PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer
Abstract
:1. Introduction
2. Results
2.1. Radiochemistry
2.2. Biodistribution Study
2.3. MicroPET Imaging
2.4. Immunohistochemical Analysis
3. Discussion
4. Materials and Methods
4.1. Materials for Radiosynthesis of L-[18F]FETrp
4.2. Radiolabeling Hardware and Software
4.3. Radiosynthesis and Quality Control of L-[18F]FETrp
4.4. Biodistribution Study and PET Imaging
4.5. Image Reconstruction and Data Analysis
4.6. Immunohistochemistry
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutmann, D.H.; Ferner, R.E.; Listernick, R.H.; Korf, B.R.; Wolters, P.L.; Johnson, K.J. Neurofibromatosis Type 1. Nat. Rev. Dis. Primers 2017, 3, 17004. [Google Scholar] [CrossRef] [PubMed]
- Kehrer-Sawatzki, H.; Kluwe, L.; Salamon, J.; Well, L.; Farschtschi, S.; Rosenbaum, T.; Mautner, V.F. Clinical Characterization of Children and Adolescents with NF1 Microdeletions. Childs Nerv. Syst. 2020, 36, 2297–2310. [Google Scholar] [CrossRef] [PubMed]
- Kerashvili, N.; Gutmann, D.H. The Management of Neurofibromatosis Type 1 (NF1) in Children and Adolescents. Expert. Rev. Neurother. 2024, 409–420. [Google Scholar] [CrossRef] [PubMed]
- James, A.W.; Shurell, E.; Singh, A.; Dry, S.M.; Eilber, F.C. Malignant Peripheral Nerve Sheath Tumor. Surg. Oncol. Clin. N. Am. 2016, 25, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, J.N.; Wang, M.H.; Ni, Z.Y.; Jiang, W.H.; Chung, M.; Wei, C.J.; Wang, Z.C. Image-Based Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis Type 1. Front. Oncol. 2022, 12, 898971. [Google Scholar] [CrossRef] [PubMed]
- Varrone, A.; Bundgaard, C.; Bang-Andersen, B. PET as a Translational Tool in Drug Development for Neuroscience Compounds. Clin. Pharmacol. Ther. 2022, 111, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.; Hlongwa, K.N.; More, S. The Impact of PET/CT on Paediatric Oncology. Diagnostics 2023, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Luthria, G.; Baratto, L.; Adams, L.; Morakote, W.; Daldrup-Link, H.E. Increased Metabolic Activity of the Thymus and Lymph Nodes in Pediatric Oncology Patients After Coronavirus Disease 2019 Vaccination. J. Nucl. Med. 2024, 65, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.A.; Slavc, I.; Theisen, B.E.; Rausch, I.; Weber, M.; Happak, W.; Aszmann, O.; Hojreh, A.; Peyrl, A.; Amann, G.; et al. Monitoring of Plexiform Neurofibroma in Children and Adolescents with Neurofibromatosis Type 1 by [18F]FDG-PET Imaging. Is It of Value in Asymptomatic Patients? Pediatr. Blood Cancer 2018, 65, e26733. [Google Scholar] [CrossRef]
- Kung, B.T.; Seraj, S.M.; Zadeh, M.Z.; Rojulpote, C.; Kothekar, E.; Ayubcha, C.; Ng, K.S.; Ng, K.K.; Au-Yong, T.K.; Werner, T.J.; et al. An Update on the Role of 18F-FDG-PET/CT in Major Infectious and Inflammatory Diseases. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 255–273. [Google Scholar]
- Okuyama, C.; Higashi, T.; Ishizu, K.; Saga, T. FDG–PET Findings Associated with Various Medical Procedures and Treatments. Jpn. J. Radiol. 2023, 41, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Warbey, V.S.; Ferner, R.E.; Dunn, J.T.; Calonje, E.; O’Doherty, M.J. FDG PET/CT in the Diagnosis of Malignant Peripheral Nerve Sheath Tumours in Neurofibromatosis Type-1. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Tovmassian, D.; Abdul Razak, M.; London, K. The Role of [18F]FDG-PET/CT in Predicting Malignant Transformation of Plexiform Neurofibromas in Neurofibromatosis-1. Int. J. Surg. Oncol. 2016, 2016, 6162182. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.; Liu, A. What Is the Tryptophan Kynurenine Pathway and Why Is It Important to Neurotherapeutics? Expert. Rev. Neurother. 2015, 15, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Hu, J.; Hong, Y.; Ding, Y.; Xiong, Y.; Wu, Z.; Xie, W. Indoleamine-2,3-Dioxygenase 1 Deficiency Suppresses Seizures in Epilepsy. Front. Cell Neurosci. 2021, 15, 638854. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Fattah, E.E. IDO/Kynurenine Pathway in Cancer: Possible Therapeutic Approaches. J. Transl. Med. 2022, 20, 347. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, M.; Chen, X.; Zhang, R.; Le, A.; Hong, M.; Zhang, Y.; Jia, L.; Zang, W.; Jiang, C.; et al. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis. 2023, 14, 858–878. [Google Scholar] [CrossRef] [PubMed]
- Shackleford, G.; Sampathkumar, N.K.; Hichor, M.; Weill, L.; Meffre, D.; Juricek, L.; Laurendeau, I.; Chevallier, A.; Ortonne, N.; Larousserie, F.; et al. Involvement of Aryl Hydrocarbon Receptor in Myelination and in Human Nerve Sheath Tumorigenesis. Proc. Natl. Acad. Sci. USA 2018, 115, E1319–E1328. [Google Scholar] [CrossRef] [PubMed]
- Gouasmi, R.; Ferraro-Peyret, C.; Nancey, S.; Coste, I.; Renno, T.; Chaveroux, C.; Aznar, N.; Ansieau, S. The Kynurenine Pathway and Cancer: Why Keep It Simple When You Can Make It Complicated. Cancers 2022, 14, 2793. [Google Scholar] [CrossRef]
- Lubberink, M.; Eriksson, O. [(11)C]5-Hydroxy-Tryptophan Model for Quantitative Assessment of in Vivo Serotonin Biosynthesis, Retention and Degradation in the Endocrine Pancreas. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 226–234. [Google Scholar]
- Zlatopolskiy, B.D.; Endepols, H.; Krasikova, R.N.; Fedorova, O.S.; Ermert, J.; Neumaier, B. 11C- and 18F-Labelled Tryptophans as PET-Tracers for Imaging of Altered Tryptophan Metabolism in Age-Associated Disorders. Russ. Chem. Rev. 2020, 89, 879–896. [Google Scholar] [CrossRef]
- Yue, X.; Nikam, R.M.; Kecskemethy, H.H.; Kandula, V.V.R.; Falchek, S.J.; Averill, L.W.; Langhans, S.A. Radiosynthesis of 1-(2-[18F]Fluoroethyl)-L-Tryptophan Using a One-Pot, Two-Step Protocol. J. Vis. Exp. 2021, e63025. [Google Scholar]
- Xin, Y.; Yue, X.; Li, H.; Li, Z.; Cai, H.; Choudhary, A.K.; Zhang, S.; Chugani, D.C.; Langhans, S.A. PET Imaging of Medulloblastoma with an 18F-Labeled Tryptophan Analogue in a Transgenic Mouse Model. Sci. Rep. 2020, 10, 3800. [Google Scholar] [CrossRef] [PubMed]
- Solvay, M.; Holfelder, P.; Klaessens, S.; Pilotte, L.; Stroobant, V.; Lamy, J.; Naulaerts, S.; Spillier, Q.; Frédérick, R.; De Plaen, E.; et al. Tryptophan Depletion Sensitizes the AHR Pathway by Increasing AHR Expression and GCN2/LAT1-Mediated Kynurenine Uptake, and Potentiates Induction of Regulatory T Lymphocytes. J. Immunother. Cancer 2023, 11, e006728. [Google Scholar] [CrossRef]
- De Raedt, T.; Beert, E.; Pasmant, E.; Luscan, A.; Brems, H.; Ortonne, N.; Helin, K.; Hornick, J.L.; Mautner, V.; Kehrer-Sawatzki, H.; et al. PRC2 Loss Amplifies Ras-Driven Transcription and Confers Sensitivity to BRD4-Based Therapies. Nature 2014, 514, 247–251. [Google Scholar] [CrossRef]
- Peltonen, S.; Kallionpää, R.A.; Rantanen, M.; Uusitalo, E.; Lähteenmäki, P.M.; Pöyhönen, M.; Pitkäniemi, J.; Peltonen, J. Pediatric Malignancies in Neurofibromatosis Type 1: A Population-Based Cohort Study. Int. J. Cancer 2019, 145, 2926–2932. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, E.; Rantanen, M.; Kallionpää, R.A.; Pöyhönen, M.; Leppävirta, J.; Ylä-Outinen, H.; Riccardi, V.M.; Pukkala, E.; Pitkäniemi, J.; Peltonen, S.; et al. Distinctive Cancer Associations in Patients with Neurofibromatosis Type 1. J. Clin. Oncol. 2016, 34, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Koşucu, P.; Ahmetoĝlu, A.; Çobanoĝlu, Ü.; Dinç, H.; Özdemir, O.; Gümele, H.R. Mesenteric Involvement in Neurofibromatosis Type 1: CT and MRI Findings in Two Cases. Abdom. Imaging 2003, 28, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Ferner, R.E.; Golding, J.F.; Smith, M.; Calonje, E.; Jan, W.; Sanjayanathan, V.; O’Doherty, M. [18F]2-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography (FDG PET) as a Diagnostic Tool for Neurofibromatosis 1 (NF1) Associated Malignant Peripheral Nerve Sheath Tumours (MPNSTs): A Long-Term Clinical Study. Ann. Oncol. 2008, 19, 390–394. [Google Scholar] [CrossRef]
- Riad, R.; Omar, W.; Sidhom, I.; Zamzam, M.; Zaky, I.; Hafez, M.; Abdel-Dayem, H.M. False-Positive F-18 FDG Uptake in PET/CT Studies in Pediatric Patients with Abdominal Burkitt’s Lymphoma. Nucl. Med. Commun. 2010, 31, 232–238. [Google Scholar] [CrossRef]
- Shammas, A.; Lim, R.; Charron, M. Pediatric FDG PET/CT: Physiologic Uptake, Normal Variants, and Benign Conditions. Radiographics 2009, 29, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Hornigold, N.; Dunn, K.R.; Craven, R.A.; Zougman, A.; Trainor, S.; Shreeve, R.; Brown, J.; Sewell, H.; Shires, M.; Knowles, M.; et al. Dysregulation at Multiple Points of the Kynurenine Pathway Is a Ubiquitous Feature of Renal Cancer: Implications for Tumour Immune Evasion. Br. J. Cancer 2020, 123, 137–147. [Google Scholar] [CrossRef]
- Muneer, A. Kynurenine Pathway of Tryptophan Metabolism in Neuropsychiatric Disorders: Pathophysiologic and Therapeutic Considerations. Clin. Psychopharmacol. Neurosci. 2020, 18, 507–526. [Google Scholar] [CrossRef]
- Chugani, D.C. α-Methyl-L-Tryptophan: Mechanisms for Tracer Localization of Epileptogenic Brain Regions. Biomark. Med. 2011, 5, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Chugani, D.C.; Chugani, H.T.; Muzik, O.; Shah, J.R.; Shah, A.K.; Canady, A.; Mangner, T.J.; Chakraborty, P.K. Imaging Epileptogenic Tubers in Children with Tuberous Sclerosis Complex Using α-[11C]Methyl-L-Tryptophan Positron Emission Tomography. Ann. Neurol. 1998, 44, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Juhász, C.; Muzik, O.; Chugani, D.C.; Chugani, H.T.; Sood, S.; Chakraborty, P.K.; Barger, G.R.; Mittal, S. Differential Kinetics of (Alpha)-[11C]Methyl-L-Tryptophan on PET in Low-Grade Brain Tumors. J. Neurooncol. 2011, 102, 409–415. [Google Scholar] [CrossRef] [PubMed]
- John, F.; Michelhaugh, S.K.; Barger, G.R.; Mittal, S.; Juhász, C. Depression and Tryptophan Metabolism in Patients with Primary Brain Tumors: Clinical and Molecular Imaging Correlates. Brain Imaging Behav. 2021, 15, 974–985. [Google Scholar] [CrossRef]
- John, F.; Muzik, O.; Mittal, S.; Juhász, C. Fluorine-18-Labeled PET Radiotracers for Imaging Tryptophan Uptake and Metabolism: A Systematic Review. Mol. Imaging Biol. 2020, 22, 805–819. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Padmanabhan, P.; Yang, C.T.; Mishra, S.; Halldin, C.; Gulyás, B. Dealing with PET Radiometabolites. EJNMMI Res. 2020, 10, 109. [Google Scholar] [CrossRef]
- F-Tryptophan PET/CT in Human Cancers. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05556473 (accessed on 3 March 2024).
- Muzik, O.; Shields, A.F.; Barger, G.R.; Jiang, H.; Chamiraju, P.; Juhász, C. The First Human Application of an F-18-Labeled Tryptophan Analog for PET Imaging of Cancer. Mol. Imaging Biol. 2024, 26, 29–35. [Google Scholar] [CrossRef]
- de Souza, M.L.R.; Jansen, A.K.; Rodrigues, L.O.C.; de Souza Vilela, D.L.; Kakehasi, A.M.; Martins, A.S.; de Souza, J.F.; de Rezende, N.A. Increased Resting Metabolism in Neurofibromatosis Type 1. Clin. Nutr. ESPEN 2019, 32, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Botero, V.; Stanhope, B.A.; Brown, E.B.; Grenci, E.C.; Boto, T.; Park, S.J.; King, L.B.; Murphy, K.R.; Colodner, K.J.; Walker, J.A.; et al. Neurofibromin Regulates Metabolic Rate via Neuronal Mechanisms in Drosophila. Nat. Commun. 2021, 12, 4285. [Google Scholar] [CrossRef] [PubMed]
- Michelhaugh, S.K.; Muzik, O.; Guastella, A.R.; Klinger, N.V.; Polin, L.A.; Cai, H.; Xin, Y.; Mangner, T.J.; Zhang, S.; Juhász, C.; et al. Assessment of Tryptophan Uptake and Kinetics Using 1-(2-18F-Fluoroethyl)-L-Tryptophan and α-11C-Methyl-L-Tryptophan PET Imaging in Mice Implanted with Patient-Derived Brain Tumor Xenografts. J. Nucl. Med. 2017, 58, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Brosseau, J.P.; Liao, C.P.; Wang, Y.; Ramani, V.; Vandergriff, T.; Lee, M.; Patel, A.; Ariizumi, K.; Le, L.Q. NF1 Heterozygosity Fosters de Novo Tumorigenesis but Impairs Malignant Transformation. Nat. Commun. 2018, 9, 5014. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Patmore, D.M.; Jousma, E.; Eaves, D.W.; Breving, K.; Patel, A.V.; Schwartz, E.B.; Fuchs, J.R.; Cripe, T.P.; Stemmer-Rachamimov, A.O.; et al. EGFR-STAT3 Signaling Promotes Formation of Malignant Peripheral Nerve Sheath Tumors. Oncogene 2014, 33, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.J.; Byer, S.J.; Eckert, J.M.; Turk, A.N.; Huijbregts, R.P.H.; Brossier, N.M.; Grizzle, W.E.; Mikhail, F.M.; Roth, K.A.; Carroll, S.L. Transgenic Mice Overexpressing Neuregulin-1 Model Neurofibroma-Malignant Peripheral Nerve Sheath Tumor Progression and Implicate Specific Chromosomal Copy Number Variations in Tumorigenesis. Am. J. Pathol. 2013, 182, 646–667. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.B.; Largaespada, D.A. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes 2020, 11, 477. [Google Scholar] [CrossRef]
- Oppel, F.; Ki, D.H.; Zimmerman, M.W.; Ross, K.N.; Tao, T.; Shi, H.; He, S.; Aster, J.C.; Look, A.T. Suz12 Inactivation in P53- and Nf1-Deficient Zebrafish Accelerates the Onset of Malignant Peripheral Nerve Sheath Tumors and Expands the Spectrum of Tumor Types. Dis. Model. Mech. 2020, 13, dmm042341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Stauff, E.; Boyapati, S.; Langhans, S.A.; Xu, W.; Makrogiannis, S.; Okorie, U.J.; Okorie, A.M.; Kandula, V.V.R.; Kecskemethy, H.H.; et al. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals 2024, 17, 685. https://doi.org/10.3390/ph17060685
Yue X, Stauff E, Boyapati S, Langhans SA, Xu W, Makrogiannis S, Okorie UJ, Okorie AM, Kandula VVR, Kecskemethy HH, et al. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals. 2024; 17(6):685. https://doi.org/10.3390/ph17060685
Chicago/Turabian StyleYue, Xuyi, Erik Stauff, Shriya Boyapati, Sigrid A. Langhans, Wenqi Xu, Sokratis Makrogiannis, Uchenna J. Okorie, Azubuike M. Okorie, Vinay V. R. Kandula, Heidi H. Kecskemethy, and et al. 2024. "PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer" Pharmaceuticals 17, no. 6: 685. https://doi.org/10.3390/ph17060685
APA StyleYue, X., Stauff, E., Boyapati, S., Langhans, S. A., Xu, W., Makrogiannis, S., Okorie, U. J., Okorie, A. M., Kandula, V. V. R., Kecskemethy, H. H., Nikam, R. M., Averill, L. W., & Shaffer, T. H. (2024). PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals, 17(6), 685. https://doi.org/10.3390/ph17060685