Psychiatry 2019, 24, 828–838. [Google Scholar] [CrossRef]
- Sheng, M.; Cummings, J.; Roldan, L.A.; Jan, Y.N.; Jan, L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994, 368, 144–147. [Google Scholar] [CrossRef]
- Zhong, J.; Carrozza, D.P.; Williams, K.; Pritchett, D.B.; Molinoff, P.B. Expression of mRNAs Encoding Subunits of the NMDA Receptor in Developing Rat Brain. J. Neurochem. 1995, 64, 531–539. [Google Scholar] [CrossRef]
- Xi, D.; Keeler, B.; Zhang, W.; Houle, J.D.; Gao, W.-J. NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: Application of laser microdissection technique. J. Neurosci. Methods 2009, 176, 172–181. [Google Scholar] [CrossRef]
- Morris, R.G.M.; Anderson, E.; Lynch, G.S.; Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986, 319, 774–776. [Google Scholar] [CrossRef]
- Homayoun, H.; Stefani, M.R.; Adams, B.W.; Tamagan, G.D.; Moghaddam, B. Functional Interaction Between NMDA and mGlu5 Receptors: Effects on Working Memory, Instrumental Learning, Motor Behaviors, and Dopamine Release. Neuropsychopharmacology 2004, 29, 1259–1269. [Google Scholar] [CrossRef]
- Feinstein, I.; Kritzer, M. Acute N-methyl-d-aspartate receptor hypofunction induced by MK801 evokes sex-specific changes in behaviors observed in open-field testing in adult male and proestrus female rats. Neuroscience 2013, 228, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Ho¨nack, D.; Lo¨scher, W. Sex differences in NMDA receptor mediated responses in rats. Brain Res. 1993, 620, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, Y.; Hu, J.; Cheng, W.; Jiang, H.; Zhang, X.; Li, M.; Ren, J.; Li, X. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats. Neuroscience 2015, 301, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Segovia, G.; Porras, A.; Del Arco, A.; Mora, F. Glutamatergic neurotransmission in aging: A critical perspective. Mech. Ageing Dev. 2001, 122, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Knouse, M.C.; McGrath, A.G.; Deutschmann, A.U.; Rich, M.T.; Zallar, L.J.; Rajadhyaksha, A.M.; Briand, L.A. Sex differences in the medial prefrontal cortical glutamate system. Biol. Sex Differ. 2022, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Pandya, M.; Palpagama, T.H.; Turner, C.; Waldvogel, H.J.; Faull, R.L.; Kwakowsky, A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol. Sex Differ. 2019, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- McQuail, J.A.; Frazier, C.J.; Bizon, J.L. Molecular aspects of age-related cognitive decline: The role of GABA signaling. Trends Mol. Med. 2015, 21, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Scheibel, M.E.; Lindsay, R.D.; Tomiyasu, U.; Scheibel, A.B. Progressive dendritic changes in aging human cortex. Exp. Neurol. 1975, 47, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Kolb, B.; Gibb, R.; Gorny, G. Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiol. Learn. Mem. 2002, 79, 1–10. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Farber, N.B.; Olney, J.W. NMDA receptor function, memory, and brain aging. Dialog. Clin. Neurosci. 2000, 2, 219–232. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Lopez, O.; Jones, B.; Fitzpatrick, A.L.; Breitner, J.; DeKosky, S. Prevalence of Neuropsychiatric Symptoms in Dementia and Mild Cognitive Impairment Results From the Cardiovascular Health Study. JAMA 2002, 288, 1475–1483. [Google Scholar] [CrossRef]
- Gottesman, R.T.; Stern, Y. Behavioral and Psychiatric Symptoms of Dementia and Rate of Decline in Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 1062. [Google Scholar] [CrossRef]
- Eikelboom, W.S.; Pan, M.; Ossenkoppele, R.; Coesmans, M.; Gatchel, J.R.; Ismail, Z.; Lanctôt, K.L.; Fischer, C.E.; Mortby, M.E.; Berg, E.v.D.; et al. Sex differences in neuropsychiatric symptoms in Alzheimer’s disease dementia: A meta-analysis. Alzheimer's Res. Ther. 2022, 14, 48. [Google Scholar] [CrossRef]
- Chiang, T.-I.; Yu, Y.-H.; Lin, C.-H.; Lane, H.-Y. Novel Biomarkers of Alzheimer's Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. Clin. Psychopharmacol. Neurosci. 2021, 19, 423–433. [Google Scholar] [CrossRef]
- Liu, F.; Fuh, J.-L.; Peng, C.-K.; Yang, A.C. Phenotyping Neuropsychiatric Symptoms Profiles of Alzheimer’s Disease Using Cluster Analysis on EEG Power. Front. Aging Neurosci. 2021, 13, 623930. [Google Scholar] [CrossRef] [PubMed]
- Locklear, M.N.; Cohen, A.B.; Jone, A.; Kritzer, M.F. Sex Differences Distinguish Intracortical Glutamate Receptor-Mediated Regulation of Extracellular Dopamine Levels in the Prefrontal Cortex of Adult Rats. Cereb. Cortex 2014, 26, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Segovia, G.; Mora, F. Dopamine and GABA increases produced by activation of glutamate receptors in the nucleus accumbens are decreased during aging. Neurobiol. Aging 2005, 26, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Gould, R.W.; Nedelcovych, M.T.; Gong, X.; Tsai, E.; Bubser, M.; Bridges, T.M.; Duggan, M.E.; Brandon, N.J.; Dunlop, J.; Wood, M.W.; et al. State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154—Relation to antipsychotic-like drug effects. Neuropharmacology 2016, 102, 244–253. [Google Scholar] [CrossRef]
- Ishida, T.; Obara, Y.; Kamei, C. Effects of Some Antipsychotics and a Benzodiazepine Hypnotic on the Sleep-Wake Pattern in an Animal Model of Schizophrenia. J. Pharmacol. Sci. 2009, 111, 44–52. [Google Scholar] [CrossRef]
- Svalbe, B.; Stelfa, G.; Vavers, E.; Zvejniece, B.; Grinberga, S.; Sevostjanovs, E.; Pugovics, O.; Dambrova, M.; Zvejniece, L. Effects of the N-methyl-d-aspartate receptor antagonist, MK-801, on spatial memory and influence of the route of administration. Behav. Brain Res. 2019, 372, 112067. [Google Scholar] [CrossRef]
Full Spectrum Statistics | |||||||
---|---|---|---|---|---|---|---|
Figure | Source of Variation | DF | F | p | * | Post Hoc Results | Significant Frequencies (Hz) |
2A 3-Month-Old Males | Dose | 2.7, 21.60 | 7.675 | 0.0015 | ** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | 13–21, 32–99 6, 9, 14–20, 44–57 7, 10, 13–27 4, 6, 7, 14–31 |
Frequency | 1.81, 14.47 | 28.00 | <0.0001 | **** | |||
Interaction | 4.25, 32.93 | 6.011 | 0.0008 | *** | |||
2B 9-Month-Old Males | Dose | 2.51, 17.58 | 6.055 | 0.0069 | ** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | 26, 41, 43, 57, 59, 61, 62, 64–74, 76, 77, 79, 80, 82–85, 87–99 11–26, 34–99 8, 11–26, 28, 44–48, 50–99 11–26, 93, 94, 96–99 |
Frequency | 1.92, 13.42 | 25.79 | <0.0001 | **** | |||
Interaction | 4.34, 27.08 | 9.510 | <0.0001 | **** | |||
2C 3-Month-Old Females | Dose | 1.36, 6.80 | 6.645 | 0.0317 | * | Vehicle vs. 0.03 mg/kg Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg | 5, 6, 16, 38–68 3–6, 12–22, 36, 38–93 2–6, 15–20, 52–88, 91, 92 5–7, 15–29, 50–91, 94 |
Frequency | 2.09, 10.47 | 27.57 | <0.0001 | **** | |||
Interaction | 2.56, 12.80 | 4.082 | 0.0351 | * | |||
2D 9-Month-Old Females | Dose | 1.95, 15.60 | 6.207 | 0.0108 | * | Vehicle vs. 0.03 mg/kg Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg | 5, 34, 39, 40, 42 11–21, 37, 39–45 12–21 15, 16, 21–41 |
Frequency | 1.61, 12.90 | 10.14 | 0.0033 | ** | |||
Interaction | 3.49, 27.94 | 3.301 | 0.0291 | * |
Time-Course Statistics | |||||||
---|---|---|---|---|---|---|---|
Figure | Source of Variation | DF | F | p | * | Post Hoc Results | Significant Time Points (10 Min Bin) |
3C 3-Month-Old Males High gamma | Dose | 3.14, 25.14 | 12.42 | <0.0001 | **** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | −120, 0, 40, 60, 70, 90–140, 160 70–190 90–190, 220–240, 280 110–260, 280 |
Time | 2.74, 21.91 | 15.37 | <0.0001 | **** | |||
Interaction | 4.94, 38.02 | 6.45 | 0.0002 | *** | |||
3D 9-Month-Old Males High gamma | Dose | 2.43, 16.97 | 11.01 | 0.0005 | *** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | 10, 50, 90, 150, 170, 220, 230, 250 10–160, 180, 200 230, 250 10, 30–260 90, 100, 120–300 |
Time | 2.16, 15.15 | 7.048 | 0.006 | ** | |||
Interaction | 3.48, 21.26 | 4.563 | 0.0102 | * | |||
3E 3-Month-Old Females High gamma | Dose | 1.80, 8.98 | 18.35 | 0.0008 | *** | Vehicle vs. 0.03 mg/kg Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg | 50, 80, 290 30–220 −40, 10–200, 220–300 −40, 0, 50–300 |
Time | 2.11, 10.55 | 24.91 | <0.0001 | **** | |||
Interaction | 4.10, 20.11 | 7.625 | 0.0006 | *** | |||
3F 9-Month-Old Females High gamma | Dose | 1.73, 13.86 | 6.45 | 0.0127 | * | Vehicle vs. 0.03 mg/kg Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg | 100, 140, 220 150, 160, 240, 250 160, 200, 240, 280 |
Time | 1.67, 13.36 | 4.26 | 0.0428 | * | |||
Interaction | 4.05, 27.95 | 3.94 | 0.0115 | * | |||
4B 3-Month-Old Males Activity | Dose | 2.27, 18.14 | 27.04 | <0.0001 | **** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | −10, 0, 30, 50 10–90, 130, 140, 160 10–190 0–210, 230 |
Time | 2.03, 16.23 | 64.56 | <0.0001 | **** | |||
Interaction | 2.81, 21.61 | 11.72 | 0.0001 | *** | |||
4C 9-Month-Old Males Activity | Dose | 1.67, 11.68 | 43.18 | <0.0001 | **** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg Vehicle vs. 0.3 mg/kg | 10, 20, 50 10–100 10–220 10, 40–240, 260 |
Time | 3.52, 24.62 | 39.48 | <0.0001 | **** | |||
Interaction | 4.69, 28.59 | 15.18 | <0.0001 | **** | |||
4D 3-Month-Old Females Activity | Dose | 1.68, 8.40 | 32.5 | 0.0002 | *** | Vehicle vs. 0.03 mg/kg Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg | 60 30, 40 20–40. 80, 150–180, 220, 260 0–270, 290 |
Time | 1.74, 8.68 | 21.02 | 0.0006 | *** | |||
Interaction | 288, 1380 | 10.08 | <0.0001 | **** | |||
4E 9-Month-Old Females Activity | Dose | 1.44, 11.48 | 37.89 | <0.0001 | **** | Vehicle vs. 0.056 mg/kg Vehicle vs. 0.1 mg/kg Vehicle vs. 0.18 mg/kg | 10–40, 90, 160 10–140, 170–220, 280 10–300 |
Time | 2.58, 20.63 | 18.74 | <0.0001 | **** | |||
Interaction | 3.36, 28.79 | 10.85 | <0.0001 | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holter, K.M.; Lekander, A.D.; Pierce, B.E.; Sands, L.P.; Gould, R.W. Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration. Pharmaceuticals 2024, 17, 237. https://doi.org/10.3390/ph17020237
Holter KM, Lekander AD, Pierce BE, Sands LP, Gould RW. Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration. Pharmaceuticals. 2024; 17(2):237. https://doi.org/10.3390/ph17020237
Chicago/Turabian StyleHolter, Kimberly M., Alex D. Lekander, Bethany E. Pierce, L. Paul Sands, and Robert W. Gould. 2024. "Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration" Pharmaceuticals 17, no. 2: 237. https://doi.org/10.3390/ph17020237
APA StyleHolter, K. M., Lekander, A. D., Pierce, B. E., Sands, L. P., & Gould, R. W. (2024). Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration. Pharmaceuticals, 17(2), 237. https://doi.org/10.3390/ph17020237