β-Tocotrienol Decreases PDGF-BB-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Inhibiting RhoA and Reducing ROS Production
Abstract
:1. Introduction
2. Results
2.1. β-Tocotrienols Inhibit PDGF-BB-Induced ASM Cell Proliferation
2.2. β-Tocotrienols Inhibit PDGF-BB-Induced ASM Cell Migration
2.3. β-Tocotrienols Reduce Intracellular ROS Production
2.4. The Effect of β-Tocotrienols on Cyclin D1 Levels
2.5. The Effect of β-Tocotrienols on Akt1 and ERK1/2 Signaling Pathways
2.6. β-Tocotrienols Inhibit PDGF-BB-Induced ASM Cell Proliferation and Migration via RhoA Inactivation
3. Discussion
4. Materials and Methods
4.1. Human ASM Cells and Culture Conditions
4.2. Reagents
4.3. Cell Proliferation Assay
4.4. Cell Migration Assay
4.5. Preparation of Cell Lysate and Western Blotting
4.6. Active Rho Detection Assay
4.7. Intracellular Reactive Oxygen Species Quantification
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GINA. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA). 2023. Available online: https://ginasthma.org/gina-reports/ (accessed on 8 February 2024).
- Vignola, A.M.; Mirabella, F.; Costanzo, G.; Di Giorgi, R.; Gjomarkaj, M.; Bellia, V.; Bonsignore, G. Airway Remodeling in Asthma. Chest 2003, 123 (Suppl. S3), 417S–422S. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.P.; Curtiss, M.L.; Blain, T.J.; Liu, R.-M.; Trevor, J.; Deshane, J.S.; Thannickal, V.J. Airway Remodeling in Asthma. Front. Med. 2020, 7, 191. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2020.00191 (accessed on 8 February 2024). [CrossRef]
- Sun, Z.; Ji, N.; Ma, Q.; Zhu, R.; Chen, Z.; Wang, Z.; Qian, Y.; Wu, C.; Hu, F.; Huang, M.; et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front. Immunol. 2020, 11, 1598. [Google Scholar] [CrossRef] [PubMed]
- Michalik, M.; Wójcik-Pszczoła, K.; Paw, M.; Wnuk, D.; Koczurkiewicz, P.; Sanak, M.; Pękala, E.; Madeja, Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell. Mol. Life Sci. 2018, 75, 3943–3961. [Google Scholar] [CrossRef]
- Yu, Y.; Sakai, H.; Misawa, M.; Chiba, Y. Matrix Metalloproteinases-9 (MMPs-9) and -12 Are Upregulated in the Airways of Mice with Chronic Airway Inflammation and Remodeling. ISRN Pulmonol. 2012, 2012, 840489. [Google Scholar] [CrossRef]
- Salter, B.; Pray, C.; Radford, K.; Martin, J.G.; Nair, P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir. Res. 2017, 18, 156. [Google Scholar] [CrossRef]
- Redhu, N.S.; Shan, L.; Movassagh, H.; Gounni, A.S. Thymic Stromal Lymphopoietin Induces Migration in Human Airway Smooth Muscle Cells. Sci. Rep. 2013, 3, 2301. [Google Scholar] [CrossRef]
- McDonald, D.M. Angiogenesis and Remodeling of Airway Vasculature in Chronic Inflammation. Am. J. Respir. Crit. Care Med. 2001, 164, S39–S45. [Google Scholar] [CrossRef]
- Gabehart, K.E.; Royce, S.G.; Maselli, D.J.; Miyasato, S.K.; Davis, E.C.; Tang, M.L.K.; Jourdan Le Saux, C. Airway hyperresponsiveness is associated with airway remodeling but not inflammation in aging Cav1-/-mice. Respir. Res. 2013, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Pepe, C.; Foley, S.; Shannon, J.; Lemiere, C.; Olivenstein, R.; Ernst, P.; Ludwig, M.S.; Martin, J.G.; Hamid, Q. Differences in airway remodeling between subjects with severe and moderate asthma. J. Allergy Clin. Immunol. 2005, 116, 544–549. [Google Scholar] [CrossRef]
- Ward, C.; Johns, D.P.; Bish, R.O.S.; Pais, M.; Reid, D.W.; Ingram, C.; Feltis, B.; Walters, E.H. Reduced Airway Distensibility, Fixed Airflow Limitation, and Airway Wall Remodeling in Asthma. Am. J. Respir. Crit. Care Med. 2001, 164, 1718–1721. [Google Scholar] [CrossRef]
- Allen, S.; Britton, J.R.; Leonardi-Bee, J.A. Association between antioxidant vitamins and asthma outcome measures: Systematic review and meta-analysis. Thorax 2009, 64, 610–619. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A., Jr.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D supplementation to prevent asthma exacerbations: A systematic review and meta-analysis of individual participant data. Lancet Respir. Med. 2017, 5, 881–890. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Wang, C.; Xiao, Y.; An, T.; Zou, M.; Cheng, G. Association between vitamin D status and asthma control: A meta-analysis of randomized trials. Respir. Med. 2019, 150, 85–94. [Google Scholar] [CrossRef]
- Nurmatov, U.; Devereux, G.; Sheikh, A. Nutrients and foods for the primary prevention of asthma and allergy: Systematic review and meta-analysis. J. Allergy Clin. Immunol. 2011, 127, 724–733.e30. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, M.-J.; Cheung, C.; Ju, J.-H.; Chen, Y.-K.; Liu, B.; Hu, L.-Q.; Yang, C.S. Analysis of Multiple Metabolites of Tocopherols and Tocotrienols in Mice and Humans. J. Agric. Food Chem. 2010, 58, 4844–4852. [Google Scholar] [CrossRef]
- Jiang, Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic. Biol. Med. 2022, 179, 375–387. [Google Scholar] [CrossRef]
- Müller, L.; Theile, K.; Böhm, V. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res. 2010, 54, 731–742. [Google Scholar] [CrossRef]
- Yoshida, Y.; Niki, E.; Noguchi, N. Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chem. Phys. Lipids 2003, 123, 63–75. [Google Scholar] [CrossRef]
- Suzuki, Y.J.; Tsuchiya, M.; Wassall, S.R.; Choo, Y.M.; Govil, G.; Kagan, V.E.; Packer, L. Structural and dynamic membrane properties of .alpha.-tocopherol and .alpha.-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochemistry 1993, 32, 10692–10699. [Google Scholar] [CrossRef]
- Inokuchi, H.; Hirokane, H.; Tsuzuki, T.; Nakagawa, K.; Igarashi, M.; Miyazawa, T. Anti-angiogenic Activity of Tocotrienol. Biosci. Biotechnol. Biochem. 2003, 67, 1623–1627. [Google Scholar] [CrossRef]
- Pang, K.-L.; Mai, C.-W.; Chin, K.-Y. Molecular Mechanism of Tocotrienol-Mediated Anticancer Properties: A Systematic Review of the Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response. Nutrients 2023, 15, 1854. [Google Scholar] [CrossRef]
- Samant, G.V.; Wali, V.B.; Sylvester, P.W. Anti-proliferative effects of γ-tocotrienol on mammary tumour cells are associated with suppression of cell cycle progression. Cell Prolif. 2010, 43, 77–83. [Google Scholar] [CrossRef]
- Ramli, F.F.; Ali, A.; Ibrahim, N. Protective Effects of Tocotrienols in Cerebral and Myocardial Ischemia-Reperfusion Injury: A Systematic Review. Appl. Sci. 2021, 11, 7994. [Google Scholar] [CrossRef]
- Lekli, I.; Ray, D.; Mukherjee, S.; Gurusamy, N.; Ahsan, M.K.; Juhasz, B.; Bak, I.; Tosaki, A.; Gherghiceanu, M.; Popescu, L.M.; et al. Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J. Cell. Mol. Med. 2010, 14, 2506–2518. [Google Scholar] [CrossRef]
- Baliarsingh, S.; Beg, Z.H.; Ahmad, J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyperlipidemia. Atherosclerosis 2005, 182, 367–374. [Google Scholar] [CrossRef]
- Mahjabeen, W.; Khan, D.A.; Mirza, S.A.; Pervez, M.A. Effects of delta-tocotrienol supplementation on Glycemic Control, oxidative stress, inflammatory biomarkers and miRNA expression in type 2 diabetes mellitus: A randomized control trial. Phyther. Res. 2021, 35, 3968–3976. [Google Scholar] [CrossRef]
- Daud, Z.A.M.; Tubie, B.; Sheyman, M.; Osia, R.; Adams, J.; Tubie, S.; Khosla, P. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vasc. Health Risk Manag. 2013, 9, 747–761. [Google Scholar] [CrossRef]
- Shen, J.; Yang, T.; Xu, Y.; Luo, Y.; Zhong, X.; Shi, L.; Hu, T.; Guo, T.; Nie, Y.; Luo, F.; et al. δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages. Int. J. Mol. Sci. 2018, 19, 3022. [Google Scholar] [CrossRef]
- Wu, S.-J.; Liu, P.-L.; Ng, L.-T. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol. Nutr. Food Res. 2008, 52, 921–929. [Google Scholar] [CrossRef]
- Peh, H.Y.; Tan, W.S.D.; Chan, T.K.; Pow, C.W.; Foster, P.S.; Wong, W.S.F. Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radic. Biol. Med. 2017, 110, 332–344. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Xu, D.; Wang, Y.; Pan, D.; Wang, P.; Xia, J.; Yin, S.; Liao, W.; Wang, S.; et al. Tocotrienol-Rich Fractions Offer Potential to Suppress Pulmonary Fibrosis Progression. Int. J. Mol. Sci. 2022, 23, 14331. [Google Scholar] [CrossRef]
- Harada, T.; Yamasaki, A.; Chikumi, H.; Hashimoto, K.; Okazaki, R.; Takata, M.; Fukushima, T.; Watanabe, M.; Kurai, J.; Halayko, A.J.; et al. γ-Tocotrienol reduces human airway smooth muscle cell proliferation and migration. Pulm. Pharmacol. Ther. 2015, 32, 45–52. [Google Scholar] [CrossRef]
- Fukushima, T.; Yamasaki, A.; Harada, T.; Chikumi, H.; Watanabe, M.; Okazaki, R.; Takata, M.; Hasegawa, Y.; Kurai, J.; Yanai, M.; et al. γ-Tocotrienol Inhibits TGF-β1-Induced Contractile Phenotype Expression of Human Airway Smooth Muscle Cells. Yonago Acta Med. 2017, 60, 16–23. [Google Scholar]
- Ko, S.-N.; Kim, C.-J.; Kim, C.-T.; Kim, Y.; Kim, I.-H. Effects of tocopherols and tocotrienols on the inhibition of autoxidation of conjugated linoleic acid. Eur. J. Lipid Sci. Technol. 2010, 112, 496–501. [Google Scholar] [CrossRef]
- Nor Azman, N.; Goon, J.; Abdul Ghani, S.; Hamid, Z.; Wan Ngah, W. Comparing Palm Oil, Tocotrienol-Rich Fraction and α-Tocopherol Supplementation on the Antioxidant Levels of Older Adults. Antioxidants 2018, 7, 74. [Google Scholar] [CrossRef]
- Idriss, M.; Hodroj, M.H.; Fakhoury, R.; Rizk, S. Beta-Tocotrienol Exhibits More Cytotoxic Effects than Gamma-Tocotrienol on Breast Cancer Cells by Promoting Apoptosis via a P53-Independent PI3-Kinase Dependent Pathway. Biomolecules 2020, 10, 577. [Google Scholar] [CrossRef]
- Brar, S.S.; Kennedy, T.P.; Whorton, A.R.; Murphy, T.M.; Chitano, P.; Hoidal, J.R. Requirement for Reactive Oxygen Species in Serum-induced and Platelet-derived Growth Factor-induced Growth of Airway Smooth Muscle*. J. Biol. Chem. 1999, 274, 20017–20026. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, Y.; Liu, X.; Xie, J.; Wang, J.; Du, C.; Zhang, J.; Ni, W.; Chen, S. Role of protein kinase C α and cyclin D1 in the proliferation of airway smooth muscle in asthmatic rats. Chin. Med. J. 2008, 121, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Page, K.; Li, J.; Wang, Y.; Kartha, S.; Pestell, R.G.; Hershenson, M.B. Regulation of Cyclin D1 Expression and DNA Synthesis by Phosphatidylinositol 3-Kinase in Airway Smooth Muscle Cells. Am. J. Respir. Cell Mol. Biol. 2000, 23, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Hitomi, M.; Stacey, D.W. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div. 2006, 1, 32. [Google Scholar] [CrossRef]
- Guan, X.; Guan, X.; Dong, C.; Jiao, Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp. Cell Res. 2020, 388, 111824. [Google Scholar] [CrossRef]
- Evers, E.E.; Zondag, G.C.M.; Malliri, A.; Price, L.S.; ten Klooster, J.-P.; van der Kammen, R.A.; Collard, J.G. Rho family proteins in cell adhesion and cell migration. Eur. J. Cancer 2000, 36, 1269–1274. [Google Scholar] [CrossRef]
- Sadok, A.; Marshall, C.J. Rho GTPases. Small GTPases 2014, 5, e983878. [Google Scholar] [CrossRef]
- Black, J.L.; Roth, M.; Lee, J.; Carlin, S.; Johnson, P.R.A. Mechanisms of Airway Remodeling. Am. J. Respir. Crit. Care Med. 2001, 164, S63–S66. [Google Scholar] [CrossRef]
- Madison, J.M. Migration of Airway Smooth Muscle Cells. Am. J. Respir. Cell Mol. Biol. 2003, 29, 8–11. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling. Am. J. Physiol. Cell. Mol. Physiol. 2021, 321, L1–L5. [Google Scholar] [CrossRef]
- Lv, C.; Huang, Y.; Yan, R.; Gao, Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm. Med. 2023, 23, 505. [Google Scholar] [CrossRef]
- Liu, L.; Zhai, C.; Pan, Y.; Zhu, Y.; Shi, W.; Wang, J.; Yan, X.; Su, X.; Song, Y.; Gao, L.; et al. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am. J. Physiol. Cell. Mol. Physiol. 2018, 315, L609–L621. [Google Scholar] [CrossRef]
- Li, N.; Cai, R.; Niu, Y.; Shen, B.; Xu, J.; Cheng, Y. Inhibition of angiotensin II-induced contraction of human airway smooth muscle cells by angiotensin-(1-7) via downregulation of the RhoA/ROCK2 signaling pathway. Int. J. Mol. Med. 2012, 30, 811–818. [Google Scholar] [CrossRef]
- Yap, H.M.; Israf, D.A.; Harith, H.H.; Tham, C.L.; Sulaiman, M.R. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front. Pharmacol. 2019, 10, 1148. [Google Scholar] [CrossRef]
- Raqeeb, A.; Jiao, Y.; Syyong, H.T.; Paré, P.D.; Seow, C.Y. Regulatable stiffness in relaxed airway smooth muscle: A target for asthma treatment? J. Appl. Physiol. 2011, 112, 337–346. [Google Scholar] [CrossRef]
- Chiba, Y.; Misawa, M. The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. J. Smooth Muscle Res. 2004, 40, 155–167. [Google Scholar] [CrossRef]
- Wei, B.; Shang, Y.X.; Li, M.; Jiang, J.; Zhang, H. Cytoskeleton changes of airway smooth muscle cells in juvenile rats with airway remodeling in asthma and the RhoA/ROCK signaling pathway mechanism. Genet. Mol. Res. 2014, 13, 559–569. [Google Scholar] [CrossRef]
- Zhang, Y.; Saradna, A.; Ratan, R.; Ke, X.; Tu, W.; Do, D.C.; Hu, C.; Gao, P. RhoA/Rho-kinases in asthma: From pathogenesis to therapeutic targets. Clin. Transl. Immunol. 2020, 9, e1134. [Google Scholar] [CrossRef]
- Schaafsma, D.; Bos, I.S.T.; Zuidhof, A.B.; Zaagsma, J.; Meurs, H. The inhaled Rho kinase inhibitor Y-27632 protects against allergen-induced acute bronchoconstriction, airway hyperresponsiveness, and inflammation. Am. J. Physiol. Cell. Mol. Physiol. 2008, 295, L214–L219. [Google Scholar] [CrossRef]
- Henry, P.J.; Mann, T.S.; Goldie, R.G. A Rho kinase inhibitor, Y-27632 inhibits pulmonary eosinophilia, bronchoconstriction and airways hyperresponsiveness in allergic mice. Pulm. Pharmacol. Ther. 2005, 18, 67–74. [Google Scholar] [CrossRef]
- Chiba, Y.; Matsusue, K.; Misawa, M. RhoA, a Possible Target for Treatment of Airway Hyperresponsiveness in Bronchial Asthma. J. Pharmacol. Sci. 2010, 114, 239–247. [Google Scholar] [CrossRef]
- Xie, T.; Luo, G.Y.; Zhang, Y.; Wang, X.; Wang, X.Y.; Wu, M.; Li, G.P. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFκB. Clin. Exp. Allergy 2015, 45, 1812–1822. [Google Scholar] [CrossRef]
- Pandya, H.C.; Snetkov, V.A.; Twort, C.H.C.; Ward, J.P.T.; Hirst, S.J. Oxygen regulates mitogen-stimulated proliferation of fetal human airway smooth muscle cells. Am. J. Physiol. Cell. Mol. Physiol. 2002, 283, L1220–L1230. [Google Scholar] [CrossRef]
- Svensson Holm, A.-C.B.; Bengtsson, T.; Grenegård, M.; Lindström, E.G. Platelets stimulate airway smooth muscle cell proliferation through mechanisms involving 5-lipoxygenase and reactive oxygen species. Platelets 2008, 19, 528–536. [Google Scholar] [CrossRef]
- Maniam, S.; Mohamed, N.; Shuid, A.N.; Soelaiman, I.N. Palm Tocotrienol Exerted Better Antioxidant Activities in Bone than α-Tocopherol. Basic Clin. Pharmacol. Toxicol. 2008, 103, 55–60. [Google Scholar] [CrossRef]
- Rossi, M.; Alamprese, C.; Ratti, S. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 2007, 102, 812–817. [Google Scholar] [CrossRef]
- Packer, L.; Weber, S.U.; Rimbach, G. Molecular Aspects of α-Tocotrienol Antioxidant Action and Cell Signalling. J. Nutr. 2001, 131, 369S–373S. [Google Scholar] [CrossRef]
- Serbinova, E.; Kagan, V.; Han, D.; Packer, L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic. Biol. Med. 1991, 10, 263–275. [Google Scholar] [CrossRef]
- de Luis, D.A.; Armentia, A.; Aller, R.; Asensio, A.; Sedano, E.; Izaola, O.; Cuellar, L. Dietary intake in patients with asthma: A case control study. Nutrition 2005, 21, 320–324. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C.; Wang, Y.; Li, Y. Does vitamin E prevent asthma or wheeze in children: A systematic review and meta-analysis. Paediatr. Respir. Rev. 2018, 27, 60–68. [Google Scholar] [CrossRef]
- Hernandez, M.L.; Wagner, J.G.; Kala, A.; Mills, K.; Wells, H.B.; Alexis, N.E.; Lay, J.C.; Jiang, Q.; Zhang, H.; Zhou, H.; et al. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic. Biol. Med. 2013, 60, 56–62. [Google Scholar] [CrossRef]
- Pearson, P.J.K.; Lewis, S.A.; Britton, J.; Fogarty, A. Vitamin E supplements in asthma: A parallel group randomised placebo controlled trial. Thorax 2004, 59, 652–656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listyoko, A.S.; Okazaki, R.; Harada, T.; Takata, M.; Morita, M.; Ishikawa, H.; Funaki, Y.; Yamasaki, A. β-Tocotrienol Decreases PDGF-BB-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Inhibiting RhoA and Reducing ROS Production. Pharmaceuticals 2024, 17, 712. https://doi.org/10.3390/ph17060712
Listyoko AS, Okazaki R, Harada T, Takata M, Morita M, Ishikawa H, Funaki Y, Yamasaki A. β-Tocotrienol Decreases PDGF-BB-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Inhibiting RhoA and Reducing ROS Production. Pharmaceuticals. 2024; 17(6):712. https://doi.org/10.3390/ph17060712
Chicago/Turabian StyleListyoko, Aditya Sri, Ryota Okazaki, Tomoya Harada, Miki Takata, Masato Morita, Hiroki Ishikawa, Yoshihiro Funaki, and Akira Yamasaki. 2024. "β-Tocotrienol Decreases PDGF-BB-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Inhibiting RhoA and Reducing ROS Production" Pharmaceuticals 17, no. 6: 712. https://doi.org/10.3390/ph17060712
APA StyleListyoko, A. S., Okazaki, R., Harada, T., Takata, M., Morita, M., Ishikawa, H., Funaki, Y., & Yamasaki, A. (2024). β-Tocotrienol Decreases PDGF-BB-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Inhibiting RhoA and Reducing ROS Production. Pharmaceuticals, 17(6), 712. https://doi.org/10.3390/ph17060712