Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation
Abstract
:1. Introduction
2. Results
2.1. Identification of the Absorbed Constituents in Rat Serum
2.2. Network Pharmacology Results
2.2.1. Target Acquisition of Absorbed Constituents Related to Atherosclerosis
2.2.2. FDT Regulates the Biological Functional Modules of Immune/Inflammation, Oxidative Stress, Cell Apoptosis, and Energy Metabolism in the Treatment of Atherosclerosis
2.3. In Vivo Experimental Validation
2.3.1. FDT Lowers the Serum Lipid Levels in ApoE−/− Mice
2.3.2. FDT Reduces Atherosclerotic Plaque Development in ApoE−/− Mice
2.3.3. FDT Reduces the Number of CD68-Positive Macrophages in the Plaque
2.3.4. Transcriptome Analysis Verified the Mechanisms of FDT in ApoE−/− Mice with High-Fat Diet Feeding
2.3.5. Molecular Docking Simulations
3. Discussion
4. Materials and Methods
4.1. Identification of Absorbed Ingredients from FDT in Rat Serum
4.1.1. FDT Samples
4.1.2. Reference Standards
4.1.3. Rat Serum Samples
4.1.4. UFLC-Q-TOF-MS/MS Analysis Conditions
4.2. Network Pharmacology Analysis
4.2.1. Acquisition of Targets and PPI
4.2.2. Functional Enrichment
4.2.3. Construction of the Absorbed Constituents–Biological Functional Module Network
4.3. In Vivo Experimental Validation
4.3.1. Animal Model Construction and Sample Collection
4.3.2. Serum Lipids
4.3.3. Oil Red O Staining
4.3.4. Histopathological Analysis
4.3.5. Immunofluorescence Analysis
4.3.6. RNA Sequencing and Acquisition of Differentially Expressed Genes (DEGs)
4.3.7. Identifying the Active Targets of FDT against Atherosclerosis
4.3.8. Molecular Docking
4.3.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Cowan, M.J.; Paciorek, C.J.; Singh, G.; Hajifathalian, K.; Bennett, J.E.; et al. Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, I.; Swirski, F.K.; Robbins, C.S. Monocyte fate in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 272–279. [Google Scholar] [CrossRef]
- Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lee, Y.; Cui, K.; He, M.; Wang, B.; Bhattacharjee, S.; Zhu, B.; Yago, T.; Zhang, K.; Deng, L.; et al. Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat. Commun. 2020, 11, 3984. [Google Scholar] [CrossRef]
- Li, X.H.; Yin, F.T.; Zhou, X.H.; Zhang, A.H.; Sun, H.; Yan, G.L.; Wang, X.J. The signaling pathways and targets of natural compounds from traditional Chinese medicine in treating ischemic stroke. Molecules 2022, 27, 3099. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, J.; Liu, X.; Tibenda, J.J.; Wang, X.; Zhao, Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front. Pharmacol. 2022, 13, 934256. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Ye, L.F.; Wang, L.H. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed. Pharmacother. 2022, 146, 112538. [Google Scholar] [CrossRef]
- Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese medicine for cardiovascular disease: Evidence and potential mechanisms. J. Am. Coll. Cardiol. 2017, 69, 2952–2966. [Google Scholar] [CrossRef]
- Zeng, X.; Zheng, Y.; Liu, Y.; Su, W. Chemical composition, quality control, pharmacokinetics, pharmacological properties and clinical applications of Fufang Danshen Tablet: A systematic review. J. Ethnopharmacol. 2021, 278, 114310. [Google Scholar] [CrossRef]
- Wu, T.; Ni, J.; Wu, J. Danshen (Chinese medicinal herb) preparations for acute myocardial infarction. Cochrane Database Syst. Rev. 2008, 2008, CD004465. [Google Scholar] [CrossRef]
- Yang, T.Y.; Wei, J.C.; Lee, M.Y.; Chen, C.M.; Ueng, K.C. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and tolerability of Fufang Danshen (Salvia miltiorrhiza) as add-on antihypertensive therapy in Taiwanese patients with uncontrolled hypertension. Phytother. Res. 2012, 26, 291–298. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, M.Q.; Wang, W.; Liu, L.T.; Zhou, L.M.; Miao, S.K.; Wan, L.H. Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complement. Altern. Med. 2014, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Shao, C.; Zhou, H.; Yu, L.; Bao, Y.; Zhao, Y.; Yang, J.; Wan, H. Exploring the mechanism of salvianolic acid B against myocardial ischemia-reperfusion injury based on network pharmacology. Pharmaceuticals 2024, 17, 309. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The role of oxidative stress in atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, H.; Gao, J.; Liu, Y.; Li, J.; Wang, J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell Cardiol. 2019, 136, 27–41. [Google Scholar] [CrossRef]
- Ullah, K.; Wu, R. Hypoxia-inducible factor regulates endothelial metabolism in cardiovascular disease. Front. Physiol. 2021, 12, 670653. [Google Scholar] [CrossRef]
- Lu, S.; Luo, Y.; Sun, G.-b.; Sun, X.-b. Traditional Chinese medicines treating macrophage: A particular strategy for atherosclerosis. Chin. Herb. Med. 2019, 11, 3–9. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Fordjour, P.A.; Xing, X.; Gao, H.; Li, Y.; Li, L.; Zhu, Y.; Gao, X.; Fan, G. Danshen injection prevents heart failure by attenuating post-infarct remodeling. J. Ethnopharmacol. 2017, 205, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yao, M.; Zhang, W.; Yang, B.; Yuan, G.; Liu, J.X.; Zhang, Y. Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1alpha/PKM2/STAT3 signaling. Biomed. Pharmacother. 2022, 155, 113479. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, Y.; Jia, J.; Chao, T.; Wang, H.; Liang, Y.; Lou, Y.; Zheng, Q.; Wang, H. Myeloid-restricted CD68 deficiency attenuates atherosclerosis via inhibition of ROS-MAPK-apoptosis axis. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166698. [Google Scholar] [CrossRef]
- Wang, Q.; Jing, H.; Lin, J.; Wu, Z.; Tian, Y.; Gong, K.; Guo, Q.; Yang, X.; Wang, L.; Li, Z.; et al. Programmed prodrug breaking the feedback regulation of P-selectin in plaque inflammation for atherosclerotic therapy. Biomaterials 2022, 288, 121705. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Bernhagen, J.; Heitman, L.H.; Weber, C.; Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 2022, 43, 1799–1808. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Z.; Li, W.; Zhang, Y.; Shi, R.; Li, T.; Jin, L.; Yao, H.; Lin, N.; Wu, H. Metabolic profiling and pharmacokinetic studies of Baihu-Guizhi 2 decoction in rats by UFLC-Q-TOF-MS/MS and UHPLC-Q-TRAP3 MS/MS. Chin. Med. 2022, 17, 117. [Google Scholar] [CrossRef]
- Song, M.; Zhang, S.; Xu, X.; Hang, T.; Jia, L. Simultaneous determination of three Panax notoginseng saponins at sub-nanograms by LC-MS/MS in dog plasma for pharmacokinetics of compound Danshen tablets. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 3331–3337. [Google Scholar] [CrossRef]
- Guo, Y.P.; Chen, M.Y.; Shao, L.; Zhang, W.; Rao, T.; Zhou, H.H.; Huang, W.H. Quantification of Panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS. Chin. J. Nat. Med. 2019, 17, 231–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.J.; Wang, X.R.; Wang, X.; Li, G.H.; Xue, Q.Y.; Zhang, M.J.; Ao, H.Q. Integrating metabolomics and network pharmacology to explore the mechanism of Xiao-Yao-San in the treatment of inflammatory response in CUMS mice. Pharmaceuticals 2023, 16, 1607. [Google Scholar] [CrossRef]
- Yang, J.X.; Pan, Y.Y.; Ge, J.H.; Chen, B.; Mao, W.; Qiu, Y.G.; Wang, X.X. Tanshinone II A attenuates TNF-α-induced expression of VCAM-1 and ICAM-1 in endothelial progenitor cells by blocking activation of NF-κB. Cell Physiol. Biochem. 2016, 40, 195–206. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, C.; Zhou, H.; Yu, L.; Bao, Y.; Mao, Q.; Yang, J.; Wan, H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. Phytomedicine 2023, 119, 155002. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Li, X.; Guo, K.; Zhang, R.; Wang, W.; Sun, H.; Yagüe, E.; Hu, Y. Exploration of the mechanism of Salvianolic acid for injection against ischemic stroke: A research based on computational prediction and experimental validation. Front. Pharmacol. 2022, 13, 894427. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Huang, Y.; Wu, S.; Liu, Z. Tanshinone IIA regulates expression of glucose transporter 1 via activation of the HIF-1alpha signaling pathway. Mol. Med. Rep. 2022, 26, 328. [Google Scholar] [CrossRef]
- Gogiraju, R.; Xu, X.; Bochenek, M.L.; Steinbrecher, J.H.; Lehnart, S.E.; Wenzel, P.; Kessel, M.; Zeisberg, E.M.; Dobbelstein, M.; Schäfer, K. Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J. Am. Heart Assoc. 2015, 4, e001770. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, G.; Luo, G.; Guo, X.; Chen, M.; Yang, H.; He, F.; Yang, T.; Zhang, X.; Wu, Q.; et al. Network pharmacology analysis and experimental verification strategies reveal the action mechanism of Danshen Decoction in treating ischemic cardiomyopathy. Evid. Based Complement. Altern. Med. 2022, 2022, 7578055. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, H.-M.; Shen, M.-Q.; Wang, Y.Y.; Bao, Y.-X.; Liu, Y.; Ke, Y.; Qian, Z.-M. The role of iron in atherosclerosis in Apolipoprotein E deficient mice. Front. Cardiovasc. Med. 2022, 9, 857933. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Lee, J.J.; Lee, J.S.; Park, Y.-M.; Yoon, T.R. Rosmarinic acid down-regulates the LPS-induced production of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) via the MAPK pathway in bone-marrow derived dendritic cells. Mol. Cells 2008, 26, 583–589. [Google Scholar] [CrossRef]
- Xu, S.; Zhong, A.; Bu, X.; Ma, H.; Li, W.; Xu, X.; Zhang, J. Salvianolic acid B inhibits platelets-mediated inflammatory response in vascular endothelial cells. Thromb. Res. 2015, 135, 137–145. [Google Scholar] [CrossRef]
- Zhou, A.M.; Xiang, Y.J.; Liu, E.Q.; Cai, C.H.; Wu, Y.H.; Yang, L.B.; Zeng, C.L. Salvianolic acid a inhibits platelet activation and aggregation in patients with type 2 diabetes mellitus. BMC Cardiovasc. Disord. 2020, 20, 15. [Google Scholar] [CrossRef]
- Yuan, X.; Xiang, Y.; Zhu, N.; Zhao, X.; Ye, S.; Zhong, P.; Zeng, C. Salvianolic acid A protects against myocardial ischemia/reperfusion injury by reducing platelet activation and inflammation. Exp. Ther. Med. 2017, 14, 961–966. [Google Scholar] [CrossRef]
- Pang, Y.; Kartsonaki, C.; Lv, J.; Fairhurst-Hunter, Z.; Millwood, I.Y.; Yu, C.; Guo, Y.; Chen, Y.; Bian, Z.; Yang, L.; et al. Associations of adiposity, circulating protein biomarkers, and risk of major vascular diseases. JAMA Cardiol. 2021, 6, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Bielinski, S.J.; Berardi, C.; Decker, P.A.; Kirsch, P.S.; Larson, N.B.; Pankow, J.S.; Sale, M.; de Andrade, M.; Sicotte, H.; Tang, W.; et al. P-selectin and subclinical and clinical atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2015, 240, 3–9. [Google Scholar] [CrossRef]
- Kisucka, J.; Chauhan, A.K.; Zhao, B.Q.; Patten, I.S.; Yesilaltay, A.; Krieger, M.; Wagner, D.D. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 2009, 113, 6015–6022. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Frangogiannis, N.G. Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. Br. J. Pharmacol. 2018, 175, 1377–1400. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; van der Laan, S.W.; Asare, Y.; Mekke, J.M.; Haitjema, S.; Schoneveld, A.H.; de Jager, S.C.A.; Nurmohamed, N.S.; Kroon, J.; Stroes, E.S.G.; et al. Monocyte-chemoattractant protein-1 levels in human atherosclerotic lesions associate with plaque vulnerability. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Gill, D.; Rannikmae, K.; Traylor, M.; Anderson, C.D.; Lee, J.M.; Kamatani, Y.; Hopewell, J.C.; Worrall, B.B.; Bernhagen, J.; et al. Genetically determined levels of circulating cytokines and risk of stroke. Circulation 2019, 139, 256–268. [Google Scholar] [CrossRef]
- Engelen, S.E.; Robinson, A.J.B.; Zurke, Y.X.; Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: How to proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef]
- Smith, B.A.H.; Bertozzi, C.R. The clinical impact of glycobiology: Targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 2021, 20, 217–243. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, M.; Wang, J.; Ma, R.; Chen, H.; Xie, Q.; Li, H.; Li, J.; Wang, J. Progress in borneol intervention for ischemic stroke: A systematic review. Front. Pharmacol. 2021, 12, 606682. [Google Scholar] [CrossRef]
- Liang, S.Y.; Zeng, Y.C.; Jiang, Q.Q.; Wu, J.H.; Wu, Z.Z. Pharmacokinetic studies of multi-bioactive components in rat plasma after oral administration of Xintiantai I extract and effects of guide drug borneol on pharmacokinetics. Chin. Herb. Med. 2020, 12, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.L.; Wang, H.; Shi, L.Y.; Li, J.P.; Jia, L.J.; Xie, B.P. The effects of borneol on the pharmacokinetics and brain distribution of tanshinone IIA, salvianolic acid B and ginsenoside Rg1 in Fufang Danshen preparation in rats. Chin. J. Nat. Med. 2021, 19, 153–160. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database 2017, 2017, bax028. [Google Scholar] [CrossRef] [PubMed]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, H.; Wang, X.; Kang, J.; Guo, W.; Zhou, L.; Liu, H.; Wang, M.; Jia, R.; Du, X.; et al. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomedicine 2022, 95, 153837. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chen, L.; Li, C.; Wang, D.; Luo, Y.; Sun, G.; Sun, X. Anti-hyperlipidemic effects of the compound Danshen tablet: Roles of antioxidation, anti-inflammation, anticoagulation, and anti-apoptosis. Ann. Transl. Med. 2021, 9, 744. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef] [PubMed]
Modules | Type | GO Biological Process/KEGG Signaling Pathway | p Value |
---|---|---|---|
Immune/inflammation | GO | Positive regulation of cell migration | 3.86 × 10−11 |
GO | Positive regulation of blood vessel endothelial cell migration | 5.53 × 10 −4 | |
GO | Positive regulation of mononuclear cell migration | 1.51 × 10 −4 | |
GO | Leukocyte tethering or rolling | 3.44 × 10 −5 | |
GO | Leukocyte cell–cell adhesion | 3.22 × 10 −6 | |
GO | Positive regulation of inflammatory response | 6.44 × 10 −8 | |
KEGG | Lipid and atherosclerosis | 2.82 × 10 −11 | |
KEGG | IL-17 signaling pathway | 5.45 × 10 −6 | |
KEGG | TNF signaling pathway | 1.14 × 10 −7 | |
Oxidative stress | GO | Response to oxidative stress | 6.15 × 10 −4 |
KEGG | Fluid shear stress and atherosclerosis | 1.76 × 10 −11 | |
Cell apoptosis | GO | Positive regulation of apoptotic process | 5.40 × 10 −10 |
GO | Negative regulation of apoptotic process | 4.55 × 10 −5 | |
Energy metabolism | GO | Response to hypoxia | 1.77 × 10 −14 |
GO | Cellular response to hypoxia | 6.45 × 10−6 | |
KEGG | HIF-1 signaling pathway | 1.45 × 10−5 |
Target | PDB ID | Absorbed Constituents | Vina Score |
---|---|---|---|
SELP | 1G1Q | Salvianolic acid A | −8.1 |
Salvianolic acid B | −8.2 | ||
Salvianolic acid C | −8.7 | ||
CCL2 | 1DOM | Rosmarinic acid | −6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Su, W.; Li, P.; Zeng, X.; Zheng, Y.; Wang, Y.; Peng, W.; Wu, H. Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation. Pharmaceuticals 2024, 17, 643. https://doi.org/10.3390/ph17050643
Liu Y, Su W, Li P, Zeng X, Zheng Y, Wang Y, Peng W, Wu H. Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation. Pharmaceuticals. 2024; 17(5):643. https://doi.org/10.3390/ph17050643
Chicago/Turabian StyleLiu, Yuling, Weiwei Su, Peibo Li, Xuan Zeng, Yuying Zheng, Yonggang Wang, Wei Peng, and Hao Wu. 2024. "Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation" Pharmaceuticals 17, no. 5: 643. https://doi.org/10.3390/ph17050643
APA StyleLiu, Y., Su, W., Li, P., Zeng, X., Zheng, Y., Wang, Y., Peng, W., & Wu, H. (2024). Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation. Pharmaceuticals, 17(5), 643. https://doi.org/10.3390/ph17050643