Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family
Abstract
:1. Introduction
2. Methods
2.1. Collection of Information
2.2. Analysis
2.3. Tools Used
3. Results and Discussion
3.1. Description of Leishmaniosis
3.2. Overview of Leishmaniasis in Africa
3.3. Risk Factors
3.4. Diagnosis of Leishmaniasis
3.4.1. Parasitological Diagnosis
3.4.2. Immunological Diagnosis
3.4.3. Molecular Diagnosis
3.5. Recent Diagnosis
3.6. Prevention and Control
3.7. Treatment of Leishmaniasis
3.7.1. Conventional Antileishmanial Therapy
3.7.2. Recent Advances in the Treatment of Leishmaniasis
- Synergetic polytherapy
- Medication reassignment
- Nanotechnology
3.7.3. Drug Discovery Process
- Fragment-based drug discovery
- Direct screening of the target
- Phenotypic drug discovery
3.8. Complementary and Alternative Medicine, and Dietary Patterns in Prevention and Supportive Leishmaniosis Care
3.9. Natural Products for Leishmaniosis Treatment
3.10. Use of Cystoseira and Bifurcaria Algae By-Products in Leishmaniosis Treatments (In Vitro)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soares, R.C.R.; de Carvalho, A.G.; Luz, J.G.G.; Lucas, A.L.Z.; Ignotti, E. Integrated control of neglected tropical diseases in Brazil: Document review of a national campaign in light of WHO recommendations. Rev. Panam. De Salud Pública 2023, 47, e23. [Google Scholar] [CrossRef] [PubMed]
- Adams, I.; Kwapong, A.A.; Boafo, E.; Twum, E.; Amponsah, S.K. Leishmaniasis: Current Trends in Microbiology and Pharmacology. In Rising Contagious Diseases: Basics, Management, and Treatments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2024; pp. 297–313. [Google Scholar]
- Kumar, V.; Madhu, M.; Murti, K. An overview on leishmaniasis. In Viral, Parasitic, Bacterial, and Fungal Infections; Academic Press: Cambridge, MA, USA, 2023; pp. 389–406. [Google Scholar]
- Saidi, N.; Blaizot, R.; Prévot, G.; Aoun, K.; Demar, M.; Cazenave, P.A.; Bouratbine, A.; Pied, S. Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Front. Immunol. 2023, 14, 1134020. [Google Scholar] [CrossRef] [PubMed]
- Bamorovat, M.; Sharifi, I.; Agha Kuchak Afshari, S.; Ghasemi Nejad Almani, P. Mutual Role of Patients and the Healthcare System in the Control of Cutaneous Leishmaniasis. Transbound. Emerg. Dis. 2023, 2023, 7814940. [Google Scholar] [CrossRef]
- Bamorovat, M.; Sharifi, I.; Afshari, S.A.K.; Karamoozian, A.; Tahmouresi, A.; Heshmatkhah, A.; Salarkia, E.; Khosravi, A.; Parizi, M.H.; Barghi, M. Poor adherence is a major barrier to the proper treatment of cutaneous leishmaniasis: A case-control field assessment in Iran. Int. J. Parasitol. Drugs Drug Resist. 2023, 21, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.d.A.; Sousa, J.M.; de Aguiar, A.H.B.M.; Torres, K.C.S.; Coelho, A.J.S.; Ferreira, A.L.; Lima, M.I.S. Systematic review of treatment failure and clinical relapses in leishmaniasis from a multifactorial perspective: Clinical aspects, factors associated with the parasite and host. Trop. Med. Infect. Dis. 2023, 8, 430. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Noguera, L.A.; Hernández-Pereira, C.E.; Castillo-Castañeda, A.C.; Patiño, L.H.; Castañeda, S.; Herrera, G.; Mogollón, E.; Muñoz, M.; Duran, A.; Loyo, D.; et al. Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela. Acta Trop. 2023, 242, 106901. [Google Scholar] [CrossRef] [PubMed]
- Ursine, R.L.; Rocha, M.F.; Neto, F.C.; Leite, M.E.; Falcão, L.D.; Gorla, D.E.; de Carvalho, S.F.G.; Vieira, T.M. Influence of anthropic changes and environmental characteristics on the occurrence of Tegumentary Leishmaniasis in Montes Claros, Minas Gerais, Brazil, between 2012 and 2019. Acta Trop. 2023, 238, 106787. [Google Scholar] [CrossRef]
- Ghatee, M.A.; Sharifi, I.; Mohammadi, N.; Moghaddam, B.E.; Kohansal, M.H. Geographical and climatic risk factors of cutaneous leishmaniasis in the hyper-endemic focus of Bam County in southeast Iran. Front. Public Health 2023, 11, 1236552. [Google Scholar] [CrossRef]
- Rahmanipour, M.; Mohebali, M.; Koosha, M.; Kazemirad, E.; Yasami-Khiabani, S.; Mirjalali, H.; Hajjaran, H. Effect of Leishmania RNA virus 2 on virulence factors and cytokines gene expression in a human macrophage infected with Leishmania major: A preliminary study. Exp. Parasitol. 2023, 246, 108459. [Google Scholar] [CrossRef]
- Sharifi, I.; Khosravi, A.; Aflatoonian, M.R.; Salarkia, E.; Bamorovat, M.; Karamoozian, A.; Moghadam, M.N.; Sharifi, F.; Afshar, A.A.; Afshari, S.A.K.; et al. Cutaneous leishmaniasis situation analysis in the Islamic Republic of Iran in preparation for an elimination plan. Front. Public Health 2023, 11, 1091709. [Google Scholar] [CrossRef]
- Vlassoff, C.; Giron, N.; Soto, M.J.V.; Maia-Elkhoury, A.N.S.; Lal, A.; Castellanos, L.G.; Almeida, G.; Lim, C. Ensuring access to essential health products: Lessons from Colombia’s leishmaniasis control and elimination initiative. PLoS Negl. Trop. Dis. 2023, 17, e0011752. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Fernandez, T.; Markle, H.; Verma, C.; Huston, R.; Gannavaram, S.; Nakhasi, H.L.; Satoskar, A.R. Field-Deployable Treatments for Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res. Rep. Trop. Med. 2023, 14, 61–85. [Google Scholar] [CrossRef]
- de Avelar, D.M.; Santos, C.C.; Faioli, A.F. Developments in Leishmaniasis diagnosis: A patent landscape from 2010 to 2022. PLoS Glob. Public Health 2023, 3, e0002557. [Google Scholar] [CrossRef] [PubMed]
- Younis, B.M.; Musa, A.M.; Monnerat, S.; Saeed, M.A.; Khalil, E.A.G.; Ahmed, A.E.; Ali, M.A.; Noureldin, A.; Ouattara, G.M.; Nyakaya, G.M.; et al. Safety and efficacy of paromomycin/miltefosine/liposomal amphotericin B combinations for the treatment of post-kala-azar dermal leishmaniasis in Sudan: A phase II, open label, randomized, parallel arm study. PLoS Negl. Trop. Dis. 2023, 17, e0011780. [Google Scholar] [CrossRef]
- Ferreira, B.A.; Coser, E.M.; Saborito, C.; Yamashiro-Kanashiro, E.H.; Lindoso, J.A.L.; Coelho, A.C. In vitro miltefosine and amphotericin B susceptibility of strains and clinical isolates of Leishmania species endemic in Brazil that cause tegumentary leishmaniasis. Exp. Parasitol. 2023, 246, 108462. [Google Scholar] [CrossRef]
- Alsharedeh, R.H.; Rezigue, M.; Bashatwah, R.M.; Amawi, H.; Aljabali, A.A.; Obeid, M.A.; Tambuwala, M.M. Nanomaterials as a potential target for infectious parasitic agents. Curr. Drug Deliv. 2024, 21, 828–851. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X. A construction and empirical research of the journal disruption index based on open citation data. Scientometrics 2023, 128, 3935–3958. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, Y.; Mao, J.; Bai, Y.; Liang, Z.; Li, G. Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. J. Assoc. Inf. Sci. Technol. 2022, 74, 150–167. [Google Scholar] [CrossRef]
- Serafim, T.D.; Coutinho-Abreu, I.V.; Dey, R.; Kissinger, R.; Valenzuela, J.G.; Oliveira, F.; Kamhawi, S. Leishmaniasis: The act of transmission. Trends Parasitol. 2021, 37, 976–987. [Google Scholar] [CrossRef]
- Labbé, F.; Abdeladhim, M.; Abrudan, J.; Araki, A.S.; Araujo, R.N.; Arensburger, P.; Benoit, J.B.; Brazil, R.P.; Bruno, R.V.; Rivas, G.B.d.S.; et al. Genomic analysis of two phlebotomine sand fly vectors of leishmania from the new and old World. PLoS Negl. Trop. Dis. 2023, 17, e0010862. [Google Scholar] [CrossRef]
- Cecílio, P.; Cordeiro-da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 305. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Proma, S.B.; Hossain, S.; Arifuzzaman; Islam, N.; Siddique, A.B.; Amiruzzaman. A case report on para-kala-azar dermal leishmaniasis: An unresolved mystery. BMC Infect. Dis. 2023, 23, 885. [Google Scholar] [CrossRef] [PubMed]
- Momeni, K.; Ghorbian, S.; Ahmadpour, E.; Sharifi, R. Identification of molecular mechanisms causing skin lesions of cutaneous leishmaniasis using weighted gene coexpression network analysis (WGCNA). Sci. Rep. 2023, 13, 9836. [Google Scholar] [CrossRef] [PubMed]
- Amatore, F.; Lebas, F.; Haffner, A.; Delaporte, E. Flare-up of mucocutaneous leishmaniasis following infliximab discontinuation and antiparasitic therapy in a patient with juvenile idiopathic arthritis. Rheumatology 2023, 62, e138–e139. [Google Scholar] [CrossRef] [PubMed]
- Maia, C. Sand fly-borne diseases in Europe: Epidemiological overview and potential triggers for their emergence and re-emergence. J. Comp. Pathol. 2024, 209, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, R.S.; Naik, N.; Prajapati, M.; Rane, S.; Raulji, H.; Afu, N.F.; Upadhyay, T.K.; Saeed, M. Leishmania species: A narrative review on surface proteins with structural aspects involved in host–pathogen interaction. Chem. Biol. Drug Des. 2023, 102, 332–356. [Google Scholar] [CrossRef] [PubMed]
- Kumari, I.; Lakhanpal, D.; Swargam, S.; Nath Jha, A. Leishmaniasis: Omics approaches to understand its biology from molecule to cell level. Curr. Protein Pept. Sci. 2023, 24, 229–239. [Google Scholar] [CrossRef]
- Ruiz-Postigo, J.A.; Jain, S.; Madjou, S.; Agua, J.F.V.; Maia-Elkhoury, A.N.; Valadas, S.; Beshah, A. Global leishmaniasis surveillance, 2022: Assessing trends over the past 10 years/Surveillance mondiale de la leishmaniose, 2022: Evaluation des tendances des 10 dernieres annees. Wkly. Epidemiol. Rec. 2023, 98, 471–488. [Google Scholar]
- Musa, A.M.; Mbui, J.; Mohammed, R.; Olobo, J.; Ritmeijer, K.; Alcoba, G.; Ouattara, G.M.; Egondi, T.; Nakanwagi, P.; Omollo, T.; et al. Paromomycin and miltefosine combination as an alternative to treat patients with visceral leishmaniasis in eastern Africa: A randomized, controlled, multicountry trial. Clin. Infect. Dis. 2023, 76, e1177–e1185. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline for the Treatment of Visceral Leishmaniasis in HIV Co-Infected Patients in East Africa and South-East Asia; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Abbas MA, S.; Lachheb, J.; Chelbi, I.; Louati, D.; Dachraoui, K.; Ben Miled, S.; Zhioua, E. Independent circulation of Leishmania major and Leishmania tropica in their respective sandfly vectors for transmission of zoonotic and chronic cutaneous leishmaniasis co-existing in a mixed focus of central Tunisia. Pathogens 2022, 11, 855. [Google Scholar] [CrossRef] [PubMed]
- Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; et al. Visceral leishmaniasis: Epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms 2022, 10, 1887. [Google Scholar] [CrossRef]
- El Idrissi Saik, I.; Benlabsir, C.; Fellah, H.; Lemrani, M.; Riyad, M. Transmission patterns of Leishmania tropica around the Mediterranean basin: Could Morocco be impacted by a zoonotic spillover? PLoS Negl. Trop. Dis. 2022, 16, e0010009. [Google Scholar] [CrossRef]
- Meredith, S.; den Boer, M.; Burza, S.; Croft, S.L. KalaCORE: A Programme to Tackle Visceral Leishmaniasis in South Asia and East Africa (2014–2019). In Challenges and Solutions Against Visceral Leishmaniasis; Springer: Singapore, 2024; pp. 19–41. [Google Scholar]
- Alvar, J.; Beca-Martínez, M.T.; Argaw, D.; Jain, S.; Aagaard-Hansen, J. Social determinants of visceral leishmaniasis elimination in Eastern Africa. BMJ Glob. Health 2023, 8, e012638. [Google Scholar] [CrossRef]
- Charrahy, Z.; Yaghoobi-Ershadi, M.R.; Shirzadi, M.R.; Akhavan, A.A.; Rassi, Y.; Hosseini, S.Z.; Webb, N.J.; Haque, U.; Omid, F.B.; Hanafi-Bojd, A.A. Climate change and its effect on the vulnerability to zoonotic cutaneous leishmaniasis in Iran. Transbound. Emerg. Dis. 2022, 69, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Osorio, E.Y.; Uscanga-Palomeque, A.; Patterson, G.T.; Cordova, E.; Travi, B.L.; Soong, L.; Melby, P.C. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl. Trop. Dis. 2023, 17, e0011040. [Google Scholar] [CrossRef] [PubMed]
- Hmamouch, A.; El Alem, M.M.; Hakkour, M.; Amarir, F.; Daghbach, H.; Habbari, K.; Fellah, H.; Bekhti, K.; Sebti, F. Circulating species of Leishmania at microclimate area of Boulemane Province, Morocco: Impact of environmental and human factors. Parasites Vectors 2017, 10, 100. [Google Scholar] [CrossRef]
- Valero, N.N.H.; Uriarte, M. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review. Parasitol. Res. 2020, 119, 365–384. [Google Scholar] [CrossRef]
- Singh, S.; Sivakumar, R. Recent advances in the diagnosis of leishmaniasis. J. Postgrad. Med. 2003, 49, 55. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.L.; Rêgo, F.D.; Cota, G.; Pascoal-Xavier, M.A.; Oliveira, E. Potential antigenic targets used in immunological tests for diagnosis of tegumentary leishmaniasis: A systematic review. PLoS ONE 2021, 16, e0251956. [Google Scholar] [CrossRef]
- Yadav, P.; Azam, M.; Ramesh, V.; Singh, R. Unusual Observations in Leishmaniasis—An Overview. Pathogens 2023, 12, 297. [Google Scholar] [CrossRef]
- Moulik, S.; Sengupta, S.; Chatterjee, M. Molecular tracking of the Leishmania parasite. Front. Cell. Infect. Microbiol. 2021, 11, 623437. [Google Scholar] [CrossRef]
- Vega, D.M.; Di Meglio, M.; del Valle Alonso, S.; Alvira, F.; Montanari, J. Nanomaterials for Diagnosis, Treatment, and Prevention of Human Cutaneous Leishmaniasis: A Review. OpenNano 2023, 12, 100158. [Google Scholar] [CrossRef]
- De Brito, R.C.F.; Aguiar-Soares, R.D.D.O.; Cardoso, J.M.D.O.; Coura-Vital, W.; Roatt, B.M.; Reis, A.B. Recent advances and new strategies in Leishmaniasis diagnosis. Appl. Microbiol. Biotechnol. 2020, 104, 8105–8116. [Google Scholar] [CrossRef]
- Hirve, S.; Kroeger, A.; Matlashewski, G.; Mondal, D.; Banjara, M.R.; Das, P.; Be-Nazir, A.; Arana, B.; Olliaro, P. Towards elimination of visceral leishmaniasis in the Indian subcontinent—Translating research to practice to public health. PLoS Negl. Trop. Dis. 2017, 11, e0005889. [Google Scholar] [CrossRef]
- Srivastava, S.; Shankar, P.; Mishra, J.; Singh, S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasites Vectors 2016, 9, 277. [Google Scholar] [CrossRef]
- Dubey, P.; Das, A.; Priyamvada, K.; Bindroo, J.; Mahapatra, T.; Mishra, P.K.; Kumar, A.; Franco, A.O.; Rooj, B.; Sinha, B.; et al. Development and evaluation of active case detection methods to support visceral leishmaniasis elimination in India. Front. Cell. Infect. Microbiol. 2021, 11, 648903. [Google Scholar] [CrossRef]
- Esha, E.J.; Fazilani, S.A.; Ghosh, K.; Saikat, S.I.; Hasnine, I.; Sagor, S.I.; Akter, S.; Jannat, F.; Memon, M.A. Addressing emerging zoonotic diseases through a one health approach: Challenges opportunities. Zoonosis Unique Sci. Publ. Faisalabad Pak. 2023, 1, 156–167. [Google Scholar]
- Singh, N. Current Trends in Parasitic Diseases and Precautionary Measures. In Parasitic Infections: Immune Responses and Therapeutics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 356–381. [Google Scholar]
- Saad, K.A.; Abdalla, I.O.; Alkailani, H.A.; Elbakush, A.M.; Zreiba, Z.A. Evaluation of Hepatotoxicity Effect of Sodium Stibogluconate (Pentostam) in Mice Model. Al-Mukhtar J. Sci. 2022, 37, 22–28. [Google Scholar] [CrossRef]
- Shirzadi, M.R. Lipsosomal amphotericin B: A review of its properties, function, and use for treatment of cutaneous leishmaniasis. Res. Rep. Trop. Med. 2019, 10, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Palić, S.; Beijnen, J.H.; Dorlo, T.P. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int. J. Antimicrob. Agents 2022, 59, 106459. [Google Scholar] [CrossRef] [PubMed]
- Heleine, M.; Elenga, N.; Njuieyon, F.; Martin, E.; Piat, C.; Pansart, C.; Couppie, P.; Hernandez, M.; Demar, M.; Blaizot, R. Using pentamidine to treat cutaneous leishmaniasis in children: A 10-year study in French Guiana. Clin. Exp. Dermatol. 2023, 48, llad146. [Google Scholar] [CrossRef] [PubMed]
- Michelerio, A.; Barruscotti, S.; Bossi, G.; Brazzelli, V. Pediatric Old World cutaneous leishmaniasis treated with oral fluconazole: A case series. Pediatr. Dermatol. 2018, 35, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Biswaro, L.S.; Garcia, M.P.; da Silva, J.R.; Neira Fuentes, L.F.; Vera, A.; Escobar, P.; Azevedo, R.B. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Salarkia, E.; Sharifi, I.; Keyhani, A.; Oliaee, R.T.; Khosravi, A.; Sharifi, F.; Bamorovat, M.; Babaei, Z. In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions. PLoS ONE 2023, 18, e0291322. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Ahluwalia, V.; Agrawal, A.; Dubey, S.; Kumar, J.; Dubey, S. Medicinally important natural bioactive compounds for leishmaniasis treatment: Efficient alternate of toxic drugs. Stud. Nat. Prod. Chem. 2023, 76, 247–297. [Google Scholar]
- Tagliazucchi, L.; Perea-Martinez, A.; Fiorini, G.; Manzano, J.I.; Genovese, F.; García-Hernández, R.; Pinetti, D.; Gamarro, F.; Costi, M.P. Label-Free Mass Spectrometry Proteomics Reveals Different Pathways Modulated in THP-1 Cells Infected with Therapeutic Failure and Drug Resistance Leishmania infantum Clinical Isolates. ACS Infect. Dis. 2023, 9, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.S.; Shah, H.M.; Joshi, S.V.; Kharkar, P.S. Drugs for giardiasis, trichomoniasis, and leishmaniasis. In Medicinal Chemistry of Chemotherapeutic Agents; Academic Press: Cambridge, MA, USA, 2023; pp. 431–460. [Google Scholar]
- Rossi, N.R.D.L.P.; Fialho, S.N.; Gouveia, A.d.J.; Ferreira, A.S.; da Silva, M.A.; Martinez, L.D.N.; Nascimento, W.d.S.P.D.; Gonzag, A.; de Medeiros, D.S.S.; de Barros, N.B.; et al. Quinine and chloroquine: Potential preclinical candidates for the treatment of tegumentary leishmaniasis. Acta Trop. 2024, 252, 107143. [Google Scholar] [CrossRef]
- Porta, E.O.J.; Kalesh, K.; Steel, P. Navigating drug repurposing for Chagas disease: Advances, challenges, and opportunities. Front. Pharmacol. 2023, 14, 1233253. [Google Scholar] [CrossRef]
- Dziduch, K.; Greniuk, D.; Wujec, M. The current directions of searching for antiparasitic drugs. Molecules 2022, 27, 1534. [Google Scholar] [CrossRef]
- Spottiswoode, N.; Haston, J.C.; Hanners, N.W.; Gruenberg, K.; Kim, A.; DeRisi, J.L.; Wilson, M.R. Challenges and advances in the medical treatment of granulomatous amebic encephalitis. Ther. Adv. Infect. Dis. 2024, 11, 20499361241228340. [Google Scholar] [CrossRef]
- Pfarr, K.M.; Krome, A.K.; Al-Obaidi, I.; Batchelor, H.; Vaillant, M.; Hoerauf, A.; Opoku, N.O.; Kuesel, A.C. he pipeline for drugs for control and elimination of neglected tropical diseases: 2. Oral anti-infective drugs and drug combinations for off-label use. Parasites Vectors 2023, 16, 394. [Google Scholar] [CrossRef]
- Meshram, R.J.; Shirsath, A.; Aouti, S.; Bagul, K.; Gacche, R.N. Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. J. Mol. Model. 2020, 26, 218. [Google Scholar] [CrossRef]
- Meshram, R.J.; Bagul, K.T.; Aouti, S.U.; Shirsath, A.M.; Duggal, H.; Gacche, R.N. Modeling and simulation study to identify threonine synthase as possible drug target in Leishmania major. Mol. Divers. 2021, 25, 1679–1700. [Google Scholar] [CrossRef]
- Lodha, K.; Wavhal, D.; Bhujbal, N.; Mazire, P.; Bhujbal, S.; Korde, A.; Bagul, K.; Roy, A.; Meshram, R.; Shinde, V. Synthesis and biological evaluation of 9-aryl-1, 8-dioxo-octahydroxanthene derivatives as antileishmanial agents. Results Chem. 2023, 5, 100943. [Google Scholar] [CrossRef]
- Registre, C.; Soares, R.D.; Rubio, K.T.; Santos, O.D.; Carneiro, S.P. A systematic review of drug-carrying nanosystems used in the treatment of Leishmaniasis. ACS Infect. Dis. 2023, 9, 423–449. [Google Scholar] [CrossRef]
- Damasceno, B.P.G.d.L.; Moreira, L.M.C.d.C.; Silva, A.B.A.d.S.; Medeiros, K.d.A.; Júnior, J.A.O.; da Silva, D.T.C. Effectiveness In Vivo and In Vitro of Polymeric Nanoparticles as a Drug Release System in the Treatment of Leishmaniasis. Curr. Med. Chem. 2024, 31, 286–307. [Google Scholar]
- Abpeikar, Z.; Safaei, M.; Alizadeh, A.A.; Goodarzi, A.; Hatam, G. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. Int. J. Pharm. 2023, 633, 122615. [Google Scholar] [CrossRef] [PubMed]
- Ayotte, Y.; Bilodeau, F.; Descoteaux, A.; LaPlante, S.R. Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis. ChemMedChem 2018, 13, 1377–1386. [Google Scholar] [CrossRef]
- Altamura, F.; Rajesh, R.; Catta-Preta, C.M.; Moretti, N.S.; Cestari, I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev. Res. 2022, 83, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Balana-Fouce, R.; Pertejo, M.Y.P.; Dominguez-Asenjo, B.; Gutierrez-Corbo, C.; Reguera, R.M. Walking a tightrope: Drug discovery in visceral leishmaniasis. Drug Discov. Today 2019, 24, 1209–1216. [Google Scholar] [CrossRef]
- Oumeish, O.Y. The philosophical, cultural, and historical aspects of complementary, alternative, unconventional, and integrative medicine in the Old World. Arch. Dermatol. 1998, 134, 1373–1386. [Google Scholar] [CrossRef]
- de Oliveira, L.F.G.; Pereira BA, S.; Gilbert, B.; Corrêa, A.L.; Rocha, L.; Alves, C.R. Natural products and phytotherapy: An innovative perspective in leishmaniasis treatment. Phytochem. Rev. 2017, 16, 219–233. [Google Scholar] [CrossRef]
- Kumar, V.U.; Kt, M.F.; Sharma, A.; Bisht, P.; Dhingra, S.; Ravichandiran, V.; Ramesh, M.; Murti, K. The possible role of selected vitamins and minerals in the therapeutic outcomes of Leishmaniasis. Biol. Trace Elem. Res. 2023, 201, 1672–1688. [Google Scholar] [CrossRef]
- Nweze, J.A.; Nweze, E.I.; Onoja, U.S. Nutrition, malnutrition, and leishmaniasis. Nutrition 2020, 73, 110712. [Google Scholar] [CrossRef]
- Goyonlo, V.M.; Norouzy, A.; Nemati, M.; Layegh, P.; Akhlaghi, S.; Taheri, A.R.; Kiafar, B. Nutritional intake and chronicity associated with the Old World cutaneous Leishmaniasis: Role of vitamin a. Iran. J. Public Health 2020, 49, 167. [Google Scholar] [CrossRef]
- Pal, B.; Mishra, A.K.; Raj, H.; Chaudhary, V.; Khurana, N.; Azharuddin, M.; Kumari, S. Serum zinc level and efficacy of zinc therapy in cutaneous leishmaniasis: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2024, 202, 1856–1865. [Google Scholar] [CrossRef] [PubMed]
- Passero, L.F.D.; Brunelli, E.D.S.; Sauini, T.; Amorim Pavani, T.F.; Jesus, J.A.; Rodrigues, E. The potential of traditional knowledge to develop effective medicines for the treatment of leishmaniasis. Front. Pharmacol. 2021, 12, 690432. [Google Scholar] [CrossRef]
- Koko, W.S.; Al Nasr, I.S.; Khan, T.A.; Schobert, R.; Biersack, B. An Update on natural antileishmanial treatment options from plants, fungi and algae. Chem. Biodivers. 2022, 19, e202100542. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, K.; Iqbal, J.; Afreen, M.S. Comparative study on antileishmanial and cytotoxic activity of Lawsonia inermis bark and Aloe vera leaves. Int. J. Biol. Pharm. Allied Sci. 2016, 5, 1490–1500. [Google Scholar]
- Shah, N.A.; Khan, M.R.; Nadhman, A. Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan. BioMed Res. Int. 2014, 2014, 384204. [Google Scholar] [CrossRef]
- Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Iran. J. Vet. Res. 2015, 16, 1. [Google Scholar]
- Ribeiro, T.G.; Chávez-Fumagalli, M.A.; Valadares, D.G.; Franca, J.R.; Lage, P.S.; Duarte, M.C.; Andrade, P.H.; Martins, V.T.; Costa, L.E.; Arruda, A.L.; et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp. Parasitol. 2014, 143, 60–68. [Google Scholar] [CrossRef]
- Peer GD, G.; Chang, C.M.; Raj, V.S.; Pandey, R. Exploration of Antileishmanial Compounds Derived from Natural Sources. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2022, 23, 1–13. [Google Scholar]
- Vaghela, R.; Kulkarni, P.K.; Osmani, R.A.M.; Bhosale, R.R.; Kumar Varma, V.N.S. Recent advances in nanosystems and strategies for managing leishmaniasis. Curr. Drug Targets 2017, 18, 1598–1621. [Google Scholar] [CrossRef] [PubMed]
- Lezama-Dávila, C.M.; McChesney, J.D.; Bastos, J.K.; Miranda, M.A.; Tiossi, R.F.; Costa, J.d.C.d.; Bentley, M.V.; Gaitan-Puch, S.E.; Isaac-Márquez, A.P. A new antileishmanial preparation of combined solamargine and solasonine heals cutaneous leishmaniasis through different immunochemical pathways. Antimicrob. Agents Chemother. 2016, 60, 2732–2738. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.A.; Tiossi, R.F.J.; da Silva, M.R.; Rodrigues, K.C.; Kuehn, C.C.; Oliveira, L.G.R.; Albuquerque, S.; McChesney, J.D.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; et al. In vitro leishmanicidal and cytotoxic activities of the glycoalkaloids from Solanum lycocarpum (Solanaceae) fruits. Chem. Biodivers. 2013, 10, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.; Karthik, R.; Srivastava, V.; Singh, S.P.; Pant, A.B.; Goyal, N.; Gupta, K.C. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv. Transl. Res. 2021, 11, 118–130. [Google Scholar] [CrossRef]
- Rahimi, M.; Tabaei, S.J.S.; Ziai, S.A.; Sadri, M. Anti-leishmanial effects of chitosan-polyethylene oxide nanofibers containing berberine: An applied model for leishmania wound dressing. Iran. J. Med. Sci. 2020, 45, 286. [Google Scholar] [PubMed]
- Muzitano, M.F.; Falcão, C.A.B.; Cruz, E.A.; Bergonzi, M.C.; Bilia, A.R.; Vincieri, F.F.; Rossi-Bergmann, B.; Costa, S.S. Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis. Planta Medica 2009, 75, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Muzitano, M.F.; Bergonzi, M.C.; De Melo, G.O.; Lage, C.L.; Bilia, A.R.; Vincieri, F.F.; Rossi-Bergmann, B.; Costa, S.S. Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. J. Ethnopharmacol. 2011, 133, 132–137. [Google Scholar] [CrossRef]
- Gervazoni, L.F.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of natural products in leishmaniasis chemotherapy: An overview. Front. Chem. 2020, 1031, 579891. [Google Scholar] [CrossRef]
- Brenzan, M.; Santos, A.; Nakamura, C.; Filho, B.D.; Ueda-Nakamura, T.; Young, M.; Côrrea, A.; Júnior, J.A.; Morgado-Díaz, J.; Cortez, D. Effects of (−) mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine 2012, 19, 223–230. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.R.; Brogi, S.; Grillo, A.; Campiani, G.; Gemma, S.; Vieira, P.C.; Maquiaveli, C.D.C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase. Chem. Biol. Drug Des. 2019, 93, 139–146. [Google Scholar] [CrossRef]
- Ribeiro, G.A.; Cunha-Júnior, E.F.; Pinheiro, R.O.; Da-Silva, S.A.G.; Canto-Cavalheiro, M.M.; da Silva, A.J.M.; Costa, P.R.R.; Netto, C.D.; Melo, R.C.N.; Almeida-Amaral, E.E.; et al. LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J. Antimicrob. Chemother. 2013, 68, 789–799. [Google Scholar] [CrossRef]
- Ortiz-Pérez, E.; Rivera, G.; Salas, C.O.; Zarate-Ramos, J.J.; Trofymchuk, O.S.; Hernandez-Soberanis, L.; Perales-Flores, J.D.; Vázquez, K. Natural and synthetic naphthoquinones as potential anti-infective agents. Curr. Top. Med. Chem. 2021, 21, 2046–2069. [Google Scholar] [CrossRef] [PubMed]
- Islamuddin, M.; Chouhan, G.; Want, M.Y.; Tyagi, M.; Abdin, M.Z.; Sahal, D.; Afrin, F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front. Microbiol. 2014, 5, 626. [Google Scholar] [CrossRef]
- Al-HAlbosiy, M.M.; Ali, H.Z.; Hassan, G.M.; Ghaffarifar, F. Artemisinin efficacy against old world Leishmania donovani: In Vitro and ex vivo study. Ann. Parasitol. 2020, 66, 295–302. [Google Scholar]
- Corpas-Lopez, V.; Morillas-Márquez, F.; Navarro-Moll, M.C.; Merino-Espinosa, G.; Diaz-Saez, V.; Martin-Sanchez, J. (−)-α-Bisabolol, a promising oral compound for the treatment of visceral leishmaniasis. J. Nat. Prod. 2015, 78, 1202–1207. [Google Scholar] [CrossRef]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef]
- Witowski, C.; Maschek, A.; Vesely, B.; Kyle, D.; McClintock, J.; Amsler, C.; Baker, B. Characterization of membranolides BH from Dendrilla membranosa and their activity against leishmaniasis. Planta Medica 2014, 80, PB8. [Google Scholar] [CrossRef]
- Thomas, S.A.; Von Salm, J.L.; Clark, S.; Ferlita, S.; Nemani, P.; Azhari, A.; Baker, B.J. Keikipukalides, furanocembrane diterpenes from the Antarctic deep sea octocoral Plumarella delicatissima. J. Nat. Prod. 2018, 81, 117–123. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, X.; Huang, R.; Ren, B.; Chen, B.; Liu, Y.; Zhang, H. Diversified Chemical Structures and Bioactivities of the Chemical Constituents Found in the Brown Algae Family Sargassaceae. Mar. Drugs 2024, 22, 59. [Google Scholar] [CrossRef]
- Valls, R.; Piovetti, L. The chemistry of the Cystoseiraceae (Fucales: Pheophyceae): Chemotaxonomic relationships. Biochem. Syst. Ecol. 1995, 23, 723–745. [Google Scholar] [CrossRef]
- de Sousa, C.B.; Gangadhar, K.N.; Macridachis, J.; Pavão, M.; Morais, T.R.; Campino, L.; Varela, J.; Lago, J.H.G. Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron Asymmetry 2017, 28, 1486–1505. [Google Scholar] [CrossRef]
- Gouveia, V.; Seca, A.M.L.; Barreto, M.C.; Pinto, D.C.G.A. Di- and sesquiterpenoids from Cystoseira genus: Structure, intra-molecular transformations and biological activity. Mini-Rev. Med. Chem. 2013, 13, 1150–1159. [Google Scholar] [CrossRef]
- Muñoz, J.; Culioli, G.; Köck, M. Linear Diterpenes from the Marine Brown Alga Bifurcaria bifurcata: A chemical perspective. Phytochem. Rev. 2013, 12, 407–424. [Google Scholar] [CrossRef]
- Ainane, T.; Abourriche, A.; Kabbaj, M.; Elkouali, M.; Bennamara, A.; Charrouf, M.; Talbi, M. Removal of hexavalent chromium from aqueous solution by raw and chemically modified seaweed Bifurcaria bifurcate. J. Mater. Environ. Sci. 2014, 5, 975–982. [Google Scholar]
- El Yaagoubi, B.; Mohamed Abdoul-Latif, F.; Mohamed, J.; Ouassil, M.; Ainane, A.; Ainane, T. Evaluation of the Antibacterial and Cytotoxicity Activities of Cystoseira Gibraltarica by Bioguided Fractionation. Pharmacologyonligne 2021, 2, 443–448. [Google Scholar]
- Ainane, T.; Abourriche, A. Brown Seaweed Bifurcaria bifurcata: Bioguided Fractionation of Extracts by Antibacterial Activity and Cytotoxicity Test. Biosci. Biotechnol. Res. Asia 2014, 11, 1081–1085. [Google Scholar] [CrossRef]
- Kumar, A.; Deepika Sharda, S.; Avasthi, A. Recent Advances in the Treatment of Parasitic Diseases: Current Status and Future. In Natural Product Based Drug Discovery Against Human Parasites: Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2023; pp. 249–286. [Google Scholar]
- Lemrani, M.; Abourriche, A.; Kabbaj, M.; Bennamara, A.; Talbi, M.; ElKouali, M.; Charrouf, M.; Ainane, T. Use of Products Extracted from a Marine Algae Bifurcaria Bifurcata in the Treatment of Leishmaniosis. Patent MA34758A, 6 April 2012. [Google Scholar]
- de Sousa, C.B.; Lago, J.H.G.; Macridachis, J.; Oliveira, M.; Brito, L.; Vizetto-Duarte, C.; Florindo, C.; Hendrickx, S.; Maes, L.; Morais, T.; et al. Report of in vitro antileishmanial properties of Iberian macroalgae. Nat. Prod. Res. 2019, 33, 1778–1782. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, C.B.; Gangadhar, K.N.; Morais, T.R.; Conserva, G.A.; Vizetto-Duarte, C.; Pereira, H.; Laurenti, M.D.; Campino, L.; Levy, D.; Uemi, M.; et al. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp. Parasitol. 2017, 174, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ainane, T.; Abourriche, A.; Kabbaj, M.; Elkouali, M.; Bennamara, A.; Charrouf, M.; Lemrani, M. Biological activities of extracts from seaweed Cystoseira tamariscifolia: Antibacterial activity, antileishmanial activity and cytotoxicity. J. Chem. Pharm. Res 2014, 6, 607–611. [Google Scholar]
- Oliveira, M.; de Sousa, C.B.; Cortes, S.; Campino, L.; Custódio, L.; Barreira, L. Influence of the extraction method on the antiprotozoal activity of two Iberian Cystoseira species. Planta Medica 2014, 80, LP5. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Aboubaker, I.H.; Kidar, B.H.; Mohamed, J.; Lemrani, M.; Abourriche, A.; Ainane, T. Ericaria amentacea Algae Extracts: A Sustainable Approach for the Green Synthesis of Silver Oxide Nanoparticles and Their Effectiveness against Leishmaniasis. Processes 2023, 11, 3227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoul-Latif, F.M.; Oumaskour, K.; Abdallah, N.; Ainane, A.; Houmed Aboubaker, I.; Merito, A.; Mohamed, H.; Ainane, T. Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family. Pharmaceuticals 2024, 17, 523. https://doi.org/10.3390/ph17040523
Abdoul-Latif FM, Oumaskour K, Abdallah N, Ainane A, Houmed Aboubaker I, Merito A, Mohamed H, Ainane T. Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family. Pharmaceuticals. 2024; 17(4):523. https://doi.org/10.3390/ph17040523
Chicago/Turabian StyleAbdoul-Latif, Fatouma Mohamed, Khadija Oumaskour, Nadira Abdallah, Ayoub Ainane, Ibrahim Houmed Aboubaker, Ali Merito, Houda Mohamed, and Tarik Ainane. 2024. "Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family" Pharmaceuticals 17, no. 4: 523. https://doi.org/10.3390/ph17040523
APA StyleAbdoul-Latif, F. M., Oumaskour, K., Abdallah, N., Ainane, A., Houmed Aboubaker, I., Merito, A., Mohamed, H., & Ainane, T. (2024). Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family. Pharmaceuticals, 17(4), 523. https://doi.org/10.3390/ph17040523