Methyl-Containing Pharmaceuticals
Conflicts of Interest
List of Contributions
- Gomes, G.B.; Zubieta, C.S.; Guilhermi, J.d.S.; Toffoli-Kadri, M.C.; Beatriz, A.; Rafique, J.; Parisotto, E.B.; Saba, S.; Perdomo, R.T. Selenylated Imidazo [1,2-a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals 2023, 16, 814. https://doi.org/10.3390/ph16060814.
- Bak, A.; Kozik, V.; Swietlicka, A.; Baran, W.; Smolinski, A.; Zięba, A. Towards Symmetric Thioamides: Microwave-Aided Synthesis of Terephthalic Acid Derivatives. Pharmaceuticals 2023, 16, 984. https://doi.org/10.3390/ph16070984.
- Bello-Vargas, E.; Leyva-Peralta, M.A.; Gómez-Sandoval, Z.; Ordóñez, M.; Razo-Hernández, R.S. A Computational Method for the Binding Mode Prediction of COX-1 and COX-2 Inhibitors: Analyzing the Union of Coxibs, Oxicams, Propionic and Acetic Acids. Pharmaceuticals 2023, 16, 1688. https://doi.org/10.3390/ph16121688.
- Illuminati, D.; Trapella, C.; Zanirato, V.; Guerrini, R.; Albanese, V.; Sturaro, C.; Stragapede, S.; Malfacini, D.; Compagnin, G.; Catani, M.; et al. (L)-Monomethyl Tyrosine (Mmt): New Synthetic Strategy via Bulky ‘Forced-Traceless’ Regioselective Pd-Catalyzed C(sp2)–H Activation. Pharmaceuticals 2023, 16, 1592. https://doi.org/10.3390/ph16111592.
- Pinheiro, P.d.S.M.; Franco, L.S.; Fraga, C.A.M. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals 2023, 16, 1157. https://doi.org/10.3390/ph16081157.
References
- Schonherr, H.; Cernak, T. Profound Methyl Effects in Drug Discovery and a Call for New C_H Methylation Reactions. Angew. Chem. Int. Ed. 2013, 52, 12256. [Google Scholar] [CrossRef] [PubMed]
- Aynetdinova, D.; Callens, M.C.; Hicks, H.B.; Poh, C.Y.X.; Shennan, B.D.A.; Boyd, A.M.; Lim, Z.H.; Leitch, J.A.; Dixon, D.J. Installing the “Magic-Methyl”-C_H Methylation in Synthesis. Chem. Soc. Rev. 2021, 50, 5517. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.S.; Leung, S.S.F.; Tirado-Rives, J.; Jorgensen, W.L. Methyl Effects on Protein–Ligand Binding. J. Med. Chem. 2012, 55, 4489. [Google Scholar] [CrossRef] [PubMed]
- McGrath, N.A.; Brichacek, M.; Njardarson, J.T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 2010, 87, 1348. [Google Scholar] [CrossRef]
- Gomtsyan, A.; Bayburt, E.K.; Keddy, R.; Turner, S.C.; Jinkerson, T.K.; Didomenico, S.; Perner, R.J.; Koenig, J.R.; Drizin, I.; McDonald, H.A.; et al. α-Methylation at benzylic fragment of N-aryl-N′-benzyl ureas provides TRPV1 antagonists with better pharmacokinetic properties and higher efficacy in inflammatory pain model. Bioorg. Med. Chem. Lett. 2007, 17, 3894. [Google Scholar] [CrossRef] [PubMed]
- Bahl, A.; Barton, P.; Bowers, K.; Caffrey, M.V.; Denton, R.; Gilmour, P.; Hawley, S.; Linannen, T.; Luckhurst, C.A.; Perry, M.W.D.; et al. Scaffold hopping with zwitterionic CCR3 antagonists: Identification and Optimization of a series with good potency and pharmacokinetics leading to the discovery of AZ12436092. Bioorg. Med. Chem. Lett. 2012, 22, 6694. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011, 111, 5215. [Google Scholar] [CrossRef] [PubMed]
- Judd, W.R.; Slattum, P.M.; Hoang, K.C.; Bhoite, L.; Valppu, L.; Alberts, G.; Brown, B.; Roth, B.; Ostanin, K.; Huang, L.; et al. Discovery and SAR of Methylated Tetrahydropyranyl Derivative sas Inhibitors of Isoprenylcysteine Carboxyl Methyltransferase (ICMT). J. Med. Chem. 2011, 54, 5031. [Google Scholar] [CrossRef] [PubMed]
- Lansdell, M.I.; Hepworth, D.; Calabrese, A.; Brown, A.D.; Blagg, J.; Burring, D.J.; Wilson, P.; Fradet, D.; Brown, T.B.; Quinton, F.; et al. Discovery of a Selective Small-Molecule Melanocortin-4 Receptor Agonist with Efficacy in a Pilot study of Sexual Disfunction in Humans. J. Med. Chem. 2010, 53, 3183. [Google Scholar] [CrossRef] [PubMed]
- Némethy, G. Hydrophobic Interactions. Angew. Chem. Int. Ed. Engl. 1967, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.R.; Craik, D.J.; Martin, J.L. Functional group contributions to drug-receptor interactions. J. Med. Chem. 1984, 27, 1648. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Hashimoto, Y. Improvement in Aqueous Solubility in Small Molecule Drug Discovery Programs by Disruption of Molecular Planarity and Symmetry. J. Med. Chem. 2011, 54, 1539. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illuminati, D.; Fantinati, A. Methyl-Containing Pharmaceuticals. Pharmaceuticals 2024, 17, 563. https://doi.org/10.3390/ph17050563
Illuminati D, Fantinati A. Methyl-Containing Pharmaceuticals. Pharmaceuticals. 2024; 17(5):563. https://doi.org/10.3390/ph17050563
Chicago/Turabian StyleIlluminati, Davide, and Anna Fantinati. 2024. "Methyl-Containing Pharmaceuticals" Pharmaceuticals 17, no. 5: 563. https://doi.org/10.3390/ph17050563
APA StyleIlluminati, D., & Fantinati, A. (2024). Methyl-Containing Pharmaceuticals. Pharmaceuticals, 17(5), 563. https://doi.org/10.3390/ph17050563