Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder
Abstract
:1. Introduction
2. Microglia-Mediated Neuroinflammation
2.1. Neuroinflammation in Neurodegenerative and Neurodevelopmental Disorders
2.1.1. Neuroinflammation in Alzheimer’s Disease
2.1.2. Neuroinflammation in Parkinson’s Disease
2.1.3. Neuroinflammation in ASD
3. The Role of H3R Modulators in Neurodegenerative and Neurodevelopmental Disorders
3.1. Pharmacology and Signaling of Histamine H3Rs
3.2. Role of Histamine in Microglial Activation
3.3. Role of H3R in Microglia Activation and Neuroinflammation
3.4. Involvement of Brain H3R in Neurodegenerative and Neurodevelopmental Disorders
3.4.1. Alzheimer’s Disease
3.4.2. Parkinson’s Disease
3.4.3. Autism Spectrum Disorder
3.5. Procognitive Effects of H3R Modulators in Preclinical Studies
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChEI | Acetylcholinesterase inhibitors |
Aβ | Amyloid-beta |
ALR | Absent in melanoma 2 (AIM2)-like receptor |
AKT | Protein kinase B |
BACE1 | β-site amyloid precursor protein cleaving enzyme 1 |
BDNF | Brain-derived neurotrophic factor |
BTBR | Black and Tan Brachyury |
CBP | CREB Binding Protein |
CLR | C-type lectin receptor |
CREB | cAMP-responsive element binding protein |
CSF 1 | Colony stimulating factor-1 (CSF-1) |
CUS | Chronic unpredictable stress |
DAMPs | Damage associated molecular pattern |
EAE | Experimental autoimmune encephalomyelitis |
FGF | Fibroblast growth factor |
FST | Forced swimming test |
GPCRs | G protein-coupled receptors |
GABA | Gamma-aminobutyric acid |
GDNF | Glial cell-derived neurotrophic factor |
GSK3β | Glycogen synthase kinase 3β |
HNMT | Histamine N-methyltransferase |
IRF8 | Interferon regulatory factor 8 |
LTP | Long-term potentiation |
MAPKs | Mitogen-activated protein kinases |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NFTs | Neurofibrillary tau tangles |
NF-κB | Nuclear factor kappa light chain enhancer of activated B cells |
NLR | Nod-like receptors |
NGF | Nerve growth factor |
PAMPs | Pathogen associated molecular pattern |
PI3K | Phosphatidylinositol 3-kinase |
RAMH | (R)-α-methylhistamine |
ROS | Reactive Oxygen Species |
RLR | Retinoic acid-inducible gene-I (RIG-I)-like receptor |
TLR | Toll-like receptor |
TMN | Tuberomammillary nucleus |
TNFα | Tumor Necrosis Factor α |
TGFβ | Transforming growth factor β |
TST | Tail suspension Test |
VEGF | Vascular endothelial growth factor |
References
- Panula, P.; Nuutinen, S. The Histaminergic Network in the Brain: Basic Organization and Role in Disease. Nat. Rev. Neurosci. 2013, 14, 472–487. [Google Scholar] [CrossRef]
- Barata-Antunes, S.; Cristóvão, A.C.; Pires, J.; Rocha, S.M.; Bernardino, L. Dual Role of Histamine on Microglia-Induced Neurodegeneration. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 764–769. [Google Scholar] [CrossRef]
- Abdulrazzaq, Y.M.; Bastaki, S.M.A.; Adeghate, E. Histamine H3 Receptor Antagonists—Roles in Neurological and Endocrine Diseases and Diabetes Mellitus. Biomed. Pharmacother. 2022, 150, 112947. [Google Scholar] [CrossRef]
- Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 Receptor as a Potential Target for Cognitive Symptoms in Neuropsychiatric Diseases. Behav. Brain Res. 2016, 312, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Miszta, P.; Rzodkiewicz, P.; Michalak, O.; Krzeczyński, P.; Filipek, S. Enigmatic Histamine Receptor H4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life 2020, 10, 50. [Google Scholar] [CrossRef]
- Saraiva, C.; Barata-Antunes, S.; Santos, T.; Ferreiro, E.; Cristóvão, A.C.; Serra-Almeida, C.; Ferreira, R.; Bernardino, L. Histamine Modulates Hippocampal Inflammation and Neurogenesis in Adult Mice. Sci. Rep. 2019, 9, 8384. [Google Scholar] [CrossRef]
- Provensi, G.; Passani, M.B.; Costa, A.; Izquierdo, I.; Blandina, P. Neuronal Histamine and the Memory of Emotionally Salient Events. Br. J. Pharmacol. 2020, 177, 557–569. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Xu, Y.; Luan, H.; Wang, C.; Yang, M.; Zhao, R.; Song, M.; Liu, J.; Sun, L.; et al. Thioperamide Attenuates Neuroinflammation and Cognitive Impairments in Alzheimer’s Disease via Inhibiting Gliosis. Exp. Neurol. 2022, 347, 113870. [Google Scholar] [CrossRef] [PubMed]
- Hickman, R.A.; O’Shea, S.A.; Mehler, M.F.; Chung, W.K. Neurogenetic Disorders across the Lifespan: From Aberrant Development to Degeneration. Nat. Rev. Neurol. 2022, 18, 117–124. [Google Scholar] [CrossRef]
- Schor, N.F.; Bianchi, D.W. Neurodevelopmental Clues to Neurodegeneration. Pediatr. Neurol. 2021, 123, 67–76. [Google Scholar] [CrossRef]
- Frick, L.; Rapanelli, M.; Abbasi, E.; Ohtsu, H.; Pittenger, C. Histamine Regulation of Microglia: Gene-Environment Interaction in the Regulation of Central Nervous System Inflammation. Brain Behav. Immun. 2016, 57, 326–337. [Google Scholar] [CrossRef]
- Zlomuzica, A.; Dere, D.; Binder, S.; De Souza Silva, M.A.; Huston, J.P.; Dere, E. Neuronal Histamine and Cognitive Symptoms in Alzheimer’s Disease. Neuropharmacology 2016, 106, 135–145. [Google Scholar] [CrossRef]
- Zare-shahabadi, A.; Masliah, E.; Johnson, G.V.W.; Rezaei, N. Autophagy in Alzheimer’s Disease. Rev. Neurosci. 2015, 26, 385–395. [Google Scholar] [CrossRef]
- Satpati, A.; Neylan, T.; Grinberg, L.T. Histaminergic Neurotransmission in Aging and Alzheimer’s Disease: A Review of Therapeutic Opportunities and Gaps. Alzheimer’s Dement. 2023, 9, e12379. [Google Scholar] [CrossRef]
- Badanjak, K.; Fixemer, S.; Smajić, S.; Skupin, A.; Grünewald, A. The Contribution of Microglia to Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4676. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, C.; Iyaswamy, A.; Krishnamoorthi, S.; Sreenivasmurthy, S.G.; Liu, J.; Wang, Z.; Tong, B.C.-K.; Song, J.; Lu, J.; et al. Balancing mTOR Signaling and Autophagy in the Treatment of Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 728. [Google Scholar] [CrossRef]
- Fatoba, O.; Itokazu, T.; Yamashita, T. Microglia as Therapeutic Target in Central Nervous System Disorders. J. Pharmacol. Sci. 2020, 144, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s Disease. J. Cell Biol. 2017, 217, 459–472. [Google Scholar] [CrossRef]
- Zhang, Q.-S.; Heng, Y.; Yuan, Y.-H.; Chen, N.-H. Pathological α-Synuclein Exacerbates the Progression of Parkinson’s Disease through Microglial Activation. Toxicol. Lett. 2017, 265, 30–37. [Google Scholar] [CrossRef]
- Merighi, S.; Nigro, M.; Travagli, A.; Gessi, S. Microglia and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12990. [Google Scholar] [CrossRef]
- Carthy, E.; Ellender, T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front. Neurosci. 2021, 15, 680214. [Google Scholar] [CrossRef]
- Sato, A.; Ikeda, K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. Biol. Psychiatry Glob. Open Sci. 2022, 2, 95–105. [Google Scholar] [CrossRef]
- Fu, Y.; Xie, G.; Liu, R.; Xie, J.; Zhang, J.; Zhang, J. From Aberrant Neurodevelopment to Neurodegeneration: Insights into the Hub Gene Associated with Autism and Alzheimer’s Disease. Brain Res. 2024, 1838, 148992. [Google Scholar] [CrossRef] [PubMed]
- Jęśko, H.; Cieślik, M.; Gromadzka, G.; Adamczyk, A. Dysfunctional Proteins in Neuropsychiatric Disorders: From Neurodegeneration to Autism Spectrum Disorders. Neurochem. Int. 2020, 141, 104853. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.D.; Rosenberg, M.J.; Wolff, C.R.; Akers, K.G.; El-Emawy, A.; Staples, M.C.; Varaschin, R.K.; Wright, C.A.; Seidel, J.L.; Caldwell, K.K.; et al. Effects of a Novel Cognition-Enhancing Agent on Fetal Ethanol-Induced Learning Deficits. Alcohol Clin. Exp. Res. 2010, 34, 1793–1802. [Google Scholar] [CrossRef]
- Scammell, T.E.; Arrigoni, E.; Lipton, J. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef]
- Hua, Y.; Song, M.; Guo, Q.; Luo, Y.; Deng, X.; Huang, Y. Antiseizure Properties of Histamine H3 Receptor Antagonists Belonging 3,4-Dihydroquinolin-2(1H)-Ones. Molecules 2023, 28, 3408. [Google Scholar] [CrossRef]
- Eissa, N.; Awad, M.A.; Thomas, S.D.; Venkatachalam, K.; Jayaprakash, P.; Zhong, S.; Stark, H.; Sadek, B. Simultaneous Antagonism at H3R/D2R/D3R Reduces Autism-like Self-Grooming and Aggressive Behaviors by Mitigating MAPK Activation in Mice. Int. J. Mol. Sci. 2022, 24, 526. [Google Scholar] [CrossRef]
- Song, G.J.; Suk, K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front. Aging Neurosci. 2017, 9, 139. [Google Scholar] [CrossRef]
- Hemonnot, A.-L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Front. Aging Neurosci. 2019, 11, 233. [Google Scholar] [CrossRef]
- Uddin, M.S.; Mamun, A.A.; Labu, Z.K.; Hidalgo-Lanussa, O.; Barreto, G.E.; Ashraf, G.M. Autophagic Dysfunction in Alzheimer’s Disease: Cellular and Molecular Mechanistic Approaches to Halt Alzheimer’s Pathogenesis. J. Cell Physiol. 2019, 234, 8094–8112. [Google Scholar] [CrossRef]
- Stratoulias, V.; Venero, J.L.; Tremblay, M.-È.; Joseph, B. Microglial Subtypes: Diversity within the Microglial Community. EMBO J. 2019, 38, e101997. [Google Scholar] [CrossRef]
- Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in Neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef]
- Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R.; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.-B. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef]
- Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in Physiology and Disease. Annu. Rev. Physiol. 2017, 79, 619–643. [Google Scholar] [CrossRef]
- Bivona, G.; Iemmolo, M.; Agnello, L.; Lo Sasso, B.; Gambino, C.M.; Giglio, R.V.; Scazzone, C.; Ghersi, G.; Ciaccio, M. Microglial Activation and Priming in Alzheimer’s Disease: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 884. [Google Scholar] [CrossRef]
- Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s Disease. J. Clin. Investig. 2017, 127, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Fernández-Suárez, D. Alternatively Activated Microglia and Macrophages in the Central Nervous System. Prog. Neurobiol. 2015, 131, 65–86. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef] [PubMed]
- Amanollahi, M.; Jameie, M.; Heidari, A.; Rezaei, N. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol. Neurobiol. 2023, 60, 923–959. [Google Scholar] [CrossRef]
- Wang, J.; He, W.; Zhang, J. A Richer and More Diverse Future for Microglia Phenotypes. Heliyon 2023, 9, e14713. [Google Scholar] [CrossRef]
- Li, J.-W.; Zong, Y.; Cao, X.-P.; Tan, L.; Tan, L. Microglial Priming in Alzheimer’s Disease. Ann. Transl. Med. 2018, 6, 176. [Google Scholar] [CrossRef] [PubMed]
- Cornell, J.; Salinas, S.; Huang, H.-Y.; Zhou, M. Microglia Regulation of Synaptic Plasticity and Learning and Memory. Neural Regen. Res. 2022, 17, 705–716. [Google Scholar] [CrossRef]
- Sandhu, J.K.; Kulka, M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 1093. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive Astrocyte Nomenclature, Definitions, and Future Directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Ricci, G.; Volpi, L.; Pasquali, L.; Petrozzi, L.; Siciliano, G. Astrocyte-Neuron Interactions in Neurological Disorders. J. Biol. Phys. 2009, 35, 317–336. [Google Scholar] [CrossRef]
- Olsen, M.L.; Khakh, B.S.; Skatchkov, S.N.; Zhou, M.; Lee, C.J.; Rouach, N. New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J. Neurosci. 2015, 35, 13827–13835. [Google Scholar] [CrossRef]
- Wahis, J.; Hennes, M.; Arckens, L.; Holt, M.G. Star Power: The Emerging Role of Astrocytes as Neuronal Partners during Cortical Plasticity. Curr. Opin. Neurobiol. 2021, 67, 174–182. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 507878. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Sig. Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.K.; Jo, M.; Kim, J.-H.; Suk, K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2019, 25, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, Y.; Shibata, K.; Yoshida, K.; Shigetomi, E.; Gachet, C.; Ikenaka, K.; Tanaka, K.F.; Koizumi, S. Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation. Cell Rep. 2017, 19, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Calafatti, M.; Cocozza, G.; Limatola, C.; Garofalo, S. Microglial Crosstalk with Astrocytes and Immune Cells in Amyotrophic Lateral Sclerosis. Front. Immunol. 2023, 14, 1223096. [Google Scholar] [CrossRef] [PubMed]
- Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020, 108, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist? Nat. Neurosci. 2016, 19, 987–991. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef]
- Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Walker, Z.; Morgan, R.; Hinz, R.; Biju, M.; Kuruvilla, T.; Brooks, D.J.; et al. Microglial Activation Correlates in Vivo with Both Tau and Amyloid in Alzheimer’s Disease. Brain 2018, 141, 2740–2754. [Google Scholar] [CrossRef]
- Pascoal, T.A.; Benedet, A.L.; Ashton, N.J.; Kang, M.S.; Therriault, J.; Chamoun, M.; Savard, M.; Lussier, F.Z.; Tissot, C.; Karikari, T.K.; et al. Microglial Activation and Tau Propagate Jointly across Braak Stages. Nat. Med. 2021, 27, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef] [PubMed]
- Hensley, K. Neuroinflammation in Alzheimer’s Disease: Mechanisms, Pathologic Consequences, and Potential for Therapeutic Manipulation. J. Alzheimer’s Dis. 2010, 21, 1–14. [Google Scholar] [CrossRef]
- Kaur, D.; Sharma, V.; Deshmukh, R. Activation of Microglia and Astrocytes: A Roadway to Neuroinflammation and Alzheimer’s Disease. Inflammopharmacology 2019, 27, 663–677. [Google Scholar] [CrossRef] [PubMed]
- Avila-Muñoz, E.; Arias, C. When Astrocytes Become Harmful: Functional and Inflammatory Responses That Contribute to Alzheimer’s Disease. Ageing Res. Rev. 2014, 18, 29–40. [Google Scholar] [CrossRef]
- Carter, S.F.; Herholz, K.; Rosa-Neto, P.; Pellerin, L.; Nordberg, A.; Zimmer, E.R. Astrocyte Biomarkers in Alzheimer’s Disease. Trends Mol. Med. 2019, 25, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Colonna, M. Microglia in Alzheimer’s Disease: A Target for Immunotherapy. J. Leukoc. Biol. 2019, 106, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Simard, A.R.; Soulet, D.; Gowing, G.; Julien, J.-P.; Rivest, S. Bone Marrow-Derived Microglia Play a Critical Role in Restricting Senile Plaque Formation in Alzheimer’s Disease. Neuron 2006, 49, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Businaro, R.; Corsi, M.; Asprino, R.; Di Lorenzo, C.; Laskin, D.; Corbo, R.M.; Ricci, S.; Pinto, A. Modulation of Inflammation as a Way of Delaying Alzheimer’s Disease Progression: The Diet’s Role. Curr. Alzheimer Res. 2018, 15, 363–380. [Google Scholar] [CrossRef]
- Bilanges, B.; Posor, Y.; Vanhaesebroeck, B. PI3K Isoforms in Cell Signalling and Vesicle Trafficking. Nat. Rev. Mol. Cell Biol. 2019, 20, 515–534. [Google Scholar] [CrossRef]
- Bhowmik, M.; Khanam, R.; Vohora, D. Histamine H3 Receptor Antagonists in Relation to Epilepsy and Neurodegeneration: A Systemic Consideration of Recent Progress and Perspectives. Br. J. Pharmacol. 2012, 167, 1398–1414. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Munari, L.; Giannoni, P.; Mariottini, C.; Passani, M.B. Histamine Neuronal System as a Therapeutic Target for the Treatment of Cognitive Disorders. Future Neurol. 2010, 5, 543–555. [Google Scholar] [CrossRef]
- Galvan, V.; Jin, K. Neurogenesis in the Aging Brain. Clin. Interv. Aging 2007, 2, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Forno, L.S. Neuropathology of Parkinson’s Disease. J. Neuropathol. Exp. Neurol. 1996, 55, 259–272. [Google Scholar] [CrossRef]
- Toulouse, A.; Sullivan, A.M. Progress in Parkinson’s Disease-Where Do We Stand? Prog. Neurobiol. 2008, 85, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Scalzo, P.; Kümmer, A.; Cardoso, F.; Teixeira, A.L. Increased Serum Levels of Soluble Tumor Necrosis Factor-Alpha Receptor-1 in Patients with Parkinson’s Disease. J. Neuroimmunol. 2009, 216, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.J.; Charlett, A.; Purkiss, A.G.; Dobbs, S.M.; Weller, C.; Peterson, D.W. Association of Circulating TNF-Alpha and IL-6 with Ageing and Parkinsonism. Acta Neurol. Scand. 1999, 100, 34–41. [Google Scholar] [CrossRef]
- Liu, B.; Gao, H.-M.; Hong, J.-S. Parkinson’s Disease and Exposure to Infectious Agents and Pesticides and the Occurrence of Brain Injuries: Role of Neuroinflammation. Environ. Health Perspect. 2003, 111, 1065–1073. [Google Scholar] [CrossRef]
- Tansey, M.G.; McCoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory Mechanisms in Parkinson’s Disease: Potential Environmental Triggers, Pathways, and Targets for Early Therapeutic Intervention. Exp. Neurol. 2007, 208, 1–25. [Google Scholar] [CrossRef]
- Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in Neurological Disorders: Pharmacotherapeutic Targets from Bench to Bedside. Metab. Brain Dis. 2021, 36, 1591–1626. [Google Scholar] [CrossRef]
- Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s Disease. Park. Relat. Disord. 2012, 18 (Suppl. S1), S210–S212. [Google Scholar] [CrossRef] [PubMed]
- Hanna, L.; Poluyi, E.; Ikwuegbuenyi, C.; Morgan, E.; Imaguezegie, G. Peripheral Inflammation and Neurodegeneration; a Potential for Therapeutic Intervention in Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Egypt. J. Neurosurg. 2022, 37, 15. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Chang, S.-C.; Lee, J. Significant Roles of Neuroinflammation in Parkinson’s Disease: Therapeutic Targets for PD Prevention. Arch. Pharm. Res. 2019, 42, 416–425. [Google Scholar] [CrossRef]
- Kwon, H.S.; Koh, S.-H. Neuroinflammation in Neurodegenerative Disorders: The Roles of Microglia and Astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef]
- Estes, M.L.; McAllister, A.K. Immune Mediators in the Brain and Peripheral Tissues in Autism Spectrum Disorder. Nat. Rev. Neurosci. 2015, 16, 469–486. [Google Scholar] [CrossRef]
- Koyama, R.; Ikegaya, Y. Microglia in the Pathogenesis of Autism Spectrum Disorders. Neurosci. Res. 2015, 100, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Pucci, L.; Bezzi, P. Astrocytes and Microglia and Their Potential Link with Autism Spectrum Disorders. Front. Cell Neurosci. 2016, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Sadeq, A.; Sasse, A.; Sadek, B. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD? Front. Pharmacol. 2020, 11, 521283. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.A.; Goldowitz, D.; Mittleman, G. Repetitive Behavior and Increased Activity in Mice with Purkinje Cell Loss: A Model for Understanding the Role of Cerebellar Pathology in Autism. Eur. J. Neurosci. 2010, 31, 544–555. [Google Scholar] [CrossRef]
- Depino, A.M. Peripheral and Central Inflammation in Autism Spectrum Disorders. Mol. Cell. Neurosci. 2013, 53, 69–76. [Google Scholar] [CrossRef]
- Lucchina, L.; Depino, A.M. Altered Peripheral and Central Inflammatory Responses in a Mouse Model of Autism. Autism Res. 2014, 7, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Chez, M.G.; Dowling, T.; Patel, P.B.; Khanna, P.; Kominsky, M. Elevation of Tumor Necrosis Factor-Alpha in Cerebrospinal Fluid of Autistic Children. Pediatr. Neurol. 2007, 36, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chauhan, A.; Sheikh, A.M.; Patil, S.; Chauhan, V.; Li, X.-M.; Ji, L.; Brown, T.; Malik, M. Elevated Immune Response in the Brain of Autistic Patients. J. Neuroimmunol. 2009, 207, 111–116. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I.; Patel, A.B.; Doyle, R. Atopic Diseases and Inflammation of the Brain in the Pathogenesis of Autism Spectrum Disorders. Transl. Psychiatry 2016, 6, e844. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Ashraf-Ganjouei, A.; Moradi, K.; Bagheri, S.; Mohammadi, M.-R.; Akhondzadeh, S. Prednisolone as Adjunctive Treatment to Risperidone in Children With Regressive Type of Autism Spectrum Disorder: A Randomized, Placebo-Controlled Trial. Clin. Neuropharmacol. 2020, 43, 39. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, Z. The Roles of Histamine and Its Receptor Ligands in Central Nervous System Disorders: An Update. Pharmacol. Ther. 2017, 175, 116–132. [Google Scholar] [CrossRef]
- Ellenbroek, B.A.; Ghiabi, B. The Other Side of the Histamine H3 Receptor. Trends Neurosci. 2014, 37, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ghamari, N.; Zarei, O.; Arias-Montaño, J.-A.; Reiner, D.; Dastmalchi, S.; Stark, H.; Hamzeh-Mivehroud, M. Histamine H3 Receptor Antagonists/Inverse Agonists: Where Do They Go? Pharmacol. Ther. 2019, 200, 69–84. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, J.; Chen, Z. The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021, 11, 1345. [Google Scholar] [CrossRef]
- Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-Inhibition of Brain Histamine Release Mediated by a Novel Class (H3) of Histamine Receptor. Nature 1983, 302, 832–837. [Google Scholar] [CrossRef]
- Schlicker, E.; Betz, R.; Göthert, M. Histamine H3 Receptor-Mediated Inhibition of Serotonin Release in the Rat Brain Cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1988, 337, 588–590. [Google Scholar] [CrossRef]
- Schlicker, E.; Fink, K.; Hinterthaner, M.; Göthert, M. Inhibition of Noradrenaline Release in the Rat Brain Cortex via Presynaptic H3 Receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1989, 340, 633–638. [Google Scholar] [CrossRef]
- Schlicker, E.; Fink, K.; Detzner, M.; Göthert, M. Histamine Inhibits Dopamine Release in the Mouse Striatum via Presynaptic H3 Receptors. J. Neural Transm. Gen. Sect. 1993, 93, 1–10. [Google Scholar] [CrossRef]
- Brioni, J.D.; Esbenshade, T.A.; Garrison, T.R.; Bitner, S.R.; Cowart, M.D. Discovery of Histamine H3 Antagonists for the Treatment of Cognitive Disorders and Alzheimer’s Disease. J. Pharmacol. Exp. Ther. 2011, 336, 38–46. [Google Scholar] [CrossRef]
- Wong, T.-S.; Li, G.; Li, S.; Gao, W.; Chen, G.; Gan, S.; Zhang, M.; Li, H.; Wu, S.; Du, Y. G Protein-Coupled Receptors in Neurodegenerative Diseases and Psychiatric Disorders. Signal Transduct. Target. Ther. 2023, 8, 177. [Google Scholar] [CrossRef]
- Bongers, G.; Sallmen, T.; Passani, M.B.; Mariottini, C.; Wendelin, D.; Lozada, A.; van Marle, A.; Navis, M.; Blandina, P.; Bakker, R.A.; et al. The Akt/GSK-3β Axis as a New Signaling Pathway of the Histamine H3 Receptor. J. Neurochem. 2007, 103, 248–258. [Google Scholar] [CrossRef]
- Rocha, S.M.; Pires, J.; Esteves, M.; Graça, B.; Bernardino, L. Histamine: A New Immunomodulatory Player in the Neuron-Glia Crosstalk. Front. Cell Neurosci. 2014, 8, 120. [Google Scholar] [CrossRef]
- Iida, T.; Yanai, K.; Yoshikawa, T. Histamine and Microglia. In The Functional Roles of Histamine Receptors; Yanai, K., Passani, M.B., Eds.; Current Topics in Behavioral Neurosciences; Springer International Publishing: Cham, Switzerland, 2022; Volume 59, pp. 241–259. ISBN 978-3-031-16996-0. [Google Scholar]
- Xu, J.; Zhang, X.; Qian, Q.; Wang, Y.; Dong, H.; Li, N.; Qian, Y.; Jin, W. Histamine Upregulates the Expression of Histamine Receptors and Increases the Neuroprotective Effect of Astrocytes. J. Neuroinflamm. 2018, 15, 41. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, Y.; Qu, C.; Zhou, X.; Zhang, S. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H1R or H4R. J. Neuroimmune Pharmacol. 2020, 15, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Santos, T.; Gonçalves, J.; Baltazar, G.; Ferreira, L.; Agasse, F.; Bernardino, L. Histamine Modulates Microglia Function. J. Neuroinflamm. 2012, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, W.; Zeng, X.; Hu, G.; Zhang, H.; He, S.; Zhang, S. Histamine Induces Upregulated Expression of Histamine Receptors and Increases Release of Inflammatory Mediators from Microglia. Mol. Neurobiol. 2014, 49, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Qu, C.; Lu, X.; Zhang, S. Activation of Microglia by Histamine and Substance P. Cell Physiol. Biochem. 2014, 34, 768–780. [Google Scholar] [CrossRef]
- Apolloni, S.; Fabbrizio, P.; Amadio, S.; Napoli, G.; Verdile, V.; Morello, G.; Iemmolo, R.; Aronica, E.; Cavallaro, S.; Volonté, C. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Front. Immunol. 2017, 8, 1689. [Google Scholar] [CrossRef]
- Wendeln, A.-C.; Degenhardt, K.; Kaurani, L.; Gertig, M.; Ulas, T.; Jain, G.; Wagner, J.; Häsler, L.M.; Wild, K.; Skodras, A.; et al. Innate Immune Memory in the Brain Shapes Neurological Disease Hallmarks. Nature 2018, 556, 332–338. [Google Scholar] [CrossRef]
- Saika, F.; Matsuzaki, S.; Kobayashi, D.; Ideguchi, Y.; Nakamura, T.Y.; Kishioka, S.; Kiguchi, N. Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain. Front. Pharmacol. 2020, 11, 925. [Google Scholar] [CrossRef]
- Bossuyt, J.; Van Den Herrewegen, Y.; Nestor, L.; Buckinx, A.; De Bundel, D.; Smolders, I. Chemogenetic Modulation of Astrocytes and Microglia: State-of-the-Art and Implications in Neuroscience. Glia 2023, 71, 2071–2095. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Arbabzada, N.; Flood, P.M. Mechanism Underlying Β2-AR Agonist-Mediated Phenotypic Conversion of LPS-Activated Microglial Cells. J. Neuroimmunol. 2019, 332, 37–48. [Google Scholar] [CrossRef]
- Yi, M.-H.; Liu, Y.U.; Liu, K.; Chen, T.; Bosco, D.B.; Zheng, J.; Xie, M.; Zhou, L.; Qu, W.; Wu, L.-J. Chemogenetic Manipulation of Microglia Inhibits Neuroinflammation and Neuropathic Pain in Mice. Brain Behav. Immun. 2021, 92, 78–89. [Google Scholar] [CrossRef]
- Ding, X.; Liao, F.-F.; Su, L.; Yang, X.; Yang, W.; Ren, Q.-H.; Zhang, J.-Z.; Wang, H.-M. Sciatic Nerve Block Downregulates the BDNF Pathway to Alleviate the Neonatal Incision-Induced Exaggeration of Incisional Pain via Decreasing Microglial Activation. Brain Behav. Immun. 2022, 105, 204–224. [Google Scholar] [CrossRef]
- Parusel, S.; Yi, M.-H.; Hunt, C.L.; Wu, L.-J. Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci. Bull. 2023, 39, 368–378. [Google Scholar] [CrossRef]
- Iida, T.; Yoshikawa, T.; Matsuzawa, T.; Naganuma, F.; Nakamura, T.; Miura, Y.; Mohsen, A.S.; Harada, R.; Iwata, R.; Yanai, K. Histamine H3 Receptor in Primary Mouse Microglia Inhibits Chemotaxis, Phagocytosis, and Cytokine Secretion. Glia 2015, 63, 1213–1225. [Google Scholar] [CrossRef]
- Iida, T.; Yoshikawa, T.; Kárpáti, A.; Matsuzawa, T.; Kitano, H.; Mogi, A.; Harada, R.; Naganuma, F.; Nakamura, T.; Yanai, K. JNJ10181457, a Histamine H3 Receptor Inverse Agonist, Regulates in Vivo Microglial Functions and Improves Depression-like Behaviours in Mice. Biochem. Biophys. Res. Commun. 2017, 488, 534–540. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Sun, F.; Xu, Y.; Luan, H.; Yang, M.; Wang, C.; Zhang, T.; Zhou, Z.; Yan, H. Histamine H3R Antagonist Counteracts the Impaired Hippocampal Neurogenesis in Lipopolysaccharide-Induced Neuroinflammation. Int. Immunopharmacol. 2022, 110, 109045. [Google Scholar] [CrossRef]
- Osborn, L.M.; Kamphuis, W.; Wadman, W.J.; Hol, E.M. Astrogliosis: An Integral Player in the Pathogenesis of Alzheimer’s Disease. Prog. Neurobiol. 2016, 144, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Pekny, M.; Wilhelmsson, U.; Pekna, M. The Dual Role of Astrocyte Activation and Reactive Gliosis. Neurosci. Lett. 2014, 565, 30–38. [Google Scholar] [CrossRef]
- Green, H.F.; Nolan, Y.M. Inflammation and the Developing Brain: Consequences for Hippocampal Neurogenesis and Behavior. Neurosci. Biobehav. Rev. 2014, 40, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.M.; Nolan, Y.M. Neuroinflammation Negatively Affects Adult Hippocampal Neurogenesis and Cognition: Can Exercise Compensate? Neurosci. Biobehav. Rev. 2016, 61, 121–131. [Google Scholar] [CrossRef]
- Rangon, C.-M.; Schang, A.-L.; Van Steenwinckel, J.; Schwendimann, L.; Lebon, S.; Fu, T.; Chen, L.; Beneton, V.; Journiac, N.; Young-Ten, P.; et al. Myelination Induction by a Histamine H3 Receptor Antagonist in a Mouse Model of Preterm White Matter Injury. Brain Behav. Immun. 2018, 74, 265–276. [Google Scholar] [CrossRef]
- Liao, R.; Chen, Y.; Cheng, L.; Fan, L.; Chen, H.; Wan, Y.; You, Y.; Zheng, Y.; Jiang, L.; Chen, Z.; et al. Histamine H1 Receptors in Neural Stem Cells Are Required for the Promotion of Neurogenesis Conferred by H3 Receptor Antagonism Following Traumatic Brain Injury. Stem Cell Rep. 2019, 12, 532–544. [Google Scholar] [CrossRef]
- Xiong, X.-Y.; Liu, L.; Yang, Q.-W. Functions and Mechanisms of Microglia/Macrophages in Neuroinflammation and Neurogenesis after Stroke. Prog. Neurobiol. 2016, 142, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Belarbi, K.; Arellano, C.; Ferguson, R.; Jopson, T.; Rosi, S. Chronic Neuroinflammation Impacts the Recruitment of Adult-Born Neurons into Behaviorally Relevant Hippocampal Networks. Brain Behav. Immun. 2012, 26, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rong, P.; Zhang, L.; He, H.; Zhou, T.; Fan, Y.; Mo, L.; Zhao, Q.; Han, Y.; Li, S.; et al. IL4-Driven Microglia Modulate Stress Resilience through BDNF-Dependent Neurogenesis. Sci. Adv. 2021, 7, eabb9888. [Google Scholar] [CrossRef] [PubMed]
- Guilloux, J.-P.; Samuels, B.A.; Mendez-David, I.; Hu, A.; Levinstein, M.; Faye, C.; Mekiri, M.; Mocaer, E.; Gardier, A.M.; Hen, R.; et al. S 38093, a Histamine H3 Antagonist/Inverse Agonist, Promotes Hippocampal Neurogenesis and Improves Context Discrimination Task in Aged Mice. Sci. Rep. 2017, 7, 42946. [Google Scholar] [CrossRef]
- Scott Bitner, R. Cyclic AMP Response Element-Binding Protein (CREB) Phosphorylation: A Mechanistic Marker in the Development of Memory Enhancing Alzheimer’s Disease Therapeutics. Biochem. Pharmacol. 2012, 83, 705–714. [Google Scholar] [CrossRef]
- Wu, X.; Fu, S.; Liu, Y.; Luo, H.; Li, F.; Wang, Y.; Gao, M.; Cheng, Y.; Xie, Z. NDP-MSH Binding Melanocortin-1 Receptor Ameliorates Neuroinflammation and BBB Disruption through CREB/Nr4a1/NF-κB Pathway after Intracerebral Hemorrhage in Mice. J. Neuroinflamm. 2019, 16, 192. [Google Scholar] [CrossRef]
- Luan, B.; Yoon, Y.-S.; Le Lay, J.; Kaestner, K.H.; Hedrick, S.; Montminy, M. CREB Pathway Links PGE2 Signaling with Macrophage Polarization. Proc. Natl. Acad. Sci. USA 2015, 112, 15642–15647. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, B.; Xu, Y.; Yang, M.; Wang, C.; Song, M.; Liu, J.; Wang, W.; You, J.; Sun, F.; et al. Activation of CREB-Mediated Autophagy by Thioperamide Ameliorates β-Amyloid Pathology and Cognition in Alzheimer’s Disease. Aging Cell 2021, 20, e13333. [Google Scholar] [CrossRef]
- Mariottini, C.; Scartabelli, T.; Bongers, G.; Arrigucci, S.; Nosi, D.; Leurs, R.; Chiarugi, A.; Blandina, P.; Pellegrini-Giampietro, D.E.; Beatrice Passani, M. Activation of the Histaminergic H3 Receptor Induces Phosphorylation of the Akt/GSK-3β Pathway in Cultured Cortical Neurons and Protects against Neurotoxic Insults. J. Neurochem. 2009, 110, 1469–1478. [Google Scholar] [CrossRef]
- Wang, L.; Fang, J.; Jiang, H.; Wang, Q.; Xue, S.; Li, Z.; Liu, R. 7-Pyrrolidinethoxy-4′-Methoxyisoflavone Prevents Amyloid β–Induced Injury by Regulating Histamine H3 Receptor-Mediated cAMP/CREB and AKT/GSK3β Pathways. Front. Neurosci. 2019, 13, 334. [Google Scholar] [CrossRef]
- Patnaik, R.; Sharma, A.; Skaper, S.D.; Muresanu, D.F.; Lafuente, J.V.; Castellani, R.J.; Nozari, A.; Sharma, H.S. Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer’s Disease. Mol Neurobiol. 2018, 55, 312–321. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Hu, W.-W.; Chen, Z.; Zhang, L.-S.; Shen, H.-Q.; Timmerman, H.; Leurs, R.; Yanai, K. Effect of the Histamine H3-Antagonist Clobenpropit on Spatial Memory Deficits Induced by MK-801 as Evaluated by Radial Maze in Sprague-Dawley Rats. Behav. Brain Res. 2004, 151, 287–293. [Google Scholar] [CrossRef]
- Mani, V.; Arfeen, M.; Ali, H.M.; Abdel-Moneim, A.-M.H.; Aldubayan, M.; Alhowail, A. Neuroprotective Effect of Clobenpropit against Lipopolysaccharide-Induced Cognitive Deficits via Attenuating Neuroinflammation and Enhancing Mitochondrial Functions in Mice. Brain Sci. 2021, 11, 1617. [Google Scholar] [CrossRef]
- Steele, J.W.; Lachenmayer, M.L.; Ju, S.; Stock, A.; Liken, J.; Kim, S.H.; Delgado, L.M.; Alfaro, I.E.; Bernales, S.; Verdile, G.; et al. Latrepirdine Improves Cognition and Arrests Progression of Neuropathology in an Alzheimer’s Mouse Model. Mol. Psychiatry 2013, 18, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Tammineni, P.; Agrawal, C.; Jeong, Y.Y.; Cai, Q. Autophagy-Mediated Regulation of BACE1 Protein Trafficking and Degradation. J. Biol. Chem. 2017, 292, 1679–1690. [Google Scholar] [CrossRef]
- Schneider, E.H.; Neumann, D.; Seifert, R. Modulation of Behavior by the Histaminergic System: Lessons from HDC-, H3R- and H4R-Deficient Mice. Neurosci. Biobehav. Rev. 2014, 47, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.H. Innate Inflammation in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009373. [Google Scholar] [CrossRef]
- Vedam-Mai, V. Harnessing the Immune System for the Treatment of Parkinson’s Disease. Brain Res. 2021, 1758, 147308. [Google Scholar] [CrossRef]
- Rinne, J.O.; Anichtchik, O.V.; Eriksson, K.S.; Kaslin, J.; Tuomisto, L.; Kalimo, H.; Röyttä, M.; Panula, P. Increased Brain Histamine Levels in Parkinson’s Disease but Not in Multiple System Atrophy. J. Neurochem. 2002, 81, 954–960. [Google Scholar] [CrossRef]
- Anichtchik, O.V.; Peitsaro, N.; Rinne, J.O.; Kalimo, H.; Panula, P. Distribution and Modulation of Histamine H3 Receptors in Basal Ganglia and Frontal Cortex of Healthy Controls and Patients with Parkinson’s Disease. Neurobiol. Dis. 2001, 8, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Bossers, K.; Luchetti, S.; Balesar, R.; Lethbridge, N.; Chazot, P.L.; Bao, A.-M.; Swaab, D.F. Alterations in the Histaminergic System in the Substantia Nigra and Striatum of Parkinson’s Patients: A Postmortem Study. Neurobiol. Aging 2012, 33, 1488.e1–1488.e13. [Google Scholar] [CrossRef]
- Łażewska, D.; Olejarz-Maciej, A.; Reiner, D.; Kaleta, M.; Latacz, G.; Zygmunt, M.; Doroz-Płonka, A.; Karcz, T.; Frank, A.; Stark, H.; et al. Dual Target Ligands with 4-Tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int. J. Mol. Sci. 2020, 21, 3411. [Google Scholar] [CrossRef]
- Sharma, A.; Muresanu, D.F.; Patnaik, R.; Menon, P.K.; Tian, Z.R.; Sahib, S.; Castellani, R.J.; Nozari, A.; Lafuente, J.V.; Buzoianu, A.D.; et al. Histamine H3 and H4 Receptors Modulate Parkinson’s Disease Induced Brain Pathology. Neuroprotective Effects of Nanowired BF-2649 and Clobenpropit with Anti-Histamine-Antibody Therapy. Prog. Brain Res. 2021, 266, 1–73. [Google Scholar] [CrossRef] [PubMed]
- Masini, D.; Lopes-Aguiar, C.; Bonito-Oliva, A.; Papadia, D.; Andersson, R.; Fisahn, A.; Fisone, G. The Histamine H3 Receptor Antagonist Thioperamide Rescues Circadian Rhythm and Memory Function in Experimental Parkinsonism. Transl. Psychiatry 2017, 7, e1088. [Google Scholar] [CrossRef]
- Nowak, P.; Bortel, A.; Dabrowska, J.; Biedka, I.; Slomian, G.; Roczniak, W.; Kostrzewa, R.M.; Brus, R. Histamine H(3) Receptor Ligands Modulate L-Dopa-Evoked Behavioral Responses and L-Dopa Derived Extracellular Dopamine in Dopamine-Denervated Rat Striatum. Neurotox. Res. 2008, 13, 231–240. [Google Scholar] [CrossRef]
- Hagenow, S.; Stasiak, A.; Ramsay, R.R.; Stark, H. Ciproxifan, a Histamine H3 Receptor Antagonist, Reversibly Inhibits Monoamine Oxidase A and B. Sci. Rep. 2017, 7, 40541. [Google Scholar] [CrossRef]
- Baronio, D.; Castro, K.; Gonchoroski, T.; de Melo, G.M.; Nunes, G.D.F.; Bambini-Junior, V.; Gottfried, C.; Riesgo, R. Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. PLoS ONE 2015, 10, e0116363. [Google Scholar] [CrossRef]
- Eissa, N.; Jayaprakash, P.; Azimullah, S.; Ojha, S.K.; Al-Houqani, M.; Jalal, F.Y.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The Histamine H3R Antagonist DL77 Attenuates Autistic Behaviors in a Prenatal Valproic Acid-Induced Mouse Model of Autism. Sci. Rep. 2018, 8, 13077. [Google Scholar] [CrossRef]
- Molenhuis, R.T.; Hutten, L.; Kas, M.J.H. Histamine H3 Receptor Antagonism Modulates Autism-like Hyperactivity but Not Repetitive Behaviors in BTBR T+Itpr3tf/J Inbred Mice. Pharmacol. Biochem. Behav. 2022, 212, 173304. [Google Scholar] [CrossRef]
- Kern, J.K.; Geier, D.A.; Sykes, L.K.; Geier, M.R. Relevance of Neuroinflammation and Encephalitis in Autism. Front. Cell. Neurosci. 2016, 9, 166220. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- McTighe, S.M.; Neal, S.J.; Lin, Q.; Hughes, Z.A.; Smith, D.G. The BTBR Mouse Model of Autism Spectrum Disorders Has Learning and Attentional Impairments and Alterations in Acetylcholine and Kynurenic Acid in Prefrontal Cortex. PLoS ONE 2013, 8, e62189. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.H.; Campbell, E.; Lynch, S.; Suckling, J.; Powis, S.J. Aberrant NF-KappaB Expression in Autism Spectrum Condition: A Mechanism for Neuroinflammation. Front. Psychiatry 2011, 2, 27. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Eissa, N.; Awad, M.A.; Jayaprakash, P.; Zhong, S.; Stölting, F.; Stark, H.; Sadek, B. The Histamine H3R and Dopamine D2R/D3R Antagonist ST-713 Ameliorates Autism-like Behavioral Features in BTBR T+tf/J Mice by Multiple Actions. Biomed. Pharmacother. 2021, 138, 111517. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Azimullah, S.; Jayaprakash, P.; Jayaraj, R.L.; Reiner, D.; Ojha, S.K.; Beiram, R.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; et al. The Dual-Active Histamine H3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Ameliorates Stereotyped Repetitive Behavior and Neuroinflammmation in Sodium Valproate Induced Autism in Mice. Chem.-Biol. Interact. 2019, 312, 108775. [Google Scholar] [CrossRef] [PubMed]
- Deckmann, I.; Schwingel, G.B.; Fontes-Dutra, M.; Bambini-Junior, V.; Gottfried, C. Neuroimmune Alterations in Autism: A Translational Analysis Focusing on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. Neuroimmunomodulation 2018, 25, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.D.; Jha, N.K.; Ojha, S.; Sadek, B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023, 28, 1889. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Bao, A.-M.; Swaab, D.F. The Human Histaminergic System in Neuropsychiatric Disorders. Trends Neurosci. 2015, 38, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Alhusaini, M.; Eissa, N.; Saad, A.K.; Beiram, R.; Sadek, B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep–Wake Cycle Disorder. Front. Pharmacol. 2022, 13, 861094. [Google Scholar] [CrossRef] [PubMed]
- Hafez, D.E.; Dubiel, M.; La Spada, G.; Catto, M.; Reiner-Link, D.; Syu, Y.-T.; Abdel-Halim, M.; Hwang, T.-L.; Stark, H.; Abadi, A.H. Novel Benzothiazole Derivatives as Multitargeted-Directed Ligands for the Treatment of Alzheimer’s Disease. J. Enzym. Inhib. Med. Chem. 2023, 38, 2175821. [Google Scholar] [CrossRef]
- Rizk, A.; Curley, J.; Robertson, J.; Raber, J. Anxiety and Cognition in Histamine H3 Receptor−/− Mice. Eur. J. Neurosci. 2004, 19, 1992–1996. [Google Scholar] [CrossRef]
- Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; et al. GSK189254, a Novel H3 Receptor Antagonist That Binds to Histamine H3 Receptors in Alzheimer’s Disease Brain and Improves Cognitive Performance in Preclinical Models. J. Pharmacol. Exp. Ther. 2007, 321, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- Galici, R.; Boggs, J.D.; Aluisio, L.; Fraser, I.C.; Bonaventure, P.; Lord, B.; Lovenberg, T.W. JNJ-10181457, a Selective Non-Imidazole Histamine H3 Receptor Antagonist, Normalizes Acetylcholine Neurotransmission and Has Efficacy in Translational Rat Models of Cognition. Neuropharmacology 2009, 56, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Delay-Goyet, P.; Blanchard, V.; Schussler, N.; Lopez-Grancha, M.; Ménager, J.; Mary, V.; Sultan, E.; Buzy, A.; Guillemot, J.-C.; Stemmelin, J.; et al. SAR110894, a Potent Histamine H3-Receptor Antagonist, Displays Disease-Modifying Activity in a Transgenic Mouse Model of Tauopathy. Alzheimer’s Dement. 2016, 2, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Rani, B.; Silva-Marques, B.; Leurs, R.; Passani, M.B.; Blandina, P.; Provensi, G. Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Panayi, F.; Sors, A.; Bert, L.; Martin, B.; Rollin-Jego, G.; Billiras, R.; Carrié, I.; Albinet, K.; Danober, L.; Rogez, N.; et al. In Vivo Pharmacological Profile of S 38093, a Novel Histamine H3 Receptor Inverse Agonist. Eur. J. Pharmacol. 2017, 803, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dogra, S.; Sona, C.; Umrao, D.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Yadav, P.N. Chronic Histamine 3 Receptor Antagonism Alleviates Depression like Conditions in Mice via Modulation of Brain-Derived Neurotrophic Factor and Hypothalamus-Pituitary Adrenal Axis. Psychoneuroendocrinology 2019, 101, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A.; Schwed, J.S.; Walter, M.; Stark, H.; Sadek, B. Anxiolytic and Antidepressant-like Activities of the Novel and Potent Non-Imidazole Histamine H3 Receptor Antagonist ST-1283. Drug Des. Devel Ther. 2014, 8, 627–637. [Google Scholar] [CrossRef]
- Alachkar, A.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats. Front. Pharmacol. 2017, 8, 709. [Google Scholar] [CrossRef] [PubMed]
- Sadek, B.; Saad, A.; Subramanian, D.; Shafiullah, M.; Łażewska, D.; Kieć-Kononowiczc, K. Anticonvulsant and Procognitive Properties of the Non-Imidazole Histamine H3 Receptor Antagonist DL77 in Male Adult Rats. Neuropharmacology 2016, 106, 46–55. [Google Scholar] [CrossRef]
- Bahi, A.; Sadek, B.; Nurulain, S.M.; Łażewska, D.; Kieć-Kononowicz, K. The Novel Non-Imidazole Histamine H3 Receptor Antagonist DL77 Reduces Voluntary Alcohol Intake and Ethanol-Induced Conditioned Place Preference in Mice. Physiol. Behav. 2015, 151, 189–197. [Google Scholar] [CrossRef]
- Alachkar, A.; Azimullah, S.; Lotfy, M.; Adeghate, E.; Ojha, S.K.; Beiram, R.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. Antagonism of Histamine H3 Receptors Alleviates Pentylenetetrazole-Induced Kindling and Associated Memory Deficits by Mitigating Oxidative Stress, Central Neurotransmitters, and c-Fos Protein Expression in Rats. Molecules 2020, 25, 1575. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.; Eissa, N.; Jayaprakash, P.; Beiram, R.; Kuder, K.J.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. The Potent and Selective Histamine H3 Receptor Antagonist E169 Counteracts Cognitive Deficits and Mitigates Disturbances in the PI3K/AKT/GSK-3β Signaling Pathway in MK801-Induced Amnesia in Mice. Int. J. Mol. Sci. 2023, 24, 12719. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, M.E.; Davis, N.N.; Schultheis, P.J.; Griffith, M.S. Ciproxifan, an H3 Receptor Antagonist, Alleviates Hyperactivity and Cognitive Deficits in the APPTg2576 Mouse Model of Alzheimer’s Disease. Neurobiol. Learn. Mem. 2011, 95, 64–72. [Google Scholar] [CrossRef]
- Chauveau, F.; De Job, E.; Poly-Thomasson, B.; Cavroy, R.; Thomasson, J.; Fromage, D.; Beracochea, D. Procognitive Impact of Ciproxifan (a Histaminergic H3 Receptor Antagonist) on Contextual Memory Retrieval after Acute Stress. CNS Neurosci. Ther. 2019, 25, 832–841. [Google Scholar] [CrossRef]
- Taheri, F.; Esmaeilpour, K.; Sepehri, G.; Sheibani, V.; Ur Rehman, N.; Maneshian, M. Histamine H3 Receptor Antagonist, Ciproxifan, Alleviates Cognition and Synaptic Plasticity Alterations in a Valproic Acid-Induced Animal Model of Autism. Psychopharmacology 2022, 239, 2673–2693. [Google Scholar] [CrossRef]
- Taheri, F.; Esmaeilpour, K.; Sepehri, G.; Sheibani, V.; Shekari, M.A. Amelioration of Cognition Impairments in the Valproic Acid-Induced Animal Model of Autism by Ciproxifan, a Histamine H3-Receptor Antagonist. Behav. Pharmacol. 2023, 34, 179. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.; Whitehead, C.A.; Basso, A.M.; Rueter, L.E.; Zhang, M. Preclinical Evaluation of Non-Imidazole Histamine H3 Receptor Antagonists in Comparison to Atypical Antipsychotics for the Treatment of Cognitive Deficits Associated with Schizophrenia. Int. J. Neuropsychopharmacol. 2013, 16, 889–904. [Google Scholar] [CrossRef]
- Bhowmik, M.; Saini, N.; Vohora, D. Histamine H3 Receptor Antagonism by ABT-239 Attenuates Kainic Acid Induced Excitotoxicity in Mice. Brain Res. 2014, 1581, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.B.; Esbenshade, T.A.; Pan, J.B.; Radek, R.J.; Krueger, K.M.; Yao, B.B.; Browman, K.E.; Buckley, M.J.; Ballard, M.E.; Komater, V.A.; et al. Pharmacological Properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]Ethyl}-Benzofuran-5-Yl)Benzonitrile]: II. Neurophysiological Characterization and Broad Preclinical Efficacy in Cognition and Schizophrenia of a Potent and Selective Histamine H3 Receptor Antagonist. J. Pharmacol. Exp. Ther. 2005, 313, 176–190. [Google Scholar] [CrossRef]
- Trofimiuk, E.; Wielgat, P.; Car, H. Selective H3 Antagonist (ABT-239) Differentially Modifies Cognitive Function Under the Impact of Restraint Stress. Front. Syst. Neurosci. 2021, 14, 614810. [Google Scholar] [CrossRef]
- Esbenshade, T.A.; Browman, K.E.; Miller, T.R.; Krueger, K.M.; Komater-Roderwald, V.; Zhang, M.; Fox, G.B.; Rueter, L.; Robb, H.M.; Radek, R.J.; et al. Pharmacological Properties and Procognitive Effects of ABT-288, a Potent and Selective Histamine H3 Receptor Antagonist. J. Pharmacol. Exp. Ther. 2012, 343, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Foley, A.G.; Prendergast, A.; Barry, C.; Scully, D.; Upton, N.; Medhurst, A.D.; Regan, C.M. H3 Receptor Antagonism Enhances NCAM PSA-Mediated Plasticity and Improves Memory Consolidation in Odor Discrimination and Delayed Match-to-Position Paradigms. Neuropsychopharmacology 2009, 34, 2585–2600. [Google Scholar] [CrossRef]
- Browman, K.E.; Komater, V.A.; Curzon, P.; Rueter, L.E.; Hancock, A.A.; Decker, M.W.; Fox, G.B. Enhancement of Prepulse Inhibition of Startle in Mice by the H3 Receptor Antagonists Thioperamide and Ciproxifan. Behav. Brain Res. 2004, 153, 69–76. [Google Scholar] [CrossRef]
- Bernaerts, P.; Lamberty, Y.; Tirelli, E. Histamine H3 Antagonist Thioperamide Dose-Dependently Enhances Memory Consolidation and Reverses Amnesia Induced by Dizocilpine or Scopolamine in a One-Trial Inhibitory Avoidance Task in Mice. Behav. Brain Res. 2004, 154, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Orsetti, M.; Ghi, P.; Di Carlo, G. Histamine H(3)-Receptor Antagonism Improves Memory Retention and Reverses the Cognitive Deficit Induced by Scopolamine in a Two-Trial Place Recognition Task. Behav. Brain Res. 2001, 124, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Griebel, G.; Pichat, P.; Pruniaux, M.-P.; Beeské, S.; Lopez-Grancha, M.; Genet, E.; Terranova, J.-P.; Castro, A.; Sánchez, J.A.; Black, M.; et al. SAR110894, a Potent Histamine H3-Receptor Antagonist, Displays Procognitive Effects in Rodents. Pharmacol. Biochem. Behav. 2012, 102, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Hurst, W.J.; Czechtizky, W.; Francon, D.; Griebel, G.; Nagorny, R.; Pichat, P.; Schwink, L.; Stengelin, S.; Hendrix, J.A.; et al. Discovery of a Potent, Selective, and Orally Bioavailable Histamine H3 Receptor Antagonist SAR110068 for the Treatment of Sleep-Wake Disorders. Bioorg Med. Chem. Lett. 2013, 23, 6141–6145. [Google Scholar] [CrossRef] [PubMed]
- Hino, N.; Marumo, T.; Kotani, M.; Shimazaki, T.; Kaku-Fukumoto, A.; Hikichi, H.; Karasawa, J.-I.; Tomishima, Y.; Komiyama, H.; Tatsuda, E.; et al. A Novel Potent and Selective Histamine H3 Receptor Antagonist Enerisant: In Vitro Profiles, In Vivo Receptor Occupancy, and Wake-Promoting and Procognitive Effects in Rodents. J. Pharmacol. Exp. Ther. 2020, 375, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Raddatz, R.; Hudkins, R.L.; Mathiasen, J.R.; Gruner, J.A.; Flood, D.G.; Aimone, L.D.; Le, S.; Schaffhauser, H.; Duzic, E.; Gasior, M.; et al. CEP-26401 (Irdabisant), a Potent and Selective Histamine H3 Receptor Antagonist/Inverse Agonist with Cognition-Enhancing and Wake-Promoting Activities. J. Pharmacol. Exp. Ther. 2012, 340, 124–133. [Google Scholar] [CrossRef]
- Femenía, T.; Magara, S.; DuPont, C.M.; Lindskog, M. Hippocampal-Dependent Antidepressant Action of the H3 Receptor Antagonist Clobenpropit in a Rat Model of Depression. Int. J. Neuropsychopharmacol. 2015, 18, pyv032. [Google Scholar] [CrossRef]
- Chen, Z. Effect of Histamine H3-Receptor Antagonist Clobenpropit on Spatial Memory of Radial Maze Performance in Rats. Acta Pharmacol. Sin. 2000, 21, 905–910. [Google Scholar] [PubMed]
- Brabant, C.; Charlier, Y.; Tirelli, E. The Histamine H3-Receptor Inverse Agonist Pitolisant Improves Fear Memory in Mice. Behav. Brain Res. 2013, 243, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Nirogi, R.; Grandhi, V.R.; Medapati, R.B.; Ganuga, N.; Benade, V.; Gandipudi, S.; Manoharan, A.; Abraham, R.; Jayarajan, P.; Bhyrapuneni, G.; et al. Histamine 3 Receptor Inverse Agonist Samelisant (SUVN-G3031): Pharmacological Characterization of an Investigational Agent for the Treatment of Cognitive Disorders. J. Psychopharmacol. 2021, 35, 713–729. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Saad, A.; Nurulain, S.M.; Darras, F.H.; Decker, M.; Sadek, B. The Dual-Acting H3 Receptor Antagonist and AChE Inhibitor UW-MD-71 Dose-Dependently Enhances Memory Retrieval and Reverses Dizocilpine-Induced Memory Impairment in Rats. Behav. Brain Res. SreeTestContent1 2016, 297, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Sadek, B.; Khan, N.; Darras, F.H.; Pockes, S.; Decker, M. The Dual-Acting AChE Inhibitor and H3 Receptor Antagonist UW-MD-72 Reverses Amnesia Induced by Scopolamine or Dizocilpine in Passive Avoidance Paradigm in Rats. Physiol. Behav. 2016, 165, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Jayaprakash, P.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; Sadek, B. Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ Tf/J Mouse Model of Autism. Biomolecules 2020, 10, 1251. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Azimullah, S.; Jayaprakash, P.; Jayaraj, R.L.; Reiner, D.; Ojha, S.K.; Beiram, R.; Stark, H.; Łażewska, D.; Kieć-Kononowicz, K.; et al. The Dual-Active Histamine H3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. Int. J. Mol. Sci. 2020, 21, 3996. [Google Scholar] [CrossRef]
- Eissa, N.; Venkatachalam, K.; Jayaprakash, P.; Falkenstein, M.; Dubiel, M.; Frank, A.; Reiner-Link, D.; Stark, H.; Sadek, B. The Multi-Targeting Ligand ST-2223 with Histamine H3 Receptor and Dopamine D2/D3 Receptor Antagonist Properties Mitigates Autism-Like Repetitive Behaviors and Brain Oxidative Stress in Mice. Int. J. Mol. Sci. 2021, 22, 1947. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Venkatachalam, K.; Jayaprakash, P.; Yuvaraju, P.; Falkenstein, M.; Stark, H.; Sadek, B. Experimental Studies Indicate That ST-2223, the Antagonist of Histamine H3 and Dopamine D2/D3 Receptors, Restores Social Deficits and Neurotransmission Dysregulation in Mouse Model of Autism. Pharmaceuticals 2022, 15, 929. [Google Scholar] [CrossRef]
- Grove, R.A.; Harrington, C.M.; Mahler, A.; Beresford, I.; Maruff, P.; Lowy, M.T.; Nicholls, A.P.; Boardley, R.L.; Berges, A.C.; Nathan, P.J.; et al. A Randomized, Double-Blind, Placebo-Controlled, 16-Week Study of the H3 Receptor Antagonist, GSK239512 as a Monotherapy in Subjects with Mild-to-Moderate Alzheimer’s Disease. Curr. Alzheimer Res. 2014, 11, 47–58. [Google Scholar] [CrossRef]
- Haig, G.M.; Pritchett, Y.; Meier, A.; Othman, A.A.; Hall, C.; Gault, L.M.; Lenz, R.A. A Randomized Study of H3 Antagonist ABT-288 in Mild-To-Moderate Alzheimer’s Dementia. J. Alzheimer’s Dis. 2014, 42, 959–971. [Google Scholar] [CrossRef]
- Terrando, N.; Eriksson, L.I.; Ryu, J.K.; Yang, T.; Monaco, C.; Feldmann, M.; Jonsson Fagerlund, M.; Charo, I.F.; Akassoglou, K.; Maze, M. Resolving Postoperative Neuroinflammation and Cognitive Decline. Ann. Neurol. 2011, 70, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Golebiewska, A.; Poovathingal, S.K.; Kaoma, T.; Pires-Afonso, Y.; Martina, S.; Coowar, D.; Azuaje, F.; Skupin, A.; Balling, R.; et al. Single-Cell Transcriptomics Reveals Distinct Inflammation-Induced Microglia Signatures. EMBO Rep. 2018, 19, e46171. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.A.; Izquierdo, I. Memory Facilitation by Histamine. Arch. Int. Pharmacodyn. Ther. 1986, 283, 193–198. [Google Scholar] [PubMed]
- Bardgett, M.E.; Points, M.; Roflow, J.; Blankenship, M.; Griffith, M.S. Effects of the H(3) Antagonist, Thioperamide, on Behavioral Alterations Induced by Systemic MK-801 Administration in Rats. Psychopharmacology 2009, 205, 589–597. [Google Scholar] [CrossRef]
- Bitner, R.S.; Markosyan, S.; Nikkel, A.L.; Brioni, J.D. In-Vivo Histamine H3 Receptor Antagonism Activates Cellular Signaling Suggestive of Symptomatic and Disease Modifying Efficacy in Alzheimer’s Disease. Neuropharmacology 2011, 60, 460–466. [Google Scholar] [CrossRef]
- Sharma, K. Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef]
- Godyń, J.; Zaręba, P.; Stary, D.; Kaleta, M.; Kuder, K.J.; Latacz, G.; Mogilski, S.; Reiner-Link, D.; Frank, A.; Doroz-Płonka, A.; et al. Benzophenone Derivatives with Histamine H3 Receptor Affinity and Cholinesterase Inhibitory Potency as Multitarget-Directed Ligands for Possible Therapy of Alzheimer’s Disease. Molecules 2023, 28, 238. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V.; Anand, P.; Kumar, V.; Ranjan Dwivedi, A.; Kumar, V. Advancements in the Development of Multi-Target Directed Ligands for the Treatment of Alzheimer’s Disease. Bioorganic Med. Chem. 2022, 61, 116742. [Google Scholar] [CrossRef]
- Lopes, F.B.; Aranha, C.M.S.Q.; Fernandes, J.P.S. Histamine H3 Receptor and Cholinesterases as Synergistic Targets for Cognitive Decline: Strategies to the Rational Design of Multitarget Ligands. Chem. Biol. Drug Des. 2021, 98, 212–225. [Google Scholar] [CrossRef]
Compound | Mechanism of Action | NCT Identifier |
---|---|---|
Indomethacin | COX1/2 inhibitor | NCT00432081 |
Simufilam | Inhibitor of Filamin A protein; reducing Aβ levels and mitigating synaptic dysfunction | NCT05575076 |
Candesartan | Decreases NO and TNF-α levels | NCT02646982 |
Minocycline | Inhibition of eIF2α | NCT01463384 |
Pioglitazone | PPARγ agonist | NCT00982202 |
Simvastatin | immuno-modulatory and anti-inflammatory | NCT00486044 |
Atomoxetine | Reduces NF-κB expression | NCT01522404 |
Baricitinib | Janus kinase inhibitor; reduces neuroinflammation | NCT05189106 |
AL002 | Monoclonal antibody, enhance microglial clearance of Aβ | NCT04592874 |
NE3107 | inhibits activation of NF-κB; MAPK-1/3 inhibitor | NCT04669028 |
Nilvadipine | Lower brain amyloid and improve memory function | NCT02017340. |
Masitinib | tyrosine kinase inhibitor | NCT01872598. |
Baricitinib | Janus kinase inhibitor; reduces neuroinflammation | NCT05189106 |
L-Serine | Dietary amino acid, reduces inflammation in brain | NCT03062449 |
Montelukast | Acts as an antagonist at the Cysteinyl leukotriene type 1 receptor, reducing buildup of Aβ protein. | NCT03402503 |
Pepinemab (VX15) | monoclonal antibody targeting semaphorin 4D, alleviates inflammation. | NCT04381468 |
Senicapoc | Calcium-activated potassium channel blocker | NCT04804241 |
Canakinumab | Anti-IL-1β monoclonal antibody | NCT04795466 |
Edonerpic (T-817MA) | stimulates sigma receptors, safeguard synaptic plasticity and offers defense against Aβ aggregates. | NCT04191486 |
Neflamapimod (VX-745) | p38 MAPK-α inhibitor; reduces synaptic dysfunction | NCT03435861 |
Edicotinib (JNJ-40346527) | reduces neurodegeneration and microglial proliferation | NCT04121208 |
Emtricitabine | reduces neuroinflammation. | NCT04500847 |
XPro1595 | TNF inhibitor; reduces neuroinflammation | NCT03943264 |
Celecoxib | COX-2 inhibitor | NCT00065169 |
Entanercept | TNF-α inhibitor | NCT00203359 |
Cyclophosphamate | Immuno-suppressor and alkylating agent | NCT00013650 |
Compound | Mechanism of Action | NCT Identifier |
---|---|---|
Semaglutide | anti-inflammatory and neuroprotective in idiopathic PD | NCT03659682 |
Rifaximin | Modifies Gut Microbiota and Attenuates Inflammation | NCT03958708 |
Sargramostim | Recombinant GM-CSF | NCT01882010 |
Exenatide | GLP1 analogue | NCT01971242 |
Pioglitazone | PPARγ agonist | NCT01280123 |
Nabilone | Cannabinoid system agonist | NCT03769896 |
PRX002 | mAb directed at α-synuclein | NCT02157714 |
BIIB054 | mAb targeting α-synuclein | NCT02459886 |
AFFITOPE PD01A | vaccine targeting α-synuclein | NCT02216188 |
AFFITOPE PD03A | vaccine targeting α-synuclein | NCT02267434 |
UB-312 | vaccine targeting α-synuclein | NCT04075318 |
Radotinib | c-Abl Tyrosine kinase inhibitor | NCT04691661 |
K0706 | c-Abl Tyrosine kinase inhibitor | NCT03655236 |
FB-101 | c-Abl Tyrosine kinase inhibitor | NCT04165837 |
Sulforaphane | Anti-inflammation and neuroprotection | NCT05084365 |
Montelukast | cysteinyl LT 1 antagonist | NCT06113640 |
Compound | Mechanism of Action | NCT Identifier/Reference |
---|---|---|
Taurine | Amino acid | NCT05980520 |
Prednisolone | Corticosteroid | [95] |
L1-79 | Tyrosine hydroxylase inhibitor | NCT05067582 |
STP1 | PDE inhibitor and an NKCC1 inhibitor | NCT04644003 |
Minocycline | Modulates microglia polarization and neuroinflammation | NCT04075318 |
N-acetylcysteine | Antioxidant | NCT03008889 |
Sulforaphane | Anti-inflammation and neuroprotection | NCT02879110 |
Tideglusib | GSK-3 inhibitor. | NCT02586935 |
Oxytocin | Regulation of synaptic function | NCT01944046 |
Luteolin | antioxidant, anti-inflammatory and neuroprotective effects. | NCT01847521 |
Omega-3 Fatty Acids | Lower inflammation in brain | NCT01695200 |
H3R Modulators | Pharmacological Effect | Reference |
---|---|---|
H3R Antagonists | ||
DL77 | Reduced stereotypies and social deficits in preclinical investigations in a model of ASD, attenuated the increase in TNF-α, IL-6, and IL-1β. | [158] |
Improved cognitive impairments in dizocilpine induced memory impairment in rats. | [179] | |
Increased anticonvulsant activity in epilepsy models. | [180] | |
Dose dependent reduction in both ethanol intake and preference. | [181] | |
E177 | Enhancement of memory in PTZ-kindled animals, mitigation of oxidative stress. | [182] |
E169 | Improvement of memory impairments caused by MK-801. | [183] |
ST-1283 | Anxiolytic and antidepressant-like effect | [178] |
Ciproxifan | Reduction in hyperactivity, and memory impairment in APPTg2576 mice. | [184] |
Attenuation of impaired sociability and repetitive behavior in the VPA model of ASD. | [157] | |
Improved retrieval of contextual memory in stress and nonstress conditions. | [185] | |
Alleviation of learning and memory decline in ASD model induced by VPA. | [186,187] | |
Improvement in depression-like behavior. | [177] | |
JNJ10181457 | Restored cognitive function following scopolamine-induced deficits in rats. Normalized Acetylcholine neurotransmission in a model of cognitive impairment. | [173] |
ABT-239 | Reduced Ketamine/MK-801 induced impairments in cognitive tests in rodents. | [188] |
Attenuated KA-mediated behavioral anomalies and excitotoxicity. | [189] | |
Improved attention and cognition, as demonstrated by improved performance in inhibitory avoidance tests and social memory tasks. | [190] | |
Prevented cognitive deficits following chronic restraint stress. | [191] | |
ABT-288 | Improvement in social recognition memory, spatial learning, and reference memory. | [192] |
GSK189254 | Improved cognitive performance in object recognition, passive avoidance, and water maze tests. | [172,193] |
Thioperamide | Enhanced pre-pulse inhibition in schizophrenia model. | [194] |
Reversed amnesia caused by scopolamine and dizocilpine. | [195] | |
Improved cognitive function in a model of cognitive impairment induced by scopolamine. | [196] | |
Rescues the normal rest/activity cycle and improved memory function in experimental parkinsonism. | [154] | |
SAR110894 | Prevented tau aggregation in the hippocampus. NFTs were reduced in the hippocampus, and amygdala, mitigation of episodic memory deficits. | [174,197] |
SAR110068 | Attenuated memory and attentional deficits | [197] |
Decreased slow-wave sleep | [198] | |
Enerisant | Mitigated the decline in object and social memory induced by scopolamine. | [199] |
CEP-26401 (irdabisant) | Enhanced performance in the rat social recognition model assessing short-term memory. | [200] |
ST713 | Attenuated expression of NF-kB and considerably reduced elevated levels of the measured cytokines in BTBR mice, mitigated repetitive self-grooming and aggression. | [29] |
Dose-dependent improvement of social deficits, alleviation of repetitive behaviors in model of ASD. Reduced levels of NF-κB p65, COX-2, and iNOS. | [164] | |
Clobenpropit | Marked improvement in the deficits of working and reference memory induced by MK-801. | [142] |
Reversed memory deficits, No effects on anxiety-like behavior. | [201] | |
Reduction in behavioral deficits. Lowered proinflammatory cytokines and elevated levels of anti-inflammatory cytokines in brain tissues. | [143] | |
Attenuated memory impairment induced by scopolamine. | [202] | |
H3R inverse agonists | ||
BF 2649 | Significant decreases in injuries to neuronal and glial cells, decrease in the number of Aβ positive cells in the cortex in a model of AD in rats. | [141] |
Improves fear memory and reverses memory deficits induced by dizocilpine. | [203] | |
S 38093 | Improved spatial working memory, improvement in cognition. | [176] |
Samelisant (SUVN-G3031) | Enhanced cognitive function in social recognition and object recognition task | [204] |
Dual-active H3R antagonists and AChE inhibitors (AChEI) | ||
UW-MD-71 | Improved performance and enhanced memory. Ameliorated the dizocilpine-induced amnesic effects. | [205] |
UW-MD-72 | Reduction in memory impairments caused by Scopolamine and dizocilpine. | [206] |
E100 | Reduced repetitive stereotypic behaviors in autistic mice, mitigated oxidative stress with decreased microglial activation and decreased levels of NF-κB, COX-2, and iNOS. | [165,207,208] |
Multiple-active H3R/D2R/D3R antagonists | ||
ST-2223 | Improvement in core ASD-related behaviors and modulated altered levels of monoaminergic neurotransmitters, mitigation of oxidative stress. | [209,210] |
Compound | Clinical Indication/Condition | Clinical Trial Identifier | Status |
---|---|---|---|
GSK239512 | Mild-to-moderate AD | NCT00675090 | Completed |
GSK239512 | Schizophrenia | NCT01009060 | Completed |
ABT-288 | Mild-to-moderate AD | NCT01018875 | Completed |
AZD5213 | Mild-to-moderate AD | NCT01548287 | Completed |
AZD5213 | Tourette’s Disorder | NCT01904773 | Completed |
GSK189254 | Mild cognitive impairment, dementia | NCT00474513 | Completed |
SAR110894 | Add-on therapy for mild-to-moderate AD | NCT01266525 | Completed |
TS-091 | Narcolepsy | NCT03267303 | Completed |
JNJ-17216498 | Narcolepsy | NCT00424931 | Completed |
BF2.649 | Narcolepsy | NCT01638403 | Completed |
PF-03654746 | Narcolepsy | NCT01006122 | Completed |
GSK239512 | Schizophrenia | NCT01009060 | Completed |
MK0249 | Schizophrenia | NCT00506077 | Completed |
ABT-288 | Schizophrenia | NCT01077700 | Completed |
GSK239512 | AD | NCT01009255 | Completed |
MK0249 | AD | NCT00420420 | Completed |
ABT-288 | AD | NCT01018875 | Completed |
BF2.649 | PD | NCT01036139 | Completed |
NCT01066442 | Completed | ||
JNJ-31001074 | Attention-Deficit/Hyperactivity Disorder (Adults) | NCT00566449 | Completed |
MK-3134 | Dementia | NCT01181310 | Completed |
BF2.649 | EDS in Obstructive sleep apnea | NCT02739568 | Completed |
BF2.649 | Autism Spectrum Disorder | NCT05953389 | Not yet recruiting |
GSK189254 | Hyperalgesia | NCT00387413 | Completed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, S.D.; Abdalla, S.; Eissa, N.; Akour, A.; Jha, N.K.; Ojha, S.; Sadek, B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder. Pharmaceuticals 2024, 17, 831. https://doi.org/10.3390/ph17070831
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder. Pharmaceuticals. 2024; 17(7):831. https://doi.org/10.3390/ph17070831
Chicago/Turabian StyleThomas, Shilu Deepa, Sabna Abdalla, Nermin Eissa, Amal Akour, Niraj Kumar Jha, Shreesh Ojha, and Bassem Sadek. 2024. "Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder" Pharmaceuticals 17, no. 7: 831. https://doi.org/10.3390/ph17070831
APA StyleThomas, S. D., Abdalla, S., Eissa, N., Akour, A., Jha, N. K., Ojha, S., & Sadek, B. (2024). Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer’s Disease, Parkinson’s Disease, and Autism Spectrum Disorder. Pharmaceuticals, 17(7), 831. https://doi.org/10.3390/ph17070831