TRPV1 Channels in the Central Nervous System as Drug Targets
Abstract
:1. Introduction
2. Capsaicin and TRPV1 Channel Antagonists as Analgesic Agents
3. TRPV1 Channels in the CNS
4. TRPV1 Channels and Neurological Disorders
5. TRPV1 Channels and Psychiatric Conditions
6. Therapeutic Potential of TRPV1 Channel Modulators for the Treatment of Pain and Neuropsychiatric Disorders
7. Conclusions
Funding
Conflicts of Interest
References
- Koivisto, A.-P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 2022, 21, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Jancsó, N.; Jancsó-Gábor, A.; Szolcsányi, J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol. Chemother. 1967, 31, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Chahl, L.A. Antidromic vasodilatation and neurogenic inflammation. Pharmacol. Ther. 1988, 37, 275–300. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 2004, 38, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.M.; Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: Current state of the field. Br. J. Pharmacol. 2018, 175, 2185–2203. [Google Scholar] [CrossRef]
- Fischer, M.J.M.; Ciotu, C.I.; Szallasi, A. The Mysteries of Capsaicin-Sensitive Afferents. Front. Physiol. 2020, 11, 554195. [Google Scholar] [CrossRef] [PubMed]
- Iftinca, M.; Defaye, M.; Altier, C. TRPV1—Targeted drugs in development for human pain conditions. Drugs 2021, 81, 7–27. [Google Scholar] [CrossRef]
- Bamps, D.; Vriens, J.; de Hoon, J.; Voets, T. TRP channel cooperation for nociception: Therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 655–677. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Y.; Liu, L.; Qiao, Z.; Yan, L. A patent review of transient receptor potential vanilloid type 1 modulators (2014–present). Expert Opin. Ther. Pat. 2021, 31, 169–187. [Google Scholar] [CrossRef]
- Yonghak, P.; Miyata, S.; Kurganov, E. TRPV1 is crucial for thermal homeostasis in the mouse by heat loss behaviors under warm ambient temperature. Sci. Rep. 2020, 10, 8799. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J. Effect of capsaicin on thermoregulation: An update with new aspects. Temperature 2015, 2, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. [Google Scholar] [CrossRef]
- Woodbury, C.J.; Zwick, M.; Wang, S.; Lawson, J.J.; Caterina, M.J.; Koltzenburg, M.; Albers, K.M.; Koerber, H.R.; Davis, B.M. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J. Neurosci. 2004, 24, 6410–6415. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Kistner, K.; Miermeister, F.; Winkelmann, R.; Wittmann, J.; Fischer, M.J.M.; Weidner, C.; Reeh, P.W. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur. J. Pain 2013, 17, 1472–1482. [Google Scholar] [CrossRef]
- Honore, P.; Wismer, C.T.; Mikusa, J.; Zhu, C.Z.; Zhong, C.; Gauvin, D.M.; Gomtsyan, A.; El Kouhen, R.; Lee, C.-H.; Marsh, K.; et al. A-425619 [1-Isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 2005, 314, 410–421. [Google Scholar] [CrossRef]
- Yue, W.W.S.; Yuan, L.; Braz, J.M.; Basbaum, A.I.; Julius, D. TRPV1 drugs alter core body temperature via central projections of primary afferent sensory neurons. eLife 2022, 11, e80139. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Steiner, A.A.; Pakai, E.; Wanner, S.P.; Almeida, M.C.; Keringer, P.; Oliveira, D.L.; Nakamura, K.; Morrison, S.F.; Romanovsky, A.A. The neural pathway of the hyperthermic response to antagonists of the transient receptor potential vanilloid-1 channel. Temperature 2023, 10, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Honore, P.; Zhong, C.; Gauvin, D.; Mikusa, J.; Hernandez, G.; Chandran, P.A.; Gomtsyan, A.; Brown, B.; Bayburt, E.K.; et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 2006, 26, 9385–9393. [Google Scholar] [CrossRef] [PubMed]
- Szallasi, A.; Nilsson, S.; Farkas-Szallasi, T.; Blumberg, P.M.; Hökfelt, T.; Lundberg, I.M. Vanilloid (capsaicin) receptors in the rat: Distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res. 1995, 703, 175–183. [Google Scholar] [CrossRef]
- Cavanaugh, D.J.; Chesler, A.T.; Jackson, A.C.; Sigal, Y.M.; Yamanaka, H.; Grant, R.; O’Donnell, D.; Nicoll, R.A.; Shah, N.M.; Julius, D.; et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 2011, 31, 5067–5077. [Google Scholar] [CrossRef]
- Mezey, E.; Toth, Z.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 2000, 97, 3655–3660. [Google Scholar] [CrossRef]
- Hayes, P.; Meadows, H.J.; Gunthorpe, M.J.; Harries, M.H.; Duckworth, D.M.; Cairns, W.; Harrison, D.C.; Clarke, C.E.; Ellington, K.; Prinjha, R.K.; et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 2000, 88, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Cortright, D.N.; Crandall, M.; Sanchez, J.F.; Zou, T.; Krause, J.E.; White, G. The tissue distribution and functional characterization of human VR1. Biochem. Biophys. Res. Commun. 2001, 281, 1183–1189. [Google Scholar] [CrossRef]
- Sanchez, J.F.; Krause, J.E.; Cortright, D.N. The distribution and regulation of vanilloid receptor VR1 and VR1 splice vatiant RNA expression in rat. Neuroscience 2001, 107, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Szabo, T.; Biro, T.; Gonzalez, A.F.; Palkovits, M.; Blumberg, P.M. Pharmacological characterization of vanilloid receptor located in the brain. Mol. Brain Res. 2002, 98, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.C.; Davis, J.B.; Benham, C.D. [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res. 2004, 995, 176–183. [Google Scholar] [CrossRef]
- Tóth, A.; Boczán, J.; Kedei, N.; Lizanecz, E.; Bagi, Z.; Papp, Z.; Édes, I.; Csiba, L.; Blumberg, P.M. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Mol. Brain Res. 2005, 135, 162–168. [Google Scholar] [CrossRef]
- Cristino, L.; De Petrocellis, L.; Pryce, G.; Baker, D.; Guglielmotti, V.; Di Marzo, V. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 2006, 139, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Sappington, R.M.; Sidorova, T.; Ward, N.J.; Chakravarthy, R.; Ho, K.W.; Calkins, D.J. Activation of transient receptor potential vanilloid 1 (TRPV1) influences how retinal ganglion cell neurons respond to pressure-related stress. Channels 2015, 9, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Tavares, I.; Morgado, C. “Hotheaded”: The role of TRPV1 in brain functions. Neuropharmacology 2014, 85, 151–157. [Google Scholar] [CrossRef]
- Meza, R.C.; Ancatén-González, C.; Chiu, C.Q.; Chávez, A.E. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front. Cell. Neurosci. 2022, 16, 864828. [Google Scholar] [CrossRef] [PubMed]
- Grueter, B.A.; Brasnjo, G.; Malenka, R.C. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat. Neurosci. 2010, 13, 1519–1525. [Google Scholar] [CrossRef]
- Marrone, M.; Morabito, A.; Giustizieri, M.; Chiurchiu, V.; Leuti, A.; Mattiolo, M.; Marinelli, S.; Riganti, L.; Lombardi, M.; Murana, E.; et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat. Commun. 2017, 8, 15292. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.I.; Peng, Y.Y.; Peng, B.W. Modulation of neuroinflammation and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav. Immun. 2017, 64, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Goswami, C.; Hucho, T. TRPV1 expression-dependent initiation and regulation of filopodia. J. Neurochem. 2007, 103, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
- Stock, K.; Garthe, A.; de Almeida Sassi, F.; Glass, R.; Wolf, S.A.; Kettenmann, H. The capsaicin receptor TRPV1 as a novel modulator of neural precursor cell proliferation. Stem Cells 2014, 32, 3183–3195. [Google Scholar] [CrossRef]
- Ramirez-Barrantes, R.; Cordova, C.; Poblete, H.; Munoz, P.; Marchant, I.; Wianny, F.; Olivero, P. Perspectives of TRPV1 function on the neurogenesis and neural plasticity. Neural Plast. 2016, 2016, 1568145. [Google Scholar] [CrossRef]
- Gibson, H.E.; Edwards, J.G.; Page, R.S.; Van Hook, M.J.; Kauer, J.A. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 2008, 57, 746–759. [Google Scholar] [CrossRef]
- Li, H.-B.; Mao, R.-R.; Zhang, J.-C.; Yang, Y.; Cao, J.; Xu, L. Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol. Psychiatry 2008, 64, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Marsch, R.; Foeller, E.; Rammes, G.; Bunck, M.; Kossl, M.; Holsboer, F.; Zieglgansberger, W.; Landgraf, R.; Lutz, B.; Wotjak, C.T. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 2007, 27, 832–839. [Google Scholar] [CrossRef]
- Shiri, M.; Komaki, A.; Oryan, S.; Taheri, M.; Komaki, H.; Etaee, F. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats. Can. J. Physiol. Pharmacol. 2017, 95, 382–387. [Google Scholar] [CrossRef]
- Cui, Y.; Perez, S.; Venance, L. Endocannabinoids—LTP mediated by CB1 and TRPV1 receptors encodes for limited occurrences of coincident activity in neocortex. Front. Cell. Neurosci. 2018, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- De Petrocellis, L.; Nabissi, M.; Santorini, G.; Ligristi, A. Actions and regulation of ionotropic cannabinoid receptors. Adv. Pharmacol. 2017, 80, 249–289. [Google Scholar] [CrossRef] [PubMed]
- Pasierski, M.; Szulczyk, B. Beneficial Effects of Capsaicin in Disorders of the Central Nervous System. Molecules 2022, 27, 2484. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, T. Impact of TRPV1 on Pathogenesis and Therapy of Neurodegenerative Diseases. Molecules 2024, 29, 181. [Google Scholar] [CrossRef]
- Du, Y.; Fu, M.; Huang, Z.; Tian, X.; Li, J.; Pang, Y.; Song, W.; Wang, Y.T.; Dong, Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell 2020, 19, e13113. [Google Scholar] [CrossRef]
- Jayant, S.; Sharma, B.M.; Sharma, B. Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer’s disease. Brain Res. 2016, 1642, 397–408. [Google Scholar] [CrossRef]
- Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp. Mol. Med. 2017, 49, e298. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Cheng, G.; Tan, H.; Qin, R.; Zou, Y.; Wang, Y.; Zhang, Y. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp. Neurol. 2017, 295, 66–76. [Google Scholar] [CrossRef]
- Gonzalez-Reyes, L.E.; Ladas, T.P.; Chiang, C.-C.; Durand, D.M. TRPV1 antagonist capsazepine supresses 4-AP induced epileptiform activity in vitro and electrographic seizures in vivo. Exp. Neurol. 2013, 250, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Chahl, L.A. TRP channels and psychiatric disorders. In Transient Receptor Potential Channels; Islam, M., Ed.; Springer BV: Berlin/Heidelberg, Germany, 2011; pp. 987–1009. [Google Scholar] [CrossRef]
- Sawamura, S.; Shirakawa, H.; Nakagawa, T.; Mori, Y.; Kaneko, S. TRP Channels in the Brain. What are they there for? In Neurobiology of TRP Channels; Emir, T.L.C., Ed.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Singh, R.; Bansal, Y.; Parhar, I.; Kuhad, A.; Soga, T. Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem. Int. 2019, 131, 104545. [Google Scholar] [CrossRef] [PubMed]
- Escelsior, A.; Sterlini, B.; Murrie, M.B.; Serafini, G.; Aguglia, A.; Pereira da Silva, B.; Corradi, A.; Valente, P.; Amore, M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav. Brain Res. 2020, 393, 112734–112749. [Google Scholar] [CrossRef]
- Aguiar, D.C.; Almeida-Santos, A.F.; Moreira, F.A.; Guimarães, F.S. Involvement of TRPV1 channels in the periaqueductal grey on the modulation of innate fear responses. Acta Neuropsychiatr. 2015, 27, 97–105. [Google Scholar] [CrossRef]
- Reyes-Mendez, M.E.; Castro-Sánchez, L.A.; Dagnino-Acosta, A.; Aguilar-Martínez, I.; Pérez-Burgos, A.; Vázquez-Jiménez, C.; Moreno-Galindo, E.G.; Álvarez-Cervera, F.J.; Góngora-Alfaro, J.L.; Navarro-Polanco, R.A.; et al. Capsaicin produces antidepressant-like effects in the forced swimming test and enhances the response of a sub-effective dose of amitriptyline in rats. Physiol. Behav. 2018, 195, 158–166. [Google Scholar] [CrossRef]
- McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Kahn, R.S. On the origins of schizophrenia. Am. J. Psychiatry 2020, 177, 291–297. [Google Scholar] [CrossRef] [PubMed]
- International Schizophrenia Genomics Consortium. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Falkai, P.; Papiol, S. Neurodevelopmental disturbances in schizophrenia: Evidence from genetic and environmental factors. J. Neural Transm. 2023, 130, 195–205. [Google Scholar] [CrossRef]
- Selemon, L.D.; Goldman-Rakic, P.S. The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol. Psychiatry 1999, 45, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Cummings, C.; Chapman, G.E.; Shatalina, E. Neuroimaging in schizophrenia: An overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023, 48, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Moyer, C.E.; Shelton, M.A.; Sweet, R.A. Dendritic spine alterations in schizophrenia. Neurosci. Lett. 2015, 601, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Morén, C.; Treder, N.; Martínez-Pinteño, A.; Rodríguez, N.; Arbelo, N.; Madero, S.; Gómez, M.; Mas, S.; Gassó, P.; Parellada, E. Systematic review of the therapeutic role of apoptotic inhibitors in neurodegeneration and their potential use in schizophrenia. Antioxidants 2022, 11, 2275. [Google Scholar] [CrossRef] [PubMed]
- Newson, P.; Lynch-Frame, A.; Roach, R.; Bennett, S.; Carr, V.; Chahl, L.A. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia. Br. J. Pharmacol. 2005, 146, 408–418. [Google Scholar] [CrossRef]
- Jancsó, G.; Kiraly, E.; Jancsó-Gábor, A. Pharmacologically induced selective degeneration of chemosensitive primary afferent neurons. Nature 1977, 270, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Wanner, S.P.; Garami, A.; Romanovsky, A.A. Hyperactive when young, hypoactive and overweight when aged: Connecting the dots in the story about locomotor activity, body mass, and aging in Trpv1 knockout mice. Aging 2011, 3, 450–454. [Google Scholar] [CrossRef]
- Petrovszki, Z.; Adam, G.; Kekesi, G.; Tuboly, G.; Morvay, Z.; Nagy, E.; Benedek, G.; Horvath, G. The effect of juvenile capsaicin desensitization in rats: Behavioral impairments. Physiol. Behav. 2014, 125, 38–44. [Google Scholar] [CrossRef]
- Newson, P.N.; van den Buuse, M.; Martin, S.; Lynch-Frame, A.; Chahl, L.A. Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour. Behav. Brain Res. 2014, 272, 55–65. [Google Scholar] [CrossRef]
- Boros, M.; Soki, N.; Molnar, A.; Abraham, H. Morphological study of the postnatal hippocampal development in the TRPV1 knockout mice. Temperature 2023, 10, 102–120. [Google Scholar] [CrossRef]
- Ruggiero, R.N.; Rossignoli, M.T.; De Ross, J.B.; Hallak, J.E.C.; Leite, J.P.; Bueno-Junior, L.S. Cannabinoids and vanilloids in schizophrenia: Neurophysiological evidence and directions for basic research. Front. Pharmacol. 2017, 8, 399. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Álvaro, A.; Navarrete, F.; Aracil-Fernández, A.; Navarro, D.; Berbel, P.; Manzanares, J. Differential pharmacological regulation of sensorimotor gating deficit in CB1 knockout mice and associated neurochemical and histological alterations. Neuropsychopharmacology 2015, 40, 2639–2647. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Álvaro, A.; Aracil-Fernández, A.; Garcia-Gutiérrez, M.S.; Navarrete, F.; Manzanares, J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 2011, 36, 1489–1504. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.M.; Valero, M.; de la Serna, O.; Aisa, B.; Borcel, E.; Ramirez, M.J.; Viveros, M.-P. Maternal deprivation effects on brain plasticity and recognition memory in adolescent male and female rats. Neuropharmacology 2013, 68, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Hao, K.; Xiong, Y.; Xu, R.; Huang, H.; Wang, H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. Schizophrenia 2023, 9, 77. [Google Scholar] [CrossRef]
- Zhang, K.; Julius, D.; Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 2021, 184, 5138–5150. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zang, Y.; Gross, E.R. A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J. Clin. Investig. 2023, 133, e163735. [Google Scholar] [CrossRef] [PubMed]
- You, I.-J.; Jung, Y.-H.; Kim, M.-J.; Kwon, S.-H.; Hong, S.-I.; Lee, S.-Y.; Jang, C.-G. Alterations in the emotional and memory behavioral phenotypes of transient receptor potential vanilloid type 1-deficient mice are mediated by changes in expression of 5-HT1A, GABAA, and NMDA receptors. Neuropharmacology 2012, 62, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, W.; Chen, Z.; He, C.; Zhang, Y.; Tao, Q. The association between spicy food consumption and psychological health in Chinese college students: A cross-sectional study. Nutrients 2022, 14, 4508. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; El-Obeid, T.; Riley, M.; Li, M.; Page, A.; Liu, J. High chili intake and cognitive function among 4582 adults: An open cohort study over 15 years. Nutrients 2019, 11, 1183. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Bu, X.L.; Wang, J.; Zhang, T.; Xiang, Y.; Shen, L.L.; Wang, Q.H.; Deng, B.; Wang, X.; Zhu, C.; et al. The associations between a capsaicin-rich diet and blood amyloid-β levels and cognitive function. J. Alzheimer’s Dis. 2016, 52, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
Region | TRPV1 Specific Binding |
---|---|
TELENCEPHALON | |
Olfactory system | |
| +++ |
| +++ |
| + |
Neocortex (all regions) | +++ |
Metacortex | |
| +++ |
Basal ganglia | |
| + |
| ++ |
| + |
Hippocampal formation | |
| ++ |
| +++ |
| ++ |
| ++ |
Amygdala | |
| ++ |
| ++ |
Thalamus | |
| +++ |
| + |
| ++ |
| + |
| + |
| + |
Hypothalamus | |
| ++ |
| ++ |
| ++ |
| + |
MESENCEPHALON | |
| +++ |
| +++ |
| + |
| ++ |
| ++ |
RHOMBENCEPHALON | |
| ++ |
| + |
CEREBELLUM | |
| +++ |
| + |
| ++ |
| + |
| + |
SPINAL CORD | |
| ++ |
TRIGEMINAL GANGLIA | +++ |
DORSAL ROOT GANGLIA | ++ |
TRPV1 Agonist/Antagonist | Disorder | Response |
---|---|---|
Antagonist—A-784168 | Rat model of pain involving central sensitisation | Analgesia in central pain states [20] |
Agonist—capsaicin, vanillin | Mouse model of Alzheimer’s disease | Reversed impairment of hippocampal LTP, learning and memory [48,49] |
Agonist—capsaicin | Mouse and rat models of Parkinson’s disease | Reduced neurodegeneration and improved behaviour; see [46,50] |
Antagonist—AMG9810 | Rat model of Parkinson’s disease | Attenuation of motor deficits; see [47] |
Antagonist—capsazepine | Mouse model of Parkinson’s disease | Neuroprotective effect; see [47] |
Agonist—capsaicin | Rat model of stroke | Reduced infarct volume and improved deficits; see [46,51] |
Human stroke patients | Improved dysphagia; see [46] | |
Agonist—capsaicin | Rat model of epilepsy | Increased seizures; see [46,52] |
Antagonist—capsazepine | Reduced seizures; see [46,52] | |
Antagonist—capsazepine | Mouse and rat models of anxiety (elevated plus maze, Vogel conflict test, social interaction test, open field) | Reduced anxiety; see [56] |
Antagonist—capsazepine | Rat model of fear (exposure to predator) | Reduced fear and stress responses; see [56,57] |
Antagonist—capsazepine | Rat and mouse models of depression (e.g., forced swim test) | Antidepressant-like effect; see [56] |
Agonist—capsaicin | Antidepressant-like effect and synergism with tricyclic antidepressants [58] | |
Antagonist—capsazepine, SB366791 | Mouse models of addiction (conditioned place reference (CPP), self-administration (SA)) | Inhibited morphine CPP; see [55,56] |
Inhibited methamphetamine CPP and SA; see [55,56] | ||
Inhibited reinstatement of cocaine-seeking behaviour; see [55,56] | ||
Agonist—capsaicin | Rat model of schizophrenia (maternal separation) | Reversal of neuronal and behavioural deficits [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chahl, L.A. TRPV1 Channels in the Central Nervous System as Drug Targets. Pharmaceuticals 2024, 17, 756. https://doi.org/10.3390/ph17060756
Chahl LA. TRPV1 Channels in the Central Nervous System as Drug Targets. Pharmaceuticals. 2024; 17(6):756. https://doi.org/10.3390/ph17060756
Chicago/Turabian StyleChahl, Loris A. 2024. "TRPV1 Channels in the Central Nervous System as Drug Targets" Pharmaceuticals 17, no. 6: 756. https://doi.org/10.3390/ph17060756
APA StyleChahl, L. A. (2024). TRPV1 Channels in the Central Nervous System as Drug Targets. Pharmaceuticals, 17(6), 756. https://doi.org/10.3390/ph17060756