Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats
Abstract
:1. Introduction
2. Results
2.1. In Vivo Clinical Assays
2.2. Radiological Assessment
2.3. Cytokine Analysis
3. Discussion
4. Materials and Methods
4.1. Origin of Cuminaldehyde
4.2. Experimental Animals and Ethical Considerations
4.3. Experimental Design
4.4. In Vivo Clinical Assessments Evaluations
4.4.1. Assessment of Motor Activity Using Forced Deambulation (Rotarod Test)
4.4.2. Incapacitation/Weight Distribution Test on Hind Paws (Weight Bearing)
4.4.3. Rat Grimace Scale (RGS)
4.5. Radiological Assessment
4.6. Assessment of Cytokine Amount
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, T.W.; McCabe, P.S.; McBeth, J. Update on the Epidemiology, Risk Factors and Disease Outcomes of Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 312–326. [Google Scholar] [CrossRef]
- Foster, N.E.; Eriksson, L.; Deveza, L.; Hall, M. Osteoarthritis Year in Review 2022: Epidemiology & Therapy. Osteoarthr. Cartil. 2023, 31, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Maksimović, Z.; Samardžić, S. Herbal Medicinal Products in the Treatment of Osteoarthritis. In Osteoarthritis Biomarkers and Treatments; IntechOpen Limited: London, UK, 2018; pp. 1–19. [Google Scholar]
- Stewart, H.L.; Kawcak, C.E. The Importance of Subchondral Bone in the Pathophysiology of Osteoarthritis. Front. Vet. Sci. 2018, 5, 178. [Google Scholar] [CrossRef]
- Kawano, M.M.; Araújo, I.L.A.; Castro, M.C.; Matos, M.A. Assessment of Quality of Life in Patients with Knee Osteoarthritis. Acta Ortopédica Bras. 2015, 23, 307–310. [Google Scholar] [CrossRef]
- Vasconcelos, C.C.; Lopes, A.J.O.; de Jesus Garcia Ataide, E.; Carvalho, K.W.P.; de Brito, M.F.F.; Rodrigues, M.S.; de Morais, S.V.; Silva, G.E.B.; da Rocha, C.Q.; Garcia, J.B.S.; et al. Arrabidaea Chica Verlot Fractions Reduce MIA-Induced Osteoarthritis Progression in Rat Knees. Inflammopharmacology 2021, 29, 735–752. [Google Scholar] [CrossRef]
- Yu, S.P.; Hunter, D.J. Managing Osteoarthritis. Aust. Prescr. 2015, 38, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Salvo, F.; Fourrier-Réglat, A.; Bazin, F.; Robinson, P.; Riera-Guardia, N.; Haag, M.; Caputi, A.P.; Moore, N.; Sturkenboom, M.C.; Pariente, A.; et al. Cardiovascular and Gastrointestinal Safety of NSAIDs: A Systematic Review of Meta-Analyses of Randomized Clinical Trials. Clin. Pharmacol. Ther. 2011, 89, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; Chrubasik, S. Oral Herbal Therapies for Treating Osteoarthritis. Cochrane Database Syst. Rev. 2014, 2014, CD002947. [Google Scholar] [CrossRef] [PubMed]
- Calado, G.P.; Lopes, A.J.O.; Costa Junior, L.M.; Lima, F.d.C.A.; Silva, L.A.; Pereira, W.S.; Amaral, F.M.M.d.; Garcia, J.B.S.; Cartagenes, M.d.S.d.S.; Nascimento, F.R.F.; et al. Chenopodium Ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Lima, M.V.V.; Freire, A.D.O.; Sousa, E.L.F.; Vale, A.A.M.; Lopes, A.J.O.; Vasconcelos, C.C.; Lima-Aragão, M.V.V.; Serra, H.O.; Liberio, R.N.M.G.; Santos, A.P.S.d.A.d.; et al. Therapeutic Use of Scoparia Dulcis Reduces the Progression of Experimental Osteoarthritis. Molecules 2019, 24, 3474. [Google Scholar] [CrossRef]
- Morais, S.V.d.; Mendonça, P.G.; Vasconcelos, C.C.; Lopes, P.L.A.; Garcia, J.B.S.; Calzerra, N.T.M.; Queiroz, T.M.d.; Lima, S.T.d.J.R.M.; Silva, G.E.B.; Lopes, A.J.O.; et al. Cuminaldehyde Effects in a MIA-Induced Experimental Model Osteoarthritis in Rat Knees. Metabolites 2023, 13, 397. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.V.d.; Czeczko, N.G.; Malafaia, O.; Ribas, J.M.; Garcia, J.B.S.; Miguel, M.T.; Zini, C.; Massignan, A.G. Osteoarthritis Model Induced by Intra-Articular Monosodium Iodoacetate in Rats Knee. Acta Cir. Bras. 2016, 31, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Schuelert, N.; McDougall, J.J. Grading of Monosodium Iodoacetate-Induced Osteoarthritis Reveals a Concentration-Dependent Sensitization of Nociceptors in the Knee Joint of the Rat. Neurosci. Lett. 2009, 465, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Papalia, R.; De Salvatore, S.; Picozzi, R.; Sarubbi, A.; Denaro, V. Induced Models of Osteoarthritis in Animal Models: A Systematic Review. Biology 2023, 12, 283. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, T.; Sousa-Valente, J.; Malcangio, M. The Monoiodoacetate Model of Osteoarthritis Pain in the Mouse. J. Vis. Exp. 2016, 111, e53746. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Yu, H.; Huang, X.; Shen, J.; Xiao, G.; Chen, L.; Wang, H.; Xing, L.; Chen, D. Current Understanding of Osteoarthritis Pathogenesis and Relevant New Approaches. Bone Res. 2022, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef]
- Vasconcelos, C.C.; Lopes, A.J.O.; Sousa, E.L.F.; Camelo, D.S.; Lima, F.C.V.M.; Rocha, C.Q.d.; Silva, G.E.B.; Garcia, J.B.S.; Cartágenes, M.d.S.d.S. Effects of Extract of Arrabidaea Chica Verlot on an Experimental Model of Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4717. [Google Scholar] [CrossRef]
- Legrand, C.; Merlini, J.M.; de Senarclens-Bezençon, C.; Michlig, S. New Natural Agonists of the Transient Receptor Potential Ankyrin 1 (TRPA1) Channel. Sci. Rep. 2020, 10, 11238. [Google Scholar] [CrossRef]
- Koohsari, S.; Sheikholeslami, M.A.; Parvardeh, S.; Ghafghazi, S.; Samadi, S.; Poul, Y.K.; Pouriran, R.; Amiri, S. Antinociceptive and Antineuropathic Effects of Cuminaldehyde, the Major Constituent of Cuminum Cyminum Seeds: Possible Mechanisms of Action. J. Ethnopharmacol. 2020, 255, 112786. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, X.; Bi, Y.; Miao, R.; Zhang, Z.; Su, H. Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF- κ B Signaling Pathways in LPS-Stimulated RAW 264.7 Cells. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tomy, M.J.; Dileep, K.V.; Prasanth, S.; Preethidan, D.S.; Sabu, A.; Sadasivan, C.; Haridas, M. Cuminaldehyde as a Lipoxygenase Inhibitor: In Vitro and In Silico Validation. Appl. Biochem. Biotechnol. 2014, 174, 388–397. [Google Scholar] [CrossRef]
- de Morais, B.S.; Silva, Y.P.; Cruvinel, M.G.C.; Castro, C.H.V.d.; Hermeto, M.V. Administração Inadvertida de 4 Mg de Morfina Por via Subaracnóidea: Relato de Caso. Rev. Bras. Anestesiol. 2008, 58, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Jafri, H.; Ahmad, I. Thymus Vulgaris Essential Oil and Thymol Inhibit Biofilms and Interact Synergistically with Antifungal Drugs against Drug Resistant Strains of Candida Albicans and Candida Tropicalis. J. Mycol. Med. 2020, 30, 100911. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Potentiating Therapeutic Effects by Enhancing Synergism Based on Active Constituents from Traditional Medicine. Phytother. Res. 2014, 28, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017, 22, 1135. [Google Scholar] [CrossRef] [PubMed]
- Pruteanu, L.-L.; Kopanitsa, L.; Módos, D.; Kletnieks, E.; Samarova, E.; Bender, A.; Gomez, L.D.; Bailey, D.S. Transcriptomics Predicts Compound Synergy in Drug and Natural Product Treated Glioblastoma Cells. PLoS ONE 2020, 15, e0239551. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Li, M.-T.; Huo, Y.-J.; Cheng, Y.-Q.; Guo, S.-F.; Wu, Y.; Zhang, L.; Ma, J.; Liu, A.-J.; Han, Y. The Synergistic Effect of Ginkgo Biloba Extract 50 and Aspirin Against Platelet Aggregation. Drug Des. Devel. Ther. 2021, 15, 3543–3560. [Google Scholar] [CrossRef] [PubMed]
- Jurca, T.; Józsa, L.; Suciu, R.; Pallag, A.; Marian, E.; Bácskay, I.; Mureșan, M.; Stan, R.L.; Cevei, M.; Cioară, F.; et al. Formulation of Topical Dosage Forms Containing Synthetic and Natural Anti-Inflammatory Agents for the Treatment of Rheumatoid Arthritis. Molecules 2020, 26, 24. [Google Scholar] [CrossRef]
- Jahromi, B.; Pirvulescu, I.; Candido, K.D.; Knezevic, N.N. Herbal Medicine for Pain Management: Efficacy and Drug Interactions. Pharmaceutics 2021, 13, 251. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed]
- D’Ascola, A.; Irrera, N.; Ettari, R.; Bitto, A.; Pallio, G.; Mannino, F.; Atteritano, M.; Campo, G.M.; Minutoli, L.; Arcoraci, V.; et al. Exploiting Curcumin Synergy With Natural Products Using Quantitative Analysis of Dose-Effect Relationships in an Experimental In Vitro Model of Osteoarthritis. Front. Pharmacol. 2019, 10, 1347. [Google Scholar] [CrossRef] [PubMed]
- Funaro, A.; Wu, X.; Song, M.; Zheng, J.; Guo, S.; Rakariyatham, K.; Rodriguez-Estrada, M.T.; Xiao, H. Enhanced Anti-Inflammatory Activities by the Combination of Luteolin and Tangeretin. J. Food Sci. 2016, 81, H1320–H1327. [Google Scholar] [CrossRef] [PubMed]
- Macedo, E.M.A.; Santos, W.C.; Sousa, B.P.; Lopes, E.M.; Piauilino, C.A.; Cunha, F.V.M.; Sousa, D.P.; Oliveira, F.A.; Almeida, F.R.C. Association of Terpinolene and Diclofenac Presents Antinociceptive and Anti-Inflammatory Synergistic Effects in a Model of Chronic Inflammation. Brazilian J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas e Biol. 2016, 49, e5103. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.-S.; Tan, C.; An, H.; Jiang, D.-M.; Quan, Z.-X.; Tang, K.; Luo, X.-J. The Effects of NSAIDs on Types I, II, and III Collagen Metabolism in a Rat Osteoarthritis Model. Rheumatol. Int. 2012, 32, 2401–2405. [Google Scholar] [CrossRef] [PubMed]
- Csifo (Vajda), E.; Nagy, E.E.; Horváth, E.; Fárr, A.; Muntean, D.L. Mid-Term Effects of Meloxicam on Collagen Type II Degradation in a Rat Osteoarthritis Model Induced by Iodoacetate. Farmacia 2015, 63, 556–560. [Google Scholar]
- Nagy, E.; Vajda, E.; Vari, C.; Sipka, S.; Fárr, A.-M.; Horváth, E. Meloxicam Ameliorates the Cartilage and Subchondral Bone Deterioration in Monoiodoacetate-Induced Rat Osteoarthritis. PeerJ 2017, 5, e3185. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.-P. The Role of Cytokines in Osteoarthritis Pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.-P.; Fahmi, H. Role of Proinflammatory Cytokines in the Pathophysiology of Osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Mosser, D.M.; Zhang, X. Interleukin-10: New Perspectives on an Old Cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Waly, N.E.; Refaiy, A.; Aborehab, N.M. IL-10 and TGF-β: Roles in Chondroprotective Effects of Glucosamine in Experimental Osteoarthritis? Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2017, 24, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yao, S.; Wise, G.E. Effect of Interleukin-10 on Gene Expression of Osteoclastogenic Regulatory Molecules in the Rat Dental Follicle. Eur. J. Oral Sci. 2006, 114, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.E.; Fox, S.W. Interleukin-10 Inhibits Osteoclastogenesis by Reducing NFATc1 Expression and Preventing Its Translocation to the Nucleus. BMC Cell Biol. 2007, 8, 4. [Google Scholar] [CrossRef]
- Fujioka, K.; Kishida, T.; Ejima, A.; Yamamoto, K.; Fujii, W.; Murakami, K.; Seno, T.; Yamamoto, A.; Kohno, M.; Oda, R.; et al. Inhibition of Osteoclastogenesis by Osteoblast-like Cells Genetically Engineered to Produce Interleukin-10. Biochem. Biophys. Res. Commun. 2015, 456, 785–791. [Google Scholar] [CrossRef]
- Yu, L.K.; Zhang, J.; Sun, Z.Y.; Ruan, C.L.; Li, H.; Ruan, X.J. Coculture with Interleukin-10 Overexpressed Chondrocytes: A Cell Therapy Model to Ameliorate the Post-Traumatic Osteoarthritis Development. J. Biol. Regul. Homeost. Agents 2021, 35, 593–603. [Google Scholar] [CrossRef]
- Müller, R.D.; John, T.; Kohl, B.; Oberholzer, A.; Gust, T.; Hostmann, A.; Hellmuth, M.; LaFace, D.; Hutchins, B.; Laube, G.; et al. IL-10 Overexpression Differentially Affects Cartilage Matrix Gene Expression in Response to TNF-α in Human Articular Chondrocytes in Vitro. Cytokine 2008, 44, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Kumar, R.P.; Kumar, S.; Sharma, S.; Mir, R.; Kaur, P.; Srinivasan, A.; Singh, T.P. Simultaneous Inhibition of Anti-coagulation and Inflammation: Crystal Structure of Phospholipase A 2 Complexed with Indomethacin at 1.4 Å Resolution Reveals the Presence of the New Common Ligand-binding Site. J. Mol. Recognit. 2009, 22, 437–445. [Google Scholar] [CrossRef]
- Kaplan, L.; Weiss, J.; Elsbach, P. Low Concentrations of Indomethacin Inhibit Phospholipase A2 of Rabbit Polymorphonuclear Leukocytes. Proc. Natl. Acad. Sci. USA 1978, 75, 2955–2958. [Google Scholar] [CrossRef]
- Bonney, R.C.; Qizilbash, S.T.; Franks, S. Inhibition of Phospholipase A2 Isoenzymes in Human Endometrium by Mefenamic Acid and Indomethacin: Modulation by Calcium Ions. J. Endocrinol. 1988, 119, 141–145. [Google Scholar] [CrossRef]
- Watson, S.P.; Wolf, M.; Lapetina, E.G. The Formation of [3H]Inositol Phosphates in Human Platelets by Palmitoyl Lysophosphatidic Acid Is Blocked by Indomethacin. Biochem. Biophys. Res. Commun. 1985, 132, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Simpkins, C.; Gartner, S.; Sobel, D. Phospholipase C Activity in Human Polymorphonuclear Leukocytes: Partial Characterization and Effect of Indomethacin. Enzyme 1989, 42, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; Huang, A.; Harada, Y.; Katori, M. Activation of Phospholipase C as a Primary Target of the Thromboxane A(2)-Mediated Amplification Mechanism in Thrombin-Induced Rabbit Platelet Activation. Platelets 1994, 5, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.A.; Cao, J.; Hsu, Y.-H.; Magrioti, V.; Kokotos, G. Phospholipase A2 Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition, and Therapeutic Intervention. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Casale, J.; Kacimi, S.E.O.; Varacallo, M. Biochemistry, Phospholipase A2; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kalff, K.-M.; El Mouedden, M.; van Egmond, J.; Veening, J.; Joosten, L.; Scheffer, G.J.; Meert, T.; Vissers, K. Pre-Treatment with Capsaicin in a Rat Osteoarthritis Model Reduces the Symptoms of Pain and Bone Damage Induced by Monosodium Iodoacetate. Eur. J. Pharmacol. 2010, 641, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Schött, E.; Berge, O.-G.; Ängeby-Möller, K.; Hammarström, G.; Dalsgaard, C.-J.; Brodin, E. Weight Bearing as an Objective Measure of Arthritic Pain in the Rat. J. Pharmacol. Toxicol. Methods 1994, 31, 79–83. [Google Scholar] [CrossRef]
- Sotocina, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions. Mol. Pain 2011, 7, 1744–8069. [Google Scholar] [CrossRef] [PubMed]
- Ahlbäck, S. Osteoarthrosis of the Knee. A Radiographic Investigation. Acta Radiol. Diagn. 1968, 277, 7–72. [Google Scholar]
- Keyes, G.W.; Carr, A.J.; Miller, R.K.; Goodfellow, J.W. The Radiographic Classification of Medial Gonarthrosis. Acta Orthop. Scand. 1992, 63, 497–501. [Google Scholar] [CrossRef]
Classification | Radiological Findings |
---|---|
Grade 0 | No Osteoarthritis: Normal radiology |
Grade I | Doubtful Osteoarthritis: Questionable joint narrowing, possible marginal osteophyte |
Grade II | Minimal Osteoarthritis: Possible narrowing, defined osteophyte |
Grade III | Moderate Osteoarthritis: Defined narrowing, multiple osteophytes, some subchondral sclerosis, possible bone deformity |
Grade IV | Severe Osteoarthritis: Marked joint narrowing, severe subchondral sclerosis, large osteophytes, defined deformity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais, S.V.; Calado, G.P.; Carvalho, R.C.; Garcia, J.B.S.; de Queiroz, T.M.; Cantanhede Filho, A.J.; Lopes, A.J.O.; Cartágenes, M.d.S.d.S.; Domingues, G.R.d.S. Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals 2024, 17, 630. https://doi.org/10.3390/ph17050630
de Morais SV, Calado GP, Carvalho RC, Garcia JBS, de Queiroz TM, Cantanhede Filho AJ, Lopes AJO, Cartágenes MdSdS, Domingues GRdS. Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals. 2024; 17(5):630. https://doi.org/10.3390/ph17050630
Chicago/Turabian Stylede Morais, Sebastião Vieira, Gustavo Pereira Calado, Rafael Cardoso Carvalho, João Batista Santos Garcia, Thyago Moreira de Queiroz, Antonio José Cantanhede Filho, Alberto Jorge Oliveira Lopes, Maria do Socorro de Sousa Cartágenes, and Gerson Ricardo de Souza Domingues. 2024. "Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats" Pharmaceuticals 17, no. 5: 630. https://doi.org/10.3390/ph17050630
APA Stylede Morais, S. V., Calado, G. P., Carvalho, R. C., Garcia, J. B. S., de Queiroz, T. M., Cantanhede Filho, A. J., Lopes, A. J. O., Cartágenes, M. d. S. d. S., & Domingues, G. R. d. S. (2024). Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats. Pharmaceuticals, 17(5), 630. https://doi.org/10.3390/ph17050630