Editorial for the Special Issue Titled “Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology”
Acknowledgments
Conflicts of Interest
List of Contributions
- Cassavaugh, J.; Qureshi, N.; Csizmadia, E.; Longhi, M.; Matyal, R.; Robson, S. Regulation of Hypoxic–Adenosinergic Signaling by Estrogen: Implications for Microvascular Injury. Pharmaceuticals 2023, 16, 422. https://doi.org/10.3390/ph16030422.
- Elgebaly, S.; Van Buren, C.; Todd, R.; Poston, R.; Arafa, R.; El-Khazragy, N.; Kreutzer, D.; Rabie, M.; Mohamed, A.; Ahmed, L.; El Sayed, N. Cyclocreatine Phosphate: A Novel Bioenergetic/Anti-Inflammatory Drug That Resuscitates Poorly Functioning Hearts and Protects against Development of Heart Failure. Pharmaceuticals 2023, 16, 453. https://doi.org/10.3390/ph16030453.
- Miguel-Martínez, A.; Linares-Bedolla, J.; Villanueva-Castillo, B.; Haanes, K.; MaassenVanDenBrink, A.; Villalón, C. Pharmacological Profile of the Purinergic P2Y Receptors That Modulate, in Response to ADPβS, the Vasodepressor Sensory CGRPergic Outflow in Pithed Rats. Pharmaceuticals 2023, 16, 475. https://doi.org/10.3390/ph16030475.
- Ahmed, M.; Abdelrazek, H.; Moustafa, Y.; Alshawwa, S.; Mobasher, M.; Abdel-Wahab, B.; Abdelgawad, F.; Khodeer, D. Cardioprotective Effect of Flibanserin against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca2+ Pathway. Pharmaceuticals 2023, 16, 502. https://doi.org/10.3390/ph16040502.
- Zabielska-Kaczorowska, M.; Braczko, A.; Pelikant-Malecka, I.; Slominska, E.; Smolenski, R. Hidden Pool of Cardiac Adenine Nucleotides That Controls Adenosine Production. Pharmaceuticals 2023, 16, 599. https://doi.org/10.3390/ph16040599.
- Sitek, J.; Kuczeriszka, M.; Walkowska, A.; Kompanowska-Jezierska, E.; Dobrowolski, L. Nonselective and A2a-Selective Inhibition of Adenosine Receptors Modulates Renal Perfusion and Excretion Depending on the Duration of Streptozotocin-Induced Diabetes in Rats. Pharmaceuticals 2023, 16, 732. https://doi.org/10.3390/ph16050732.
- Mierzejewska, P.; Di Marzo, N.; Zabielska-Kaczorowska, M.; Walczak, I.; Slominska, E.; Lavitrano, M.; Giovannoni, R.; Kutryb-Zajac, B.; Smolenski, R. Endothelial Effects of Simultaneous Expression of Human HO-1, E5NT, and ENTPD1 in a Mouse. Pharmaceuticals 2023, 16, 1409. https://doi.org/10.3390/ph16101409.
- Silva-Velasco, R.; Villanueva-Castillo, B.; Haanes, K.; MaassenVanDenBrink, A.; Villalón, C. Pharmacological Nature of the Purinergic P2Y Receptor Subtypes That Participate in the Blood Pressure Changes Produced by ADPβS in Rats. Pharmaceuticals 2023, 16, 1683. https://doi.org/10.3390/ph16121683.
References
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.G.; Huang, C.; et al. From Purines to Purinergic Signalling: Molecular Functions and Human Diseases. Signal Transduct. Target. Ther. 2021, 6, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Yegutkin, G.G. Adenosine Metabolism in the Vascular System. Biochem. Pharmacol. 2021, 187, 114373. [Google Scholar] [CrossRef] [PubMed]
- Fitz, J.G. Regulation of Cellular Atp Release. Trans. Am. Clin. Climatol. Assoc. 2007, 118, 199. [Google Scholar] [PubMed]
- Battastini, A.M.O.; Figueiró, F.; Leal, D.B.R.; Doleski, P.H.; Schetinger, M.R.C. CD39 and CD73 as Promising Therapeutic Targets: What Could Be the Limitations? Front. Pharmacol. 2021, 12, 633603. [Google Scholar] [CrossRef] [PubMed]
- Hashikawa, T.; Hooker, S.W.; Maj, J.G.; Knott-Craig, C.J.; Takedachi, M.; Murakami, S.; Thompson, L.F. Regulation of Adenosine Receptor Engagement by Ecto-Adenosine Deaminase. FASEB J. 2004, 18, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine Receptors as Drug Targets—What Are the Challenges? Nat. Rev. Drug Discov. 2013, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Chiozzi, P.; Ferrari, D.; Falzoni, S.; Sanz, J.M.; Morelli, A.; Torboli, M.; Bolognesi, G.; Baricordi, O.R. Nucleotide Receptors: An Emerging Family of Regulatory Molecules in Blood Cells. Blood 2001, 97, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Illes, P.; Müller, C.E.; Jacobson, K.A.; Grutter, T.; Nicke, A.; Fountain, S.J.; Kennedy, C.; Schmalzing, G.; Jarvis, M.F.; Stojilkovic, S.S.; et al. Update of P2X Receptor Properties and Their Pharmacology: IUPHAR Review 30. Br. J. Pharmacol. 2021, 178, 489–514. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A.; Delicado, E.G.; Gachet, C.; Kennedy, C.; von Kügelgen, I.; Li, B.; Miras-Portugal, M.T.; Novak, I.; Schöneberg, T.; Perez-Sen, R.; et al. Update of P2Y Receptor Pharmacology: IUPHAR Review 27. Br. J. Pharmacol. 2020, 177, 2413–2433. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Purinergic Signaling in the Cardiovascular System. Circ. Res. 2017, 120, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Idzko, M.; Ferrari, D.; Riegel, A.K.; Eltzschig, H.K. Extracellular Nucleotide and Nucleoside Signaling in Vascular and Blood Disease. Blood 2014, 124, 1029. [Google Scholar] [CrossRef] [PubMed]
- Kutryb-Zajac, B.; Jablonska, P.; Serocki, M.; Bulinska, A.; Mierzejewska, P.; Friebe, D.; Alter, C.; Jasztal, A.; Lango, R.; Rogowski, J.; et al. Nucleotide Ecto-Enzyme Metabolic Pattern and Spatial Distribution in Calcific Aortic Valve Disease; Its Relation to Pathological Changes and Clinical Presentation. Clin. Res. Cardiol. 2020, 109, 137–160. [Google Scholar] [CrossRef] [PubMed]
- Kutryb-Zajac, B.; Zukowska, P.; Toczek, M.; Zabielska, M.; Lipinski, M.; Rybakowska, I.; Chlopicki, S.; Slominska, E.M.; Smolenski, R.T. Extracellular Nucleotide Catabolism in Aortoiliac Bifurcation of Atherosclerotic ApoE/LDLr Double Knock out Mice. Nucleosides Nucleotides Nucleic Acids 2014, 33, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Chisci, E.; De Giorgi, M.; Zanfrini, E.; Testasecca, A.; Brambilla, E.; Cinti, A.; Farina, L.; Kutryb-Zajac, B.; Bugarin, C.; Villa, C.; et al. Simultaneous Overexpression of Human E5NT and ENTPD1 Protects Porcine Endothelial Cells against H2O2-Induced Oxidative Stress and Cytotoxicity in Vitro. Free Radic. Biol. Med. 2017, 108, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Mierzejewska, P.; Zabielska, M.A.; Kutryb-Zajac, B.; Tomczyk, M.; Koszalka, P.; Smolenski, R.T.; Slominska, E.M. Impaired L-Arginine Metabolism Marks Endothelial Dysfunction in CD73-Deficient Mice. Mol. Cell. Biochem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Elgebaly, S.A.; Poston, R.; Todd, R.; Helmy, T.; Almaghraby, A.M.; Elbayoumi, T.; Kreutzer, D.L. Cyclocreatine Protects against Ischemic Injury and Enhances Cardiac Recovery during Early Reperfusion. Expert Rev. Cardiovasc. Ther. 2019, 17, 683–697. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutryb-Zając, B. Editorial for the Special Issue Titled “Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology”. Pharmaceuticals 2024, 17, 751. https://doi.org/10.3390/ph17060751
Kutryb-Zając B. Editorial for the Special Issue Titled “Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology”. Pharmaceuticals. 2024; 17(6):751. https://doi.org/10.3390/ph17060751
Chicago/Turabian StyleKutryb-Zając, Barbara. 2024. "Editorial for the Special Issue Titled “Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology”" Pharmaceuticals 17, no. 6: 751. https://doi.org/10.3390/ph17060751
APA StyleKutryb-Zając, B. (2024). Editorial for the Special Issue Titled “Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology”. Pharmaceuticals, 17(6), 751. https://doi.org/10.3390/ph17060751