Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction
Abstract
:1. Introduction
2. Results
2.1. Screening Results of Active Compounds against SARS-CoV-2 Viral Protease
2.2. Molecular Docking Results
2.3. Druglikeness and Pharmacokinetics Assay of the Active compounds
3. Discussion
4. Materials and Methods
4.1. Chemistry and Reagents
4.2. Protein Expression and Purification
4.3. SARS-CoV-2 Mpro Inhibition Assay
4.4. SARS-Cov-2 PLpro Inhibition Assay
4.5. Molecular Docking
4.5.1. Protein and Ligand Preparation
4.5.2. Molecular Docking and Visualization
4.6. Drug Likeness and ADMET Evaluation
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiao, D.; Dong, X.; Yu, Y.; Wei, C. Gene Presence/Absence Variation analysis of coronavirus family displays its pan-genomic diversity. Int. J. Biol. Sci. 2021, 17, 3717. [Google Scholar] [CrossRef]
- Báez-Santos, Y.M.; Barraza, S.J.; Wilson, M.W.; Agius, M.P.; Mielech, A.M.; Davis, N.M.; Baker, S.C.; Larsen, S.D.; Mesecar, A.D. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J. Med. Chem. 2014, 57, 2393–2412. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.; et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B 2020, 10, 1205–1215. [Google Scholar] [CrossRef]
- Fintelman-Rodrigues, N.; Sacramento, C.Q.; Ribeiro Lima, C.; Souza Da Silva, F.; Ferreira, A.C.; Mattos, M.; De Freitas, C.S.; Cardoso Soares, V.; Da Silva Gomes Dias, S.; Temerozo, J.R.; et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob. Agents Chemother. 2020, 64, e00825-20. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 Viral replication by targeting the viral main protease. Cell Res. 2020, 30, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 2007, 50, 4087–4095. [Google Scholar] [CrossRef]
- Báez-Santos, Y.M.; St. John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antivir. Res. 2015, 115, 21–38. [Google Scholar] [CrossRef]
- Ratia, K.; Kilianski, A.; Baez-Santos, Y.M.; Baker, S.C.; Mesecar, A. Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog. 2014, 10, e1004113. [Google Scholar] [CrossRef]
- Clementz, M.A.; Chen, Z.; Banach, B.S.; Wang, Y.; Sun, L.; Ratia, K.; Baez-Santos, Y.M.; Wang, J.; Takayama, J.; Ghosh, A.K.; et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 2010, 84, 4619–4629. [Google Scholar] [CrossRef]
- Zhou, Q.A.; Kato-Weinstein, J.; Li, Y.; Deng, Y.; Granet, R.; Garner, L.; Liu, C.; Polshakov, D.; Gessner, C.; Watkins, S. Potential therapeutic agents and associated bioassay data for COVID-19 and related human coronavirus infections. ACS Pharmacol. Transl. Sci. 2020, 3, 813–834. [Google Scholar] [CrossRef] [PubMed]
- McGaw, L.J.; Jäger, A.K.; Van Staden, J.; Eloff, J.N. Isolation of β-asarone, an antibacterial and anthelmintic compound, from Acorus calamus in South Africa. S. Afr. J. Bot. 2002, 68, 31–35. [Google Scholar] [CrossRef]
- Thirach, S.; Tragoolpua, K.; Punjaisee, S.; Khamwan, C.; Jatisatienr, C.; Kunyanone, N. Antifungal activity of some medicinal plant extracts against Candida albicans and Cryptococcus neoformans. Acta Hortic. 2003, 597, 217–221. [Google Scholar] [CrossRef]
- Devi, S.A.; Ganjewala, D. Antioxidant activities of methanolic extracts of Sweet-Flag (Acorus calamus) Leaves and Rhizomes. J. Herbs Spices Med. Plants 2011, 17, 1–11. [Google Scholar] [CrossRef]
- Chaubey, P.; Archana; Prakash, O.; Rai, K.; Kumar, R.; Pant, A.K. In vitro antioxidant activity and total phenolic content of rhizome extracts from Acorus calamus Linn. Asian J. Chem. 2017, 29, 2357–2360. [Google Scholar] [CrossRef]
- Kim, H.; Han, T.H.; Lee, S.G. Anti-inflammatory activity of a water extract of Acorus calamus L. leaves on keratinocyte HaCaT cells. J. Ethnopharmacol. 2009, 122, 149–156. [Google Scholar] [CrossRef]
- Si, M.; Lou, J.; Zhou, C.X.; Shen, J.N.; Wu, H.H.; Yang, B.; He, Q.J.; Wu, H.S. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo. J. Ethnopharmacol. 2010, 128, 154–159. [Google Scholar] [CrossRef]
- Prisilla, D.H.; Balamurugan, R.; Shah, H.R. Antidiabetic activity of methanol extract of Acorus calamus in STZ induced diabetic rats. Asian Pac. J. Trop. Biomed. 2012, 2, S941–S946. [Google Scholar] [CrossRef]
- Bains, J.S.; Dhuna, V.; Singh, J.; Kamboj, S.S.; Nijjar, K.K.; Agrewala, J.N. Novel lectins from rhizomes of two Acorus species with mitogenic activity and inhibitory potential towards murine cancer cell lines. Int. Immunopharmacol. 2005, 5, 1470–1478. [Google Scholar] [CrossRef]
- Rahamoz Haghighi, S.; Asadi, M.H.; Akrami, H.; Baghizadeh, A. Anti-carcinogenic and anti-angiogenic properties of the extracts of Acorus calamus on gastric cancer cells. Avicenna J. Phytomed. 2017, 7, 145–156. [Google Scholar] [CrossRef]
- Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. Root inhibited dengue virus proliferation and infections. Phytomedicine 2018, 42, 258–267. [Google Scholar] [CrossRef]
- Kim, H.; Maeng, J.Y.; Lee, D.B.; Kim, K.H.; Chung, M.S. Antiviral activities of asarones and rhizomes of Acorus gramineus on murine norovirus. Viruses 2022, 14, 2228. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D.J. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.W. Deuremidevir and simnotrelvir–ritonavir for the treatment of COVID-19. ACS Pharmacol. Transl. Sci. 2023, 6, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Z.; Zhao, J.; Wang, W.; Zhao, X.; Xu, B.; Li, L.; Zhang, L.; Ren, J.; Khan, I.A.; et al. A novel tropoloisoquinoline alkaloid, neotatarine, from Acorus calamus L. Chem. Biodivers. 2017, 14, e1700201. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Studies on Chemical Constituents and Bioactictives of Rhizomes of Acorus calamus L. Growing in Hunan Province. Ph.D. Dissertation, Hunan University of Chinese Medicine, Changsha, China, 2014. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021, 12, 743. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Belska, N.V.; Guriev, A.M.; Danilets, M.G.; Trophimova, E.S.; Uchasova, E.G.; Ligatcheva, A.A.; Belousov, M.V.; Agaphonov, V.I.; Golovchenko, V.G.; Yusubov, M.S.; et al. Water-soluble polysaccharide obtained from Acorus calamus L. classically activates macrophages and stimulates Th1 response. Int. Immunopharmacol. 2010, 10, 933–942. [Google Scholar] [CrossRef]
- Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 bnchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706. [Google Scholar] [CrossRef]
- Daina, A. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
Compounds | Inhibition at 5 μM (%) | IC50 (μM) |
---|---|---|
1 | 83.61 ± 0.01 | - |
2 | 85.90 ± 0.61 | - |
3 | 74.70 ± 0.05 | - |
4 | 87.19 ± 0.31 | - |
5 | 78.33 ± 0.25 | - |
6 | 80.31 ± 0.79 | - |
7 | 78.58 ± 0.67 | - |
8 | 81.68 ± 6.15 | - |
9 | 82.90 ± 7.31 | - |
10 | 85.63 ± 0.88 | - |
11 | 80.52 ± 4.82 | - |
12 | 70.90 ± 1.17 | - |
13 | 41.08 ± 8.77 | 1.721 ± 0.394 |
14 | 81.89 ± 1.31 | - |
15 | 79.26 ± 10.38 | - |
16 | 78.21 ± 12.90 | - |
17 | 74.62 ± 5.21 | - |
18 | 30.97 ± 1.26 | 0.630 ± 0.364 |
19 | 75.55 ± 0.24 | - |
20 | 79.66 ± 8.49 | - |
21 | 83.34 ± 4.06 | - |
22 | 82.75 ± 1.58 | - |
23 | 81.47 ± 3.65 | - |
24 | 68.93 ± 0.71 | - |
Compounds | Inhibition at 5 μM (%) | IC50 (μM) |
---|---|---|
1 | 6.41 ± 0.43 | 0.386 ± 0.118 |
2 | 14.04 ± 1.95 | - |
3 | 11.29 ± 0.55 | - |
4 | 11.75 ± 1.99 | - |
5 | 14.42 ± 0.88 | - |
6 | 6.89 ± 1.65 | 1.667 ± 0.496 |
7 | 20.13 ± 2.96 | - |
8 | 14.15 ± 0.93 | - |
9 | 22.28 ± 4.83 | - |
10 | 26.57 ± 3.38 | - |
11 | 38.37 ± 7.04 | - |
12 | 25.76 ± 2.25 | - |
13 | 24.90 ± 4.91 | 2.526 ± 0.885 |
14 | 25.43 ± 1.43 | - |
15 | 35.26 ± 2.35 | - |
16 | 33.56 ± 2.46 | - |
17 | 29.80 ± 1.54 | - |
18 | 31.66 ± 8.07 | 1.889 ± 0.375 |
19 | 7.90 ± 1.94 | 1.451 ± 0.429 |
20 | 22.19 ± 3.58 | - |
21 | 33.92 ± 5.49 | - |
22 | 10.62 ± 2.59 | 1.255 ± 0.321 |
23 | 6.71 ± 3.23 | 0.743 ± 0.187 |
24 | 9.54 ± 0.61 | 3.924 ± 1.288 |
Compounds | Target | Combined Energy (kcal/mol) | Hydrophobic Residues |
---|---|---|---|
1 | 6W9C 1 | −7.0 | Leu162, Gly160, Glu161, Asn109, Gln269 |
6 | 6W9C | −6.3 | Leu162, Gly160, Glu161, Asn109, Gln269 |
13 | 6W9C | −6.8 | Asn267, Trp106, Leu162 |
13 | 6LU7 2 | −5.1 | Leu27, Gly143, Cys145, Leu4, Met49, Ser46, Asn142, Thr25 |
18 | 6W9C | −6.3 | Pro248, Tyr106, Leu162, Asn267 |
18 | 6LU7 | −5.0 | Leu27, His41, Thr25, Cys145, Thr26, Leu4, Asn142, Met49, Thr24, Thr45 |
19 | 6W9C | −6.4 | Leu162, Gly160, Gln269, Glu161, Asn109 |
22 | 6W9C | −6.6 | Leu162, Asn109 |
23 | 6W9C | −7.6 | Pro77, Pro59, Asp76, Ala68, Ala66, Thr74, Thr75, Phe69, Arg65 |
24 | 6W9C | −5.5 | Phe69, Ala68, Thr75, Arg65, Thr74, Pro59, Pro77, Asp76, Phe79 |
Nirmatrelvir | 6LU7 | −8.7 | Thr292, Thr111, Phe294, Gln110, Val104, Ile106 |
GRL0617 | 6W9C | −8.6 | Leu80, Ala68, Thr74, Arg65, Pro59, Pro77, Lys43 |
Compounds | Log Po/w | Pharmacokinetics | Druglikeness | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GI Absorption | BBB Permeant | Pgp Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | log Kp (cm/s) | Lipinski | Ghose | Veber | Egan | Muegge | Bioavailability Score | ||
1 | 2.55 | High | Yes | No | No | No | No | No | No | −6.67 | 0 | 0 | 0 | 0 | 0 | 0.55 |
6 | 2.9 | High | Yes | No | No | No | No | No | No | −6.01 | 0 | 0 | 0 | 0 | 0 | 0.55 |
13 | 2.02 | High | No | Yes | No | No | No | No | No | −7.8 | 0 | 0 | 0 | 0 | 0 | 0.55 |
18 | 1.97 | High | Yes | No | No | No | No | No | No | −6.87 | 0 | 0 | 0 | 0 | 0 | 0.55 |
19 | 1.78 | High | Yes | No | No | No | No | No | No | −6.65 | 0 | 0 | 0 | 0 | 0 | 0.85 |
22 | 2.6 | High | Yes | No | No | No | No | No | No | −6.59 | 0 | 0 | 0 | 0 | 0 | 0.55 |
23 | 2.75 | High | Yes | No | Yes | No | Yes | Yes | Yes | −6.4 | 0 | 0 | 0 | 0 | 0 | 0.55 |
24 | 2.24 | High | Yes | No | No | No | No | No | No | −6.16 | 0 | 0 | 0 | 0 | 1 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, Z.; Ma, Y.; Wu, Q.; Kong, J.; Zhao, L.; Li, S.; Li, J. Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction. Pharmaceuticals 2024, 17, 325. https://doi.org/10.3390/ph17030325
Huang Y, Li Z, Ma Y, Wu Q, Kong J, Zhao L, Li S, Li J. Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction. Pharmaceuticals. 2024; 17(3):325. https://doi.org/10.3390/ph17030325
Chicago/Turabian StyleHuang, Yuting, Zhaoxing Li, Yuan Ma, Qianqian Wu, Jianping Kong, Lijuan Zhao, Shunxiang Li, and Juan Li. 2024. "Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction" Pharmaceuticals 17, no. 3: 325. https://doi.org/10.3390/ph17030325
APA StyleHuang, Y., Li, Z., Ma, Y., Wu, Q., Kong, J., Zhao, L., Li, S., & Li, J. (2024). Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction. Pharmaceuticals, 17(3), 325. https://doi.org/10.3390/ph17030325