Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Therapy in Mice Infected with B. abortus 2308 Does Not Restore TNF-α, IL-6, or IL-12 Levels, despite the Increase in Splenic Macrophages and Dendritic Cells
2.2. Antibiotic Treatment of B. abortus 2308-Infected Mice Restores Neurotransmitter Levels, but Not Physical Performance
3. Discussion
4. Materials and Methods
4.1. Brucella Culture
4.1.1. Animals
4.1.2. Antibiotic Treatment with Doxycycline and Rifampicin
4.2. Collection of Blood, Brain, and Spleen Samples
4.3. Serum Cytokine Quantification
4.4. Corticosterone Quantification
4.5. Dendritic Cell and Macrophage Flow Cytometry Analysis
4.6. Determination of Spleen Brucella Colony-Forming Units (CFUs)
4.7. Behavioral Test Evaluation
4.8. Neurotransmitter Quantification
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dean, A.S.; Crump, L.; Greter, H.; Hattendorf, J.; Schelling, E.; Zinsstag, J. Clinical Manifestations of Human Brucellosis: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2012, 6, e1929. [Google Scholar] [CrossRef] [PubMed]
- Ariza, J.; Bosilkovski, M.; Cascio, A.; Colmenero, J.D.; Corbel, M.J.; Falagas, M.E.; Memish, Z.A.; Roushan, M.R.H.; Rubinstein, E.; Sipsas, N.V.; et al. Perspectives for the Treatment of Brucellosis in the 21st Century: The Ioannina Recommendations. PLoS Med. 2007, 4, e317. [Google Scholar] [CrossRef] [PubMed]
- Hayoun, M.; Muco, E.; Shorman, M. StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- CDC Brucellosis Reference Guide: Exposures, Testing and Prevention. Available online: https://stacks.cdc.gov/view/cdc/46133 (accessed on 15 August 2023).
- McDermott, J.; Grace, D.; Zinsstag, J. Economics of Brucellosis Impact and Control in Low-Income Countries. Rev. Sci. Tech. 2013, 32, 249–261. [Google Scholar] [CrossRef]
- Consuelo Arias Villate, S.; Cesar García Casallas, J. Update of Antibiotic Therapy of Brucellosis. In New Insight into Brucella Infection and Foodborne Diseases; IntechOpen: London, UK, 2020; Volume 25, pp. e275–e281. ISBN 0000957720. [Google Scholar]
- Huang, S.; Wang, H.; Li, F.; Du, L.; Fan, W.; Zhao, M.; Zhen, H.; Yan, Y.; Lu, M.; Han, X.; et al. Better Efficacy of Triple Antibiotics Therapy for Human Brucellosis: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2023, 17, e0011590. [Google Scholar] [CrossRef] [PubMed]
- Yousefi-Nooraie, R.; Mortaz-Hejri, S.; Mehrani, M.; Sadeghipour, P. Antibiotics for Treating Human Brucellosis. Cochrane Database Syst. Rev. 2012, 10, CD007179. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Solera, J.; Akritidis, N.; Tsianos, E. New Approaches to the Antibiotic Treatment of Brucellosis. Int. J. Antimicrob. Agents 2005, 26, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.M.; Alavi, L. Treatment of Brucellosis: A Systematic Review of Studies in Recent Twenty Years. Casp. J. Intern. Med. 2013, 4, 636–641. [Google Scholar]
- A Al-Tawfiq, J.; A Memish, Z. Antibiotic Susceptibility and Treatment of Brucellosis. Recent Pat. Anti-Infect. Drug Discov. 2013, 8, 51–54. [Google Scholar] [CrossRef]
- Grilló, M.J.; De Miguel, M.J.; Muñoz, P.M.; Marín, C.M.; Ariza, J.; Blasco, J.M. Efficacy of Several Antibiotic Combinations against Brucella Melitensis Rev 1 Experimental Infection in BALB/c Mice. J. Antimicrob. Chemother. 2006, 58, 622–626. [Google Scholar] [CrossRef]
- Dawood, A.S.; Elrashedy, A.; Nayel, M.; Salama, A.; Guo, A.; Zhao, G.; Algharib, S.A.; Zaghawa, A.; Zubair, M.; Elsify, A.; et al. Brucellae as Resilient Intracellular Pathogens: Epidemiology, Host–Pathogen Interaction, Recent Genomics and Proteomics Approaches, and Future Perspectives. Front. Vet. Sci. 2023, 10, 1255239. [Google Scholar] [CrossRef]
- Castaño, M.J.; Solera, J. Chronic Brucellosis and Persistence of Brucella Melitensis DNA. J. Clin. Microbiol. 2009, 47, 2084–2089. [Google Scholar] [CrossRef] [PubMed]
- Solera, J. Update on Brucellosis: Therapeutic Challenges. Int. J. Antimicrob. Agents 2010, 36 (Suppl. 1), S18–S20. [Google Scholar] [CrossRef] [PubMed]
- Grilló, M.J.; Manterola, L.; De Miguel, M.J.; Muñoz, P.M.; Blasco, J.M.; Moriyón, I.; López-Goñi, I. Increases of Efficacy as Vaccine against Brucella abortus Infection in Mice by Simultaneous Inoculation with Avirulent Smooth BvrS/BvrR and Rough WbkA Mutants. Vaccine 2006, 24, 2910–2916. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-García, J.L.; Pérez-Sánchez, G.; Becerril Villanueva, E.; Alvarez-Herrera, S.; Pavón, L.; Gutiérrez-Ospina, G.; López-Santiago, R.; Maldonado-Tapia, J.O.; Pérez-Tapia, S.M.; Moreno-Lafont, M.C. Behavioral and Neurochemical Shifts at the Hippocampus and Frontal Cortex Are Associated to Peripheral Inflammation in Balb/c Mice Infected with Brucella abortus 2308. Microorganisms 2021, 9, 1937. [Google Scholar] [CrossRef] [PubMed]
- Ferat-Osorio, E.; Maldonado-García, J.L.; Pavón, L. How Inflammation Influences Psychiatric Disease. World J. Psychiatry 2024, 14, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Salvador, A.F.; de Lima, K.A.; Kipnis, J. Neuromodulation by the Immune System: A Focus on Cytokines. Nat. Rev. Immunol. 2021, 21, 526–541. [Google Scholar] [CrossRef]
- Doganay, M.; Aygen, B. Human Brucellosis: An Overview. Int. J. Infect. Dis. 2003, 7, 173–182. [Google Scholar] [CrossRef]
- Gentilini, M.V.; Velásquez, L.N.; Barrionuevo, P.; Benitez, P.C.A.; Giambartolomei, G.H.; Delpino, M.V. Adrenal Steroids Modulate the Immune Response during Brucella abortus Infection by a Mechanism That Depends on the Regulation of Cytokine Production. Infect. Immun. 2015, 83, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.F.; Gong, Q.L.; Zhao, B.; Ma, B.Y.; Chen, Z.Y.; Yang, Y.; Sun, Y.H.; Wang, Q.; Leng, X.; Zong, Y.; et al. Seroprevalence of Brucellosis in Buffalo Worldwide and Associated Risk Factors: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2021, 8, 649252. [Google Scholar] [CrossRef] [PubMed]
- Spink, W.W. What Is Chronic Brucellosis? Ann. Intern. Med. 1951, 35, 358–374. [Google Scholar] [CrossRef]
- Kawakami, N.; Wakai, Y.; Saito, K.; Imaoka, K. Chronic Brucellosis in Japan. Intern. Med. 2019, 58, 3179–3183. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Suo, B.; Zhang, Y. Analysis of Clinical Manifestations of Acute and Chronic Brucellosis in Patients Admitted to a Public General Hospital in Northern China. Int. J. Gen. Med. 2021, 14, 8311–8316. [Google Scholar] [CrossRef] [PubMed]
- Buzgan, T.; Karahocagil, M.K.; Irmak, H.; Baran, A.I.; Karsen, H.; Evirgen, O.; Akdeniz, H. Clinical Manifestations and Complications in 1028 Cases of Brucellosis: A Retrospective Evaluation and Review of the Literature. Int. J. Infect. Dis. 2010, 14, e469–e478. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ma, C.; Sun, H.; Yang, S.; Yu, F.; Li, X.; Wang, L. Serum Levels of Seven General Cytokines in Acute Brucellosis Before and After Treatment. Infect. Drug Resist. 2021, 14, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pintó, I.; Agmon-Levin, N.; Howard, A.; Shoenfeld, Y. Fibromyalgia and Cytokines. Immunol. Lett. 2014, 161, 200–203. [Google Scholar] [CrossRef]
- Ebbinghaus, M.; Segond von Banchet, G.; Massier, J.; Gajda, M.; Bräuer, R.; Kress, M.; Schaible, H.G. Interleukin-6-Dependent Influence of Nociceptive Sensory Neurons on Antigen-Induced Arthritis. Arthritis Res. Ther. 2015, 17, 334. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Q.; Lin, G.Y.; He, W.W.; Zhang, C.; Zhang, R.; Li, Y.D.; Wang, F.; Qin, Y.; Duan, L.; Zhao, D.D.; et al. IL-6 and INF-Γlevels in Patients with Brucellosis in Severe Epidemic Region, Xinjiang, China. Infect. Dis. Poverty 2020, 9, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Sebba, A. Pain: A Review of Interleukin-6 and Its Roles in the Pain of Rheumatoid Arthritis. Open Access Rheumatol. Res. Rev. 2021, 13, 31–43. [Google Scholar] [CrossRef]
- Maldonado-García, J.L.; Vega-Ramírez, M.; Pérez-Sanchez, G.; Becerril-Villanueva, E.; Alvarez-Herrera, S.; Mendieta-Cabrera, D.; Moreno-Lafont, M.; Pavón, L. The Proteomics and Fibromyalgia: A Perspective on the Study of the Inflammatory Response in Fibromyalgia. Med. Res. Arch. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Ebbinghaus, M.; Natura, G.; Segond Von Banchet, G.; Hensellek, S.; Böttcher, M.; Hoffmann, B.; Salah, F.S.; Gajda, M.; Kamradt, T.; Schaible, H.G. Interleukin-17A Is Involved in Mechanical Hyperalgesia but Not in the Severity of Murine Antigen-Induced Arthritis. Sci. Rep. 2017, 7, 10334. [Google Scholar] [CrossRef]
- Leung, L.; Cahill, C.M. TNF-α and Neuropathic Pain—A Review. J. Neuroinflamm. 2010, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, R.; Zhang, Y.; Zhu, T.; Li, Q.; Zhang, W. Interleukin-17 as a Potential Therapeutic Target for Chronic Pain. Front. Immunol. 2022, 13, 999407. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-García, J.L.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Alvarez-Herrera, S.; Pavón, L.; Sánchez-Torres, L.; Gutiérrez-Ospina, G.; Girón-Pérez, M.I.; Damian-Morales, G.; Maldonado-Tapia, J.O.; et al. Imipramine Administration in Brucella Abortus 2308-Infected Mice Restores Hippocampal Serotonin Levels, Muscle Strength, and Mood, and Decreases Spleen CFU Count. Pharmaceuticals 2023, 16, 1525. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Suzuki, N.; Daynes, R.A.; Engleman, E.G. Dehydroepiandrosterone Enhances IL2 Production and Cytotoxic Effector Function of Human T Cells. Clin. Immunol. Immunopathol. 1991, 61, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Losleben, M.; Himmerich, H. The TNF-Alpha System: Functional Aspects in Depression, Narcolepsy and Psychopharmacology. Curr. Neuropharmacol. 2008, 6, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Malek, H.; Ebadzadeh, M.M.; Safabakhsh, R.; Razavi, A.; Zaringhalam, J. Dynamics of the HPA Axis and Inflammatory Cytokines: Insights from Mathematical Modeling. Comput. Biol. Med. 2015, 67, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Grilló, M.-J.; Blasco, J.M.; Gorvel, J.P.; Moriyón, I.; Moreno, E. What Have We Learned from Brucellosis in the Mouse Model? Vet. Res. 2012, 43, 29. [Google Scholar] [CrossRef]
- Domingo, S.; Gastearena, I.; Vitas, A.I.; Lopez-goñi, I.; Dios-viéitez, C.; Diaz, R.; Gamazo, C. Comparative Activity of Azithromycin and Doxycycline against Brucella Spp. Infection in Mice. J. Antimicrob. Chemother. 1995, 36, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Alamian, S.; Brangsch, H.; Elbadawy, M.; Elkharsawi, A.R.; Neubauer, H.; Wareth, G. Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology. Pathogens 2023, 12, 82. [Google Scholar] [CrossRef]
- Newell, K.L.; Waickman, A.T. Inflammation, Immunity, and Antigen Persistence inpost-Acute Sequelae of SARS-CoV-2 Infection. Curr. Opin. Immunol. 2022, 77, 102228. [Google Scholar] [CrossRef]
- Del Pozo, J.S.G.; Solera, J. Treatment of Human Brucellosis—Review of Evidence from Clinical Trials. In Updates on Brucellosis; Baddour, M.M., Ed.; InTech: Berlin, Germany, 2015; pp. 185–199. [Google Scholar]
- O’Callaghan, D. Human Brucellosis: Recent Advances and Future Challenges. Infect. Dis. Poverty 2020, 9, 101. [Google Scholar] [CrossRef]
- Ahmed, W.; Zheng, K.; Liu, Z.F. Establishment of Chronic Infection: Brucella’s Stealth Strategy. Front. Cell. Infect. Microbiol. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, J.A.; Rupper, A.; Cardelli, J.A.; Bellaire, B.H. Host Interferon-γ Inducible Protein Contributes to Brucella Survival. Front. Cell. Infect. Microbiol. 2012, 2, 55. [Google Scholar] [CrossRef]
- Elbehiry, A.; Aldubaib, M.; Al Rugaie, O.; Marzouk, E.; Abaalkhail, M.; Moussa, I.; El-Husseiny, M.H.; Abalkhail, A.; Rawway, M. Proteomics-Based Screening and Antibiotic Resistance Assessment of Clinical and Sub-Clinical Brucella Species: An Evolution of Brucellosis Infection Control. PLoS ONE 2022, 17, e0262551. [Google Scholar] [CrossRef] [PubMed]
- Von Mücke-Heim, I.A.; Urbina-Treviño, L.; Bordes, J.; Ries, C.; Schmidt, M.V.; Deussing, J.M. Introducing a Depression-like Syndrome for Translational Neuropsychiatry: A Plea for Taxonomical Validity and Improved Comparability between Humans and Mice. Mol. Psychiatry 2023, 28, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Dale, E.; Pehrson, A.L.; Jeyarajah, T.; Li, Y.; Leiser, S.C.; Smagin, G.; Olsen, C.K.; Sanchez, C. Effects of Serotonin in the Hippocampus: How SSRIs and Multimodal Antidepressants Might Regulate Pyramidal Cell Function. CNS Spectr. 2016, 21, 143–161. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Jeon, S.W. Neuroinflammation and the Immune-Kynurenine Pathway in Anxiety Disorders. Curr. Neuropharmacol. 2018, 16, 574–582. [Google Scholar] [CrossRef]
- Nachón-García, F.; Hurtado-Alvarado, G.; Acosta-Hernández, M.E.; Peña-Escudero, C.; Priego-Fernández, S.; Alvarez-Herrera, S.; Becerril-Villanueva, E.; Pérez-Sánchez, G.; Pavón, L.; García-García, F. Characterization of Sleep-Pattern and Neuro-Immune-Endocrine Markers at 24 hour Post-Injection of a Single Low Dose of Lipopolysaccharide in Male Wistar Rats. J. Neuroimmunol. 2018, 320, 15–18. [Google Scholar] [CrossRef]
- Abouesh, A.; Stone, C.; Hobbs, W.R. Antimicrobial-Induced Mania (Antibiomania): A Review of Spontaneous Reports. J. Clin. Psychopharmacol. 2002, 22, 71–81. [Google Scholar] [CrossRef]
- Wolfe, F.; Michaud, K. Fatigue, Rheumatoid Arthritis, and Anti-Tumor Necrosis Factor Therapy: An Investigation in 24,831 Patients. J. Rheumatol. 2004, 31, 2115–2120. [Google Scholar]
- Atzeni, F.; Nucera, V.; Masala, I.F.; Sarzi-Puttini, P.; Bonitta, G. Il-6 Involvement in Pain, Fatigue and Mood Disorders in Rheumatoid Arthritis and the Effects of Il-6 Inhibitor Sarilumab. Pharmacol. Res. 2019, 149, 104402. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Depierre, J.W.; Nässberger, L. Tricyclic Antidepressants Inhibit IL-6, IL-1β and TNF-α Release in Human Blood Monocytes and IL-2 and Interferon-γ in T Cells. Immunopharmacology 1996, 34, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.; Devason, A.S.; Umana, I.C.; Cox, T.O.; Dohnalová, L.; Litichevskiy, L.; Perla, J.; Lundgren, P.; Etwebi, Z.; Izzo, L.T.; et al. Serotonin Reduction in Post-Acute Sequelae of Viral Infection. Cell 2023, 186, 4851–4867. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C. Long COVID: Alice Evans, Brucellosis, and Reflections on Infectious Causes of Chronic Disease. Clin. Infect. Dis. 2023, 77, 1644–1677. [Google Scholar] [CrossRef]
- Opsteen, S.; Files, J.K.; Fram, T.; Erdmann, N. The Role of Immune Activation and Antigen Persistence in Acute and Long COVID. J. Investig. Med. 2023, 71, 545–562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-García, J.L.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Pavón, L.; Tesoro-Cruz, E.; Girón-Pérez, M.I.; Hurtado-Alvarado, G.; Damián-Morales, G.; López-Santiago, R.; et al. Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability. Pharmaceuticals 2024, 17, 638. https://doi.org/10.3390/ph17050638
Maldonado-García JL, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Pavón L, Tesoro-Cruz E, Girón-Pérez MI, Hurtado-Alvarado G, Damián-Morales G, López-Santiago R, et al. Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability. Pharmaceuticals. 2024; 17(5):638. https://doi.org/10.3390/ph17050638
Chicago/Turabian StyleMaldonado-García, José Luis, Samantha Alvarez-Herrera, Gilberto Pérez-Sánchez, Enrique Becerril-Villanueva, Lenin Pavón, Emiliano Tesoro-Cruz, Manuel Iván Girón-Pérez, Gabriela Hurtado-Alvarado, Gabriela Damián-Morales, Rubén López-Santiago, and et al. 2024. "Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability" Pharmaceuticals 17, no. 5: 638. https://doi.org/10.3390/ph17050638
APA StyleMaldonado-García, J. L., Alvarez-Herrera, S., Pérez-Sánchez, G., Becerril-Villanueva, E., Pavón, L., Tesoro-Cruz, E., Girón-Pérez, M. I., Hurtado-Alvarado, G., Damián-Morales, G., López-Santiago, R., & Moreno-Lafont, M. C. (2024). Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability. Pharmaceuticals, 17(5), 638. https://doi.org/10.3390/ph17050638