Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis Chemistry
2.2. Physicochemical Properties of Compounds 10(a-l)
2.3. Cytotoxicity Assays of Compounds 10(a-l)
2.4. In Silico ADME Properties of Compounds 10h and 10i
2.5. Store-Operated Calcium Entry (SOCE) Assays for Compound 10h
2.6. In Vitro Embryotoxicity and Angiogenesis of Compound 10h on Zebrafish Danio rerio
3. Conclusions
4. Materials and Methods
4.1. Chemistry Section—General Remarks
4.1.1. Standard Procedure for Synthesis of Ethyl N-(3-Cyano-4H-chromen-2-yl)formimidate 6(a-c) and Ethyl N-(2-Cyano-1H-naphto[2,1-b]pyran-3-yl)formimidate 6d in the Monowave 300® Microwave Reactor
4.1.2. Standard Procedure for Synthesis of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine 8(a-c) and 10-Amino-11-imino-11H-benzo[5,6]chromeno[2,3-d]pyrimidine 8d
4.1.3. Standard Procedure for Microwave Assisted Organic Synthesis of 3-(N-Phenylmethylidene)amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine 10(a-i) and 10-N-(Phenylmethylidene)amino-11-imino-11H-naphto[1′,2′:5,6]pyrano[2,3-d]pyrimidine 10(j-l) in the Monowave 300® Microwave Reactor
4.1.4. Drug Likeness
4.2. Biology Section
4.2.1. Antiproliferative Assays
Cell Culture
Protocol for Antiproliferative Assays
4.2.2. “Store-Operated Calcium Entry” (SOCE) Assays
Reagents
HEK293 Cell Culture
Cytosolic Ca+2 Protocol
Measurement of Intracellular Calcium Levels
Measurement of Store-Operated Calcium (SOC) Entry
Calculation and Data Analysis
4.2.3. In Vivo Zebrafish Danio rerio Assays
Zebrafish Maintenance and Embryo/Larva Exposure
In Vivo Zebrafish Danio rerio Toxicity Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem. 2013, 14, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.M.D. A Phase I/II Trial of Crolibulin (EPC2407) Plus Cisplatin in Adults with Solid Tumors with a Focus on Anaplastic Thyroid Cancer (ATC). Available online: http://www.clinicaltrials.gov (accessed on 20 November 2023).
- Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000, 97, 7124–7129. [Google Scholar] [CrossRef]
- Doshi, J.M.; Tian, D.; Xing, C. Structure activity relationship studies of ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J. Med. Chem. 2006, 49, 7731–7739. [Google Scholar] [CrossRef]
- Grée, D.; Vorin, S.; Manthati, V.L.; Caijo, F.; Viault, G.; Manero, F.; Juin, P.; Grée, R. The synthesis of new, selected analogues of the pro-apoptotic and anticancer molecule HA 14-1. Tetrahedron Lett. 2008, 49, 3276–3278. [Google Scholar] [CrossRef]
- Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther. 2004, 11, 1365–1374. [Google Scholar] [CrossRef]
- Gourdeau, H.; Leblond, L.; Hamelin, B.; Desputeau, C.; Dong, K.; Kianicka, I.; Custeau, D.; Boudreau, C.; Geerts, L.; Cai, S.X.; et al. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol. Cancer Ther. 2004, 11, 1375–1384. [Google Scholar] [CrossRef]
- Weyland, M.; Manero, F.; Paillard, A.; Grée, D.; Viault, G.; Jarnet, D.; Menei, P.; Juin, P.; Chourpa, I.; Benoit, J.-P.; et al. Mitochondrial targeting by use of lipid nanocapsules loaded with SV30, an analogue of the small-molecule Bcl-2 inhibitor HA 14-1. J. Control. Release 2011, 151, 74–82. [Google Scholar] [CrossRef]
- Wood, D.L.; Panda, D.; Wiernicki, T.R.; Wilson, L.; Jordan, M.A.; Singh, J.P. Inhibition of mitosis and microtubule function through direct tubulin binding by a novel antiproliferative naphthopyran LY290181. Mol. Pharmacol. 1997, 52, 437–444. [Google Scholar] [CrossRef]
- Panda, D.; Singh, J.P.; Wilson, L. Suppression of microtubule dynamics by LY290181. J. Biol. Chem. 1997, 272, 7681–7687. [Google Scholar] [CrossRef] [PubMed]
- Halawa, A.H.; Elaasser, M.M.; Kerdawy, A.M.E.; Abd El-Hady, A.M.A.I.; Emam, H.A.; Agrody, A.M.E. Anticancer activities, molecular docking and structure-activity relationship of novel synthesized 4H-chromene, and 5H-chromeno [2,3-d]pyrimidine candidates. Med. Chem. Res. 2017, 26, 2624–2638. [Google Scholar] [CrossRef]
- Sabry, N.M.; Mohamed, H.M.; Khattab, E.S.; Motlaq, S.S.; Agrody, A.M.E. Synthesis of 4H-chromene, coumarin, 12H-chromeno [2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur. J. Med. Chem. 2011, 46, 765–772. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Faramarzi, S.; Asadi, S.; Alireza, B.; Roya, B.; Massoud, A. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity. DARU J. Pharm. Sci. 2013, 21, 3. [Google Scholar] [CrossRef]
- Shamroukh, A.H.; Zaki, M.E.; Morsy, E.M.; Motti, F.M.A.; Megeid, F.M.A. Synthesis of pyrazolo [4′,3′:5,6]pyrano [2,3-d]pyrimidine derivatives for antiviral evaluation. Arch. Pharm. Chem. Life Sci. 2007, 340, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Srelakshmi, P.; Krishna, B.S.; Santhisudha, S.; Murali, S.; Reddy, G.R.; Venkataramaiah, C.; Rao, P.V.; Reddy, V.K.; Swetha, V.; Zyryanov, G.V.; et al. Synthesis and biological evaluation of novel dialkyl (4-amino-5H-chromeno [2,3-d]pyrimidin-5-yl)phosphonates. Bioorg. Chem. 2022, 129, 106121–106136. [Google Scholar] [CrossRef]
- Dhiabi, M.; Bouattour, A.; Fakhfakh, M.; Souhir, S.; Paquin, L.; Robert, T.; Bach, S.; Bazureau, J.-P.; Ammar, H. Practical approach to N-benzyl derivatives of 2-amino-8-methoxy-4H-chromene-3-carbonitrile by reductive amination: Exploration of their effects against protein kinases and in silico ADME profiling. J. Mol. Struct. 2023, 1274, 134319–134327. [Google Scholar] [CrossRef]
- Xie, J.; Pan, H.; Yao, J.; Zhou, Y.; Han, W. SOCE and cancer: Recent progress and new perspectives. Int. J. Cancer 2016, 138, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. In OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Bouattour, A.; Fakhfakh, M.; Abid, S.; Paquin, L.; Le Guével, R.; Corlu, A.; Ruchaud, S.; Bach, S.; Ammar, H.; Bazureau, J.-P. Microwave assisted a practical synthesis of 4-imino-3-phenyl-3,4-dihydro-1H-chromeno [2,3-d]pyrimidine-2(5H)-thione derivatives and exploration of their biological activities. Arkivoc 2017, 4, 291–302. [Google Scholar] [CrossRef]
- Bouattour, A.; Fakhfakh, M.; Abid, S.; Paquin, L.; Ammar, H.; Bazureau, J.-P. An efficient and concise syntheses of N-3-substituted 9-methoxy-4H-[1]-benzopyrano [2,3-d]pyrimidine-4(5H)-imine and formamidine derivatives from methyl N-(3-cyano-8-methoxy-4H-[1]-benzopyran-2-yl)methanimidate. Synthesis 2019, 49, 3768–3774. [Google Scholar] [CrossRef]
- Mohammed, F.K.; Badrey, M.G. Synthesis of pyrimidines and hetero-annulated pyrimidine ring systems. J. Korean Chem. Soc. 2011, 55, 218–229. [Google Scholar] [CrossRef]
- Bjorgo, J.; Boyd, D.R.; Watson, C.; Jennings, W.B.; Jerina, D.M. E-Z-Isomerism in aldimines. J. Chem. Soc. Perkin Trans. 2 1974, 9, 1081–1084. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kapple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the Rule of 5: Insights from drugs and clinical candidates. Chem. Biol. 2014, 21, 1115–1142. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Swiss ADME of Swiss Institute of Bioinformatics. Available online: http://www.swissadme.ch/ (accessed on 20 November 2023).
- Abad-Zapatero, C. A sorcerer’s apprentice and the rule of five: From rule-of thumb to commandment and beyond. Drug Discov. Today 2007, 12, 995–997. [Google Scholar] [CrossRef]
- Roy, D.; Patel, C. Revisiting the use of quantum chemical calculations in Log Poctanol-water prediction. Molecules 2023, 28, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Drug-Likeness Prediction Issued from “Molsoft Molecules In Silico”. Available online: https://molsoft.com/mprop/ (accessed on 23 February 2023).
- Prakriya, M.; Lewis, R.S. Store-Operated Calcium Channels. Physiol. Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef]
- Fahrenholtz, C.D.; Greene, A.M.; Beltran, P.J.; Burnstein, K.L. A novel calcium-dependent mechanism of acquired resistance to IGF-1 receptor inhibition in prostate cancer cells. Oncotarget 2014, 5, 9007–9021. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhou, H.; Yu, X.; Hu, L.; Meng, F.; Jiang, S. Effects of calcium signaling on coagulation factor VIIa-induced proliferation and migration of the SW620 colon cancer cell line. Mol. Med. Rep. 2014, 10, 3021–3023. [Google Scholar] [CrossRef]
- Berridge, M.J. The inositol trisphosphate/Calcium signaling pathway in health and disease. Physiol. Rev. 2016, 96, 1261–1296. [Google Scholar] [CrossRef]
- Putney, J.W., Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, N.; Pan, H.; Xie, J.; Han, W. Development of Store-Operated Calcium Entry-targeted compounds in cancer. Front. Pharmacol. 2021, 12, 688244. [Google Scholar] [CrossRef] [PubMed]
- Dago, C.D.; Le Maux, P.; Roisnel, T.; Brigaudeau, C.; Békro, Y.-A.; Mignen, O.; Bazureau, J.-P. Preliminary structure-activity relationship (SAR) of a novel series of pyrazole SKF-96365 analogues as potential Store-Operated Calcium Entry (SOCE) inhibitors. Int. J. Mol. Sci. 2018, 19, 856–879. [Google Scholar] [CrossRef]
- El-Kenawi, A.E.; El-Remessy, A.B. Angiogenesis inhibitors in cancer therapy: Mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol. 2013, 170, 712–729. [Google Scholar] [CrossRef]
- Isogai, S.; Horiguchi, M.; Weinstein, B.M. The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development. Dev. Biol. 2001, 230, 278–301. [Google Scholar] [CrossRef] [PubMed]
- Truong, L.; Harper, S.L.; Tanguay, R.L. Evaluation of embryotoxicity using the zebrafish model. Methods Mol. Biol. 2011, 691, 271–279. [Google Scholar] [CrossRef]
- Kais, B.; Schneider, K.E.; Keiter, S.; Henn, K.; Ackermann, C.; Braunbeck, T. DMSO modifies the permeability of the zebrafish (Danio rerio) chorion-implications for the fish embryo test (FET). Aquat. Toxicol. 2013, 140–141, 229–238. [Google Scholar] [CrossRef]
- Lawson, N.D.; Weinstein, B.M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 2002, 248, 307–318. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Nakabayashi, H.; Taketa, K.; Miyano, K.; Yamane, T.; Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982, 42, 3858–3863. [Google Scholar]
Compound | Yield (%) a | Compound | Yield (%) a | ||
---|---|---|---|---|---|
6a | 60 | 10c | 60 | ||
6b | 69 | 10d | 43 | ||
6c | 52 | 10e | 26 | ||
6d | 90 | 10f | 30 | ||
8a | 50 | 10g | 60 | ||
8b | 69 | 10h | 90 | ||
8c | 76 | 10i | 51 | ||
8d | 90 | 10j | 80 | ||
10a | 50 | 10k | 80 | ||
10b | 65 | 10l | 55 |
Prod. | Structure | MW (g/mol) | Log P | Log S | tPSA (Å2) | HBA | HBD | RB | Fract. Csp3 | LV |
---|---|---|---|---|---|---|---|---|---|---|
10a | 416.52 | 4.07 | −4.93 | 69.74 | 4 | 1 | 6 | 0.29 | 0 | |
10b | 389.45 | 3.28 | −4.55 | 86.73 | 5 | 2 | 5 | 0.23 | 0 | |
10c | 373.45 | 3.76 | −4.70 | 66.50 | 4 | 1 | 5 | 0.23 | 0 | |
10d | 345.40 | 3.29 | −4.22 | 66.50 | 4 | 1 | 3 | 0.15 | 0 | |
10e | 318.33 | 2.66 | −3.86 | 83.49 | 5 | 2 | 2 | 0.06 | 0 | |
10f | 320.33 | 2.98 | −4.01 | 63.26 | 4 | 1 | 2 | 0.06 | 0 | |
10g | 372.46 | 3.97 | −5.06 | 42.65 | 3 | 0 | 4 | 0.22 | 0 | |
10h | 348.36 | 2.86 | −3.93 | 92.72 | 6 | 2 | 3 | 0.11 | 0 | |
10i | 332.36 | 3.17 | −4.07 | 72.49 | 5 | 1 | 3 | 0.11 | 0 | |
10j | 395.46 | 3.66 | −5.35 | 66.50 | 4 | 1 | 3 | 0.12 | 0 | |
10k | 389.45 | 3.28 | −4.55 | 86.73 | 5 | 2 | 5 | 0.23 | 0 | |
10l | 352.39 | 3.32 | −5.14 | 63.26 | 4 | 1 | 2 | 0.05 | 0 |
Compounds 10(a-l) | IC50 (μM) of Selected Compounds a and Their Selectivity Index (SI) b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Huh7 D12 | Caco2 | MDA MB231 | MDA MB468 | HCT 116 | PC3 | MCF7 | PANC1 | Fibroblasts | ||
10a | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 | |
10b | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 | |
10c | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 | |
10d | 11 (1.27) | 10 (1.4) | 11 (1.27) | 11 (1.27) | 11 (1.27) | 11 (1.27) | 11 (1.27) | 17 (0.82) | 14 | |
10e | 1.7 (0.94) | 2.0 (0.8) | 1.5 (1.07) | 2.5 (0.64) | 0.3 (5.33) | 0.15 (10.67) | 1.7 (0.94) | 2.2 (0.73) | 1.6 | |
10f | >25 (1) | >25 (1) | >25 (1) | >25 (1) | 10 (2.5) | >25 (1) | >25 (1) | >25 (1) | >25 | |
10g | 6 (1.83) | 10 (1.1) | >25 (0.44) | 18 (0.61) | 24 (0.46) | 16 (0.69) | 10 (1.1) | NT | 11 | |
10h | 0.23 (108.7) | 0.3 (83.3) | 0.3 (83.3) | 0.24 (104.2) | 0.24 (104.2) | 0.24 (104.2) | 0.27 (92.6) | NT | >25 | |
10i | 0.49 (51.0) | 0.8 (31.3) | 0.6 (41.7) | 0.3 (83.3) | 0.62 (40.3) | 0.77 (32.5) | 0.45 (55.6) | NT | >25 | |
10j | 6 (1.83) | 10 (1.1) | >25 (0.44) | 18 (0.61) | 24 (0.46) | 16 (0.69) | 10 (1.1) | NT | 11 | |
10k | 1.5 (1) | 1.2 (1.25) | 1.1 (1.34) | 1.8 (0.83) | 0.6 (2.5) | 0.4 (3.75) | 1.2 (1.25) | 1.6 (0.94) | 1.5 | |
10l | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | >25 (1) | NT | >25 | |
DMSO | >25 | >25 | >25 | >25 | >25 | >25 | >25 | NT | >25 | |
Roscovitin c | 12 (1.08) | 13 (1) | 14 (0.93) | 14 (0.93) | 9 (1.44) | 9 (1.44) | 9 (1.44) | NT | 13 | |
Doxorubicin c | 0.06 (0.16) | 0.03 (0.33) | 0.02 (0.50) | 0.03 (0.33) | 0.07 (0.14) | 0.07 (0.14) | 0.09 (0.11) | NT | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karoui, S.; Dhiabi, M.; Fakhfakh, M.; Abid, S.; Limanton, E.; Le Guével, R.; Charlier, T.D.; Mainguy, A.; Mignen, O.; Paquin, L.; et al. Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity. Pharmaceuticals 2024, 17, 458. https://doi.org/10.3390/ph17040458
Karoui S, Dhiabi M, Fakhfakh M, Abid S, Limanton E, Le Guével R, Charlier TD, Mainguy A, Mignen O, Paquin L, et al. Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity. Pharmaceuticals. 2024; 17(4):458. https://doi.org/10.3390/ph17040458
Chicago/Turabian StyleKaroui, Sirine, Marwa Dhiabi, Mehdi Fakhfakh, Souhir Abid, Emmanuelle Limanton, Rémy Le Guével, Thierry D. Charlier, Anthony Mainguy, Olivier Mignen, Ludovic Paquin, and et al. 2024. "Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity" Pharmaceuticals 17, no. 4: 458. https://doi.org/10.3390/ph17040458
APA StyleKaroui, S., Dhiabi, M., Fakhfakh, M., Abid, S., Limanton, E., Le Guével, R., Charlier, T. D., Mainguy, A., Mignen, O., Paquin, L., Ammar, H., & Bazureau, J. -P. (2024). Design and Synthesis of Novel N-Benzylidene Derivatives of 3-Amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine under Microwave, In Silico ADME Predictions, In Vitro Antitumoral Activities and In Vivo Toxicity. Pharmaceuticals, 17(4), 458. https://doi.org/10.3390/ph17040458