Acheta domesticus: A Natural Source of Anti-Skin-Aging Ingredients for Cosmetic Applications
Abstract
:1. Introduction
2. Results and Discussions
2.1. Extracts of A. domesticus
2.2. Chemical Composition of A. domesticus Extracts
2.3. Protein Molecular Weight Distribution of A. domesticus Extracts
2.4. Irritation Properties of A. domesticus Extracts
2.5. Cytotoxic Effects of A. domesticus Extracts
2.6. TGF-β1-Stimulating Activities of A. domesticus Extracts
2.7. Anti-Skin-Aging Activities of A. domesticus Extracts
3. Materials and Methods
3.1. Insect Material
3.2. Chemical Reagents
3.3. Preparation of A. domesticus Extracts
3.4. Chemical Composition Analysis of A. domesticus Extracts
3.4.1. Total Protein Content Determination
3.4.2. Total Phenolic Content Determination
3.4.3. Total Flavonoid Content Determination
3.5. Protein Molecular Weight Distribution Analysis
3.6. Determination of Irritation Properties of A. domesticus Extracts
3.7. Determination of Cytotoxicity of A. domesticus Extracts
3.8. Determination of TGF-β1-Stimulating Activities of A. domesticus Extracts
3.9. Determination of Anti-Skin-Aging Activities of A. domesticus Extracts
3.9.1. Anti-Collagenase Activity Determination
3.9.2. Anti-Hyaluronidase Activity Determination
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yen, A.L. Edible insects: Traditional knowledge or Western phobia? Entomol. Res. 2009, 39, 289–298. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Fiallos, F.R.G. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security. Adv. Entomol. 2014, 2, 47–48. [Google Scholar] [CrossRef]
- Durst, P.B.; Hanboonsong, Y. Small-Scale Production of Edible Insects for Enhanced Food Security and Rural Livelihoods: Experience from Thailand and Lao People’s Democratic Republic. J. Insects Food Feed 2015, 1, 25–31. [Google Scholar] [CrossRef]
- Nadeau, L.; Nadeau, I.; Franklin, F.A.; Dunkel, F.V. The Potential for Entomophagy to Address Undernutrition. Ecol. Food Nutr. 2014, 54, 200–208. [Google Scholar] [CrossRef]
- Fernández-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vågsholm, I. The House Cricket (Acheta domesticus) as a Novel Food: A Risk Profile. J. Insects Food Feed 2019, 5, 137–157. [Google Scholar] [CrossRef]
- Song, H. Biodiversity of Orthoptera. In Insect Biodiversity: Science and Society, 1st ed.; J Robert, G.F., Peter, H.A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 245–279. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Cardeira, M.; Bernardo, A.; Leonardo, I.C.; Gaspar, F.B.; Marques, M.; Melgosa, R.; Paiva, A.; Simões, P.; Fernández, N.; Serra, A.T. Cosmeceutical Potential of Extracts Derived from Fishery Industry Residues: Sardine Wastes and Codfish Frames. Antioxidants 2022, 11, 1925. [Google Scholar] [CrossRef]
- Bodin, J.; Adrien, A.; Bodet, P.E.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Ulva intestinalis protein extracts promote in vitro collagen and hyaluronic acid production by human dermal fibroblasts. Molecules 2020, 25, 2091. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.; Paik, H.D.; Park, E. Antioxidant and Immune-Modulating Activities of Egg Yolk Protein Extracts. Food Sci. Anim. 2022, 42, 321. [Google Scholar] [CrossRef] [PubMed]
- Lucas-González, R.; Fernández-López, J.; Pérez-Álvarez, J.Á. Effect of Drying Processes in the Chemical, Physico-Chemical, Techno-Functional and Antioxidant Properties of Flours Obtained from House Cricket (Acheta domesticus). Eur. Food Res. Technol. 2019, 245, 1451–1458. [Google Scholar] [CrossRef]
- Ververis, E.; Boué, G.; Poulsen, M.; Pires, S.M.; Niforou, A.; Thomsen, S.T.; Tesson, V.; Fédérighi, M.; Naska, A. A Systematic Review of the Nutrient Composition, Microbiological and Toxicological Profile of Acheta domesticus (House Cricket). J. Food Compos. Anal. 2022, 114, 104859. [Google Scholar] [CrossRef]
- Kemsawasd, V.; Inthachat, W.; Suttisansanee, U.; Temviriyanukul, P. Road to The Red Carpet of Edible Crickets through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. Int. J. Mol. Sci. 2022, 23, 1801. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.S.; Villa, C.; Sousa, S.F.; Costa, J.; Ferreira, I.M.; Mafra, I. An In Silico Approach to Unveil Peptides from Acheta domesticus With Potential Bioactivity Against Hypertension, Diabetes, Cardiac And Pulmonary Fibrosis. Food Res. Int. 2023, 169, 112847. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant Activities In Vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Front. Nutr. 2019, 6, 106. [Google Scholar] [CrossRef]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Tolone, M.; Arena, R.; Moschetti, G.; Santulli, A.; Francesca, N.; Settanni, L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef]
- Malm, M.; Liceaga, A.M. Physicochemical Properties of Chitosan from Two Commonly Reared Edible Cricket Species, and Its Application as a Hypolipidemic and Antimicrobial Agent. Polysaccharides 2021, 2, 339–353. [Google Scholar] [CrossRef]
- Ahn, M.Y.; Han, J.H.; Hwang, J.S.; Yun, E.Y.; Lee, B.M. Anti-Inflammatory Effect of Glycosaminoglycan Derived From Gryllus bimaculatus (A Type of Cricket, Insect) on Adjuvant-Treated Chronic Arthritis Rat Model. J. Toxicol. Environ. Health A 2014, 77, 1332–1345. [Google Scholar] [CrossRef]
- Yeerong, K.; Sriyab, S.; Somwongin, S.; Punyoyai, C.; Chantawannakul, P.; Anuchapreeda, S.; Prommaban, A.; Chaiyana, W. Skin Irritation and Potential Antioxidant, Anti-Collagenase, and Anti-Elastase Activities of Edible Insect Extracts. Sci. Rep. 2021, 11, 22954. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed]
- Ugur, A.E.; Bolat, B.; Öztop, M.H.; Alpas, H. Effects of High Hydrostatic Pressure (HHP) Processing and Temperature on Physicochemical Characterization of Insect Oils Extracted from Acheta domesticus (House Cricket) and Tenebrio molitor (Yellow Mealworm). Waste Biomass Valori. 2020, 12, 4277–4286. [Google Scholar] [CrossRef]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and Extrinsic Factors in Skin Ageing: A Review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef]
- Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol. Physiol. 2014, 27, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fisher, G.J. Ultraviolet (UV) Light Irradiation Induced Signal Transduction in Skin Photoaging. J. Dermatol. Sci. Suppl. 2005, 1, S1–S8. [Google Scholar] [CrossRef]
- Sparavigna, A. Role of the Extracellular Matrix in Skin Aging and Dedicated Treatment—State of the Art. Plast. Aesthet. Res. 2020, 7, 14. [Google Scholar] [CrossRef]
- Halloran, A.; Megido, R.C.; Oloo, J.A.; Weigel, T.F.; Nsevolo, P.; Francis, F. Comparative Aspects of Cricket Farming in Thailand, Cambodia, Lao People’s Democratic Republic, Democratic Republic of the Congo and Kenya. J. Insects Food Feed 2018, 4, 101–114. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life Cycle Assessment of Cricket Farming in North-Eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Dobermann, D.; Field, L.M.; Michaelson, L.V. Impact of Heat Processing on the Nutritional Content of Gryllus bimaculatus (Black Cricket). Nutr. Bull. 2019, 44, 116–122. [Google Scholar] [CrossRef]
- Sharifi, N.; Mahernia, S.; Amanlou, M. Comparison of Different Methods in Quercetin Extraction from Leaves of Raphanus Sativus L. Pharm. Sci. 2017, 23, 59–65. [Google Scholar] [CrossRef]
- Ndiritu, A.K.; Kinyuru, J.; Kenji, G.M.; Gichuhi, P.N. Extraction Technique Influences the Physico-Chemical Characteristics and Functional Properties of Edible Crickets (Acheta domesticus) Protein Concentrate. J. Food Meas. Charact. 2017, 11, 2013–2021. [Google Scholar] [CrossRef]
- Khatun, H.; Claes, J.; Smets, R.; De Winne, A.; Akhtaruzzaman, M.; Van Der Borght, M. Characterization of Freeze-Dried, Oven-Dried and Blanched House Crickets (Acheta domesticus) and Jamaican Field Crickets (Gryllus assimilis) by Means of Their Physicochemical Properties and Volatile Compounds. Eur. Food Res. Technol. 2021, 247, 1291–1305. [Google Scholar] [CrossRef]
- Grossmann, K.K.; Merz, M.; Appel, D.; De Araujo, M.M.; Fischer, L. New Insights into the Flavoring Potential of Cricket (Acheta domesticus) and Mealworm (Tenebrio molitor) Protein Hydrolysates and Their Maillard Products. Food Chem. 2021, 364, 130336. [Google Scholar] [CrossRef] [PubMed]
- Spano, M.; Di Matteo, G.; Retamozo, C.; Lasalvia, A.; Ruggeri, M.; Sandri, G.; Cordeiro, C.; Silva, M.S.; Fila, C.T.; Garzoli, S.; et al. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus. Foods 2023, 12, 2331. [Google Scholar] [CrossRef]
- Jovanović, A.; Đorđević, V.; Zdunić, G.; Pljevljakušić, D.; Šavikin, K.; Gođevac, D.; Bugarski, B. Optimization of the Extraction Process of Polyphenols from Thymus serpyllum L. Herb Using Maceration, Heat- and Ultrasound-Assisted Techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Aspé, E.; Fernández, K. The Effect of Different Extraction Techniques on Extraction Yield, Total Phenolic, and Anti-Radical Capacity of Extracts from Pinus radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. [Google Scholar] [CrossRef]
- Chen, Q.; Fung, K.Y.; Lau, Y.; Ng, K.M.; Lau, D.T.W. Relationship between Maceration and Extraction Yield in the Production of Chinese Herbal Medicine. Food Bioprod. Process. 2016, 98, 236–243. [Google Scholar] [CrossRef]
- Monton, C.; Luprasong, C. Effect of Temperature and Duration Time of Maceration on Nitrate Content of Vernonia cinerea (L.) Less.: Circumscribed Central Composite Design and Method Validation. Int. J. Food Sci. 2019, 2019, 1281635. [Google Scholar] [CrossRef]
- Psarianos, M.; Dimopoulos, G.; Ojha, S.; Cavini, A.C.M.; Bußler, S.; Taoukis, P.; Schlüter, O. Effect of Pulsed Electric Fields on Cricket (Acheta domesticus) Flour: Extraction Yield (Protein, Fat and Chitin) and Techno-Functional Properties. Innov. Food Sci. Emerg. Technol. 2022, 76, 102908. [Google Scholar] [CrossRef]
- Naviglio, D.; Montesano, D.; Gallo, M. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid–Liquid Dynamic Extraction. J. Chem. Edu. 2015, 92, 911–915. [Google Scholar] [CrossRef]
- Brogan, E.N.; Park, Y.; Matak, K.E.; Jaczynski, J. Characterization of Protein in Cricket (Acheta domesticus), Locust (Locusta migratoria), and Silk Worm Pupae (Bombyx mori) Insect Powders. LWT 2021, 152, 112314. [Google Scholar] [CrossRef]
- Murugu, D.K.; Onyango, A.N.; Ndiritu, A.K.; Osuga, I.M.; Cheseto, X.; Nakimbugwe, D.; Tanga, C.M. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front. Nutr. 2021, 8, 704002. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Inter. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- von Hackewitz, L. The House Cricket Acheta Domesticus, a Potential Source of Protein for Human Consumption; Swedish University of Agricultural Science, Department of Molecular Sciences: Uppsala, Sweden, 2018; p. 17. [Google Scholar]
- Collavo, A.; Glew, R.H.; Huang, Y.-S.; Chuang, L.T.; Bosse, R.; Paoletti, M. House Cricket Small-Scale Farming. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. In Ecological Implications of Minilivestock. Potential of Insects, Rodents, Frogs and Snails, 1st ed.; Paoletti, M.G., Ed.; Science Publishers: Enfield, NH, USA, 2005; p. 26. [Google Scholar]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Van Huis, A.; Van Boekel, M.A.J.S. Extraction and Characterisation of Protein Fractions from Five Insect Species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Treviño, S.; Scholtz, J.M.; Pace, C.N. Amino Acid Contribution to Protein Solubility: Asp, Glu, and Ser Contribute More Favorably than the Other Hydrophilic Amino Acids in RNase Sa. J. Mol. Biol. 2007, 366, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T.; Adachi, K.; Schwartz, E. Stabilizing Effect of Various Organic Solvents on Protein. J. Biol. Chem. 1978, 253, 6423–6425. [Google Scholar] [CrossRef] [PubMed]
- Nino, M.C.; Reddivari, L.; Osorio, C.; Kaplan, I.; Liceaga, A.M. Insects as a Source of Phenolic Compounds and Potential Health Benefits. J. Insects Food Feed. 2021, 7, 1077–1087. [Google Scholar] [CrossRef]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Zeljkovıć, S.Ć. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef] [PubMed]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Da Fonseca Machado, A.P.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Del Hierro, J.N.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martín, D. Characterization, Antioxidant Activity, and Inhibitory Effect on Pancreatic Lipase of Extracts from the Edible Insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef]
- Quinteros, M.F.; Martinez, J.J.I.; Barrionuevo, A.; Rojas-Herrera, M.; Carrillo, W. Functional, Antioxidant, and Anti-Inflammatory Properties of Cricket Protein Concentrate (Gryllus assimilis). Biology 2022, 11, 776. [Google Scholar] [CrossRef]
- Huber, M.; Röder, T.; Irmisch, S.; Riedel, A.; Gablenz, S.; Fricke, J.; Rahfeld, P.; Reichelt, M.; Paetz, C.; Liechti, N.; et al. A Beta-Glucosidase of an Insect Herbivore Determines Both Toxicity and Deterrence of a Dandelion Defense Metabolite. eLife 2021, 10, e68642. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional Value, Protein and Peptide Composition of Edible Cricket Powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J. Hypersensitivity Pneumonitis Caused by House Cricket, Acheta domesticus. J. Clin. Cell. Immunol. 2014, 5, 248. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, L.; Yu-Lan, W.; Xia, Q.; Chen, J.; Roux, K.H. Identification and Characterization of an Arginine Kinase as a Major Allergen from Silkworm (Bombyx mori) Larvae. Int. Arch. Allergy Immunol. 2009, 150, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Shi, H.; Liu, X.; Zhang, C.; Yao, Q.; Wang, Y.; Chang, C.; Shi, J.; Cao, J.; Kong, J.; et al. Arginine Kinase Is Highly Expressed in a Resistant Strain of Silkworm (Bombyx mori, Lepidoptera): Implication of Its Role in Resistance to Bombyx mori Nucleopolyhedrovirus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Downs, M.L.; Johnson, P.E.; Zeece, M.G. Insects and Their Connection to Food Allergy. In Insects as Sustainable Food Ingredients, 1st ed.; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 255–272. [Google Scholar]
- Schöck, F.; González-Morales, N. The Insect Perspective on Z-Disc Structure and Biology. J. Cell Sci. 2022, 135, jcs260179. [Google Scholar] [CrossRef]
- Xu, H.; Van Remmen, H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) Pump: A Potential Target for Intervention in Aging and Skeletal Muscle Pathologies. Skelet. Muscle 2021, 11, 25. [Google Scholar] [CrossRef]
- Sjöblom, B.; Salmazo, A.; Djinović-Carugo, K. α-Actinin Structure and Regulation. Cell. Mol. Life Sci. 2008, 65, 2688–2701. [Google Scholar] [CrossRef] [PubMed]
- David-Birman, T.; Raften, G.; Lesmes, U. Effects of Thermal Treatments on the Colloidal Properties, Antioxidant Capacity and in-Vitro Proteolytic Degradation of Cricket Flour. Food Hydrocoll. 2018, 79, 48–54. [Google Scholar] [CrossRef]
- Schiffer, C.A.; Dötsch, V. The Role of Protein-Solvent Interactions in Protein Unfolding. Curr. Opin. Biotechnol. 1996, 7, 428–432. [Google Scholar] [CrossRef]
- Marchi, L.; Mainente, F.; Leonardi, M.C.; Scheurer, S.; Wangorsch, A.; Mahler, V.; Pilolli, R.; Sorio, D.; Zoccatelli, G. Allergenicity Assessment of the Edible Cricket Acheta domesticus in Terms of Thermal and Gastrointestinal Processing and IgE Cross-Reactivity with Shrimp. Food Chem. 2021, 359, 129878. [Google Scholar] [CrossRef] [PubMed]
- Scheel, J.; Kleber, M.E.; Kreutz, J.; Lehringer, E.; Mehling, A.; Reisinger, K.; Steiling, W. Eye Irritation Potential: Usefulness of the HET-CAM under the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Reg. Toxicol. Pharmacol. 2011, 59, 471–492. [Google Scholar] [CrossRef]
- Fernández-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vågsholm, I. Novel Foods: A Risk Profile for the House Cricket (Acheta domesticus). EFSA J. 2018, 16, e16082. [Google Scholar] [CrossRef]
- Pourahmad, J. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predicting Immunosuppressive Effects of Drugs and Xenobiotics. PubMed 2015, 14, 979. [Google Scholar]
- Kleiveland, C.R. Peripheral Blood Mononuclear Cells. In The Impact of Food Bio-Actives on Gut Health, 1st ed.; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 161–167. [Google Scholar] [CrossRef]
- Gancevičienė, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin Anti-Aging Strategies. Dermato-Endocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Poniatowski, Ł.A.; Wojdasiewicz, P.; Gasik, R.; Szukiewicz, D. Transforming Growth Factor Beta Family: Insight into the Role of Growth Factors in Regulation of Fracture Healing Biology and Potential Clinical Applications. Mediat. Inflamm. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
- Pohlers, D.; Brenmoehl, J.; Löffler, I.; Müller, C.K.; Leipner, C.; Schultze-Mosgau, S.; Stallmach, A.; Kinne, R.W.; Wolf, G. TGF-β and Fibrosis in Different Organs—Molecular Pathway Imprints. Biochim. Biophys. Acta Mol. Basis Dis. 2009, 1792, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-H.; Chen, D.-Q.; Wang, Y.; Feng, Y.-L.; Cao, G.; Vaziri, N.D.; Zhao, Y.-Y. New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chem. Biol. Interact. 2018, 292, 76–83. [Google Scholar] [CrossRef]
- Quan, T.; Torebjörk, H.E.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Solar Ultraviolet Irradiation Reduces Collagen in Photoaged Human Skin by Blocking Transforming Growth Factor-Β Type II Receptor/SMAD Signaling. Am. J. Pathol. 2004, 165, 741–751. [Google Scholar] [CrossRef]
- Quan, T.; Fisher, G.J. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology 2015, 61, 427–434. [Google Scholar] [CrossRef]
- Im, A.; Ji, K.Y.; Park, I.; Lee, J.Y.; Kim, K.M.; Na, M.; Chae, S. Anti-Photoaging Effects of Four Insect Extracts by Downregulating Matrix Metalloproteinase Expression via Mitogen-Activated Protein Kinase-Dependent Signaling. Nutrients 2019, 11, 1159. [Google Scholar] [CrossRef]
- Jeong, T.; Yu, M.; Heo, H.; Yang, J.; Jeong, H.; Lee, J. Protective Effect of Gryllus bimaculatus Methanol Extract on UVB-Induced Photoaging in Human Skin Fibroblasts. J. Korean Soc. Food Cult. 2020, 35, 478–482. [Google Scholar] [CrossRef]
- Shin, J.W.; Kwon, S.H.; Choi, J.Y.; Na, J.I.; Huh, C.H.; Choi, H.G.; Park, K.C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic Acid: A Key Molecule in Skin Aging. Dermato-Endocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Freudenberger, T.; Zipper, P.; Melchior, A.; Grether-Beck, S.; Rabausch, B.; De Groot, J.; Twarock, S.; Hanenberg, H.; Homey, B.; et al. Chronic Ultraviolet B Irradiation Causes Loss of Hyaluronic Acid from Mouse Dermis Because of Down-Regulation of Hyaluronic Acid Synthases. Am. J. Pathol. 2007, 171, 1451–1461. [Google Scholar] [CrossRef]
- Xu, D.; Wang, W.; Liao, J.; Liao, L.; Li, C.; Zhao, M. Walnut Protein Hydrolysates, Rich with Peptide Fragments of WSREEQEREE and ADIYTEEAGR Ameliorate UV-Induced Photoaging through Inhibition of the NF-κB/MMP-1 Signaling Pathway in Female Rats. Food Funct. 2020, 11, 10601–10616. [Google Scholar] [CrossRef]
- Lu, J.; Hou, H.; Fan, Y.; Yang, T.; Li, B. Identification of MMP-1 Inhibitory Peptides from Cod Skin Gelatin Hydrolysates and the Inhibition Mechanism by MAPK Signaling Pathway. J. Funct. Foods 2017, 33, 251–260. [Google Scholar] [CrossRef]
- Zeng, H.; Ma, J.; Yang, R.; You, J.; Qu, L. Molecular Interactions of Flavonoids to Hyaluronidase: Insights from Spectroscopic and Molecular Modeling Studies. J. Fluoresc. 2015, 25, 941–959. [Google Scholar] [CrossRef]
- Chaiyana, W.; Jiamphun, S.; Bezuidenhout, S.; Yeerong, K.; Krueathanasing, N.; Thammasorn, P.; Jittasai, P.; Tanakitvanicharoen, S.; Tima, S.; Anuchapreeda, S. Enhanced Cosmeceutical Potentials of the Oil from Gryllus bimaculatus de Geer by Nanoemulsions. Int. J. Nanomed. 2023, 18, 2955–2972. [Google Scholar] [CrossRef]
- Fuah, A.M.; Siregar, H.C.H.; Endrawati, Y.C. Cricket Farming for Animal Protein as Profitable Business for Small Farmers in Indonesia. J. Agric. Sci. Technol. 2015, 5, 296–304. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jiamphun, S.; Chaiyana, W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules 2022, 27, 3317. [Google Scholar] [CrossRef] [PubMed]
- Neimkhum, W.; Anuchapreeda, S.; Lin, W.; Lue, S.-C.; Lee, K.; Chaiyana, W. Effects of Carissa carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition. Antioxidants 2021, 10, 1345. [Google Scholar] [CrossRef] [PubMed]
- Somwongin, S.; Chantawannakul, P.; Chaiyana, W. Antioxidant Activity and Irritation Property of Venoms from Apis Species. Toxicon 2018, 145, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Batista-Duharte, A.; Murillo, G.J.; Pérez, U.; Tur, E.; Portuondo, D.L.; Martínez, B.T.; Téllez-Martínez, D.; Betancourt, J.E.; Pérez, O. The Hen’s Egg Test on Chorioallantoic Membrane. Int. J. Toxicol. 2016, 35, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kalweit, S.; Besoke, R.; Gerner, I.; Spielmann, H. A National Validation Project of Alternative Methods to the Draize Rabbit Eye Test. Toxicol. In Vitro 1990, 4, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Viriyaadhammaa, N.; Saiai, A.; Neimkhum, W.; Nirachonkul, W.; Chaiyana, W.; Chiampanichayakul, S.; Tima, S.; Usuki, T.; Duangmano, S.; Anuchapreeda, S. Cytotoxic and Antiproliferative Effects of Diarylheptanoids Isolated from Curcuma comosa Rhizomes on Leukaemic Cells. Molecules 2020, 25, 5476. [Google Scholar] [CrossRef]
- Lee, H.; Sung, J.; Kim, Y.-H.; Jeong, H.S. Protective Effects of Unsaponifiable Matter from Perilla Seed Meal on UVB-Induced Damages and the Underlying Mechanisms in Human Skin Fibroblasts. Antioxidants 2019, 8, 644. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-G.; Lee, H.J.; Kim, K.T.; Hwang, S.; Lee, C.J.; Park, J. Effect of Oleanolic Acid on the Activity, Secretion and Gene Expression of Matrix Metalloproteinase-3 in Articular Chondrocytesin Vitro and the Production of Matrix Metalloproteinase-3in Vivo. Korean J. Physiol. Pharmacol. 2017, 21, 197. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Lee, J.E.; Jang, H.S.; Hong, S.Y.; Lee, J.B.; Park, S.Y.; Hwang, J.S. Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging. Biomol. Ther. 2021, 29, 220–226. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Natural Matrix Metalloproteinase Inhibitors. In Studies in Natural Products Chemistry, 1st ed.; Atta-ur-Rahman, F.R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 39, pp. 91–113. [Google Scholar]
- Prommaban, A.; Kheawfu, K.; Chittasupho, C.; Sirilun, S.; Hemsuwimon, K.; Chaiyana, W. Phytochemical, Antioxidant, Antihyaluronidase, Antityrosinase, and Antimicrobial Properties of Nicotiana tabacum L. Leaf Extracts. eCAM 2022, 2022, 5761764. [Google Scholar] [CrossRef]
- He, H.; Li, H.; Akanji, T.; Niu, S.; Luo, Z.; Li, D.; Seeram, N.P.; Wu, P.; Ma, H. Synthesis and Biological Evaluations of Oleanolic Acid Indole Derivatives as Hyaluronidase Inhibitors with Enhanced Skin Permeability. J. Enzym. Inhib. Med. Chem. 2021, 36, 1664–1677. [Google Scholar] [CrossRef]
Extracts | Total Protein Content (% w/w Dry Weight Basis) | TPC (mg GAE/g Extract) | TFC (mg QE/g Extract) |
---|---|---|---|
AQ | 63 ± 1 a | 0.48 ± 0.03 a | 0.02 ± 0.10 c |
ED | 44 ± 4 b | 0.34 ± 0.03 b | 0.26 ± 0.02 a,b |
EM | 34 ± 2 c | 0.26 ± 0.01 c | 0.33 ± 0.02 a |
HX | 14 ± 1 d | 0.05 ± 0.03 d | 0.09 ± 0.08 b,c |
Protein Band | MW (kDa) | Possible Protein Types |
---|---|---|
I | >260 | Protein glycation, cross-linking, or aggregation [58] |
II | ~100 | Sarcoplasmic/Endoplasmic reticulum calcium ATPase [57,58], alpha-actinin [58] |
III | 60 | β-Glycosidase [55] |
IV | 50 | Tubulin [57,58], troponin T [58] |
V | 40 | Actin [42,57,58], monomeric arginine kinase [42,58] |
VI | 33 | Tropomyosin [57,58] |
VII | 10–25 | Cuticle proteins [42,55], proteolytic degradation [42] |
Sample | IC50 (µg/mL) | |
---|---|---|
Collagenase Inhibition | Hyaluronidase Inhibition | |
OA | 3 ± 1 a | 29 ± 1 a |
AQ | 26 ± 1 b | 181 ± 2 d |
ED | 39 ± 2 c | 34 ± 2 a |
EM | 61 ± 4 d | 47 ± 4 b |
HX | 130 ± 3 e | 112 ± 5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeerong, K.; Chantawannakul, P.; Anuchapreeda, S.; Rades, T.; Müllertz, A.; Chaiyana, W. Acheta domesticus: A Natural Source of Anti-Skin-Aging Ingredients for Cosmetic Applications. Pharmaceuticals 2024, 17, 346. https://doi.org/10.3390/ph17030346
Yeerong K, Chantawannakul P, Anuchapreeda S, Rades T, Müllertz A, Chaiyana W. Acheta domesticus: A Natural Source of Anti-Skin-Aging Ingredients for Cosmetic Applications. Pharmaceuticals. 2024; 17(3):346. https://doi.org/10.3390/ph17030346
Chicago/Turabian StyleYeerong, Kankanit, Panuwan Chantawannakul, Songyot Anuchapreeda, Thomas Rades, Anette Müllertz, and Wantida Chaiyana. 2024. "Acheta domesticus: A Natural Source of Anti-Skin-Aging Ingredients for Cosmetic Applications" Pharmaceuticals 17, no. 3: 346. https://doi.org/10.3390/ph17030346
APA StyleYeerong, K., Chantawannakul, P., Anuchapreeda, S., Rades, T., Müllertz, A., & Chaiyana, W. (2024). Acheta domesticus: A Natural Source of Anti-Skin-Aging Ingredients for Cosmetic Applications. Pharmaceuticals, 17(3), 346. https://doi.org/10.3390/ph17030346