Salvia verticillata (L.)—Biological Activity, Chemical Profile, and Future Perspectives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Salvia Extracts and Essential Oils
2.2. Biological Activity
2.3. Future Potential for Use of Salvia verticillata
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katanić Stanković, J.S.; Srećković, N.; Mišić, D.; Gašić, U.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Bioactivity, Biocompatibility and Phytochemical Assessment of Lilac Sage, Salvia verticillata L. (Lamiaceae)—A Plant Rich in Rosmarinic Acid. Ind. Crops Prod. 2020, 143, 111932. [Google Scholar] [CrossRef]
- Altun, M.; Ünal, M.; Kocagöz, T.; Gören, A.C. Essential Oil Compositions and Antimicrobial Activity of Salvia Species. J. Essent. Oil Bear. Plants 2007, 10, 251–258. [Google Scholar] [CrossRef]
- Asadollahi, M.; Firuzi, O.; Heidary Jamebozorgi, F.; Alizadeh, M.; Jassbi, A.R. Ethnopharmacological Studies, Chemical Composition, Antibacterial and Cytotoxic Activities of Essential Oils of Eleven Salvia in Iran. J. Herb. Med. 2019, 17–18, 100250. [Google Scholar] [CrossRef]
- Çadirci, E.; Süleyman, H.; Gürbüz, P.; Uz, A.; Güvenalp, Z.; Demirezer, L.Ö. Anti-Inflammatory Effects of Different Extracts from Three Salvia Species. Turk. J. Biol. 2012, 36, 8. [Google Scholar] [CrossRef]
- Giuliani, C.; Ascrizzi, R.; Lupi, D.; Tassera, G.; Santagostini, L.; Giovanetti, M.; Flamini, G.; Fico, G. Salvia verticillata: Linking Glandular Trichomes, Volatiles and Pollinators. Phytochemistry 2018, 155, 53–60. [Google Scholar] [CrossRef]
- Özler, H.; Pehlivan, S.; Kahraman, A.; Doğan, M.; Celep, F.; Başer, B.; Yavru, A.; Bagherpour, S. Pollen Morphology of the Genus Salvia L. (Lamiaceae) in Turkey. Flora-Morphol. Distrib. Funct. Ecol. Plants 2011, 206, 316–327. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Paniagua-Zambrana, N.Y.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D. Salvia nemorosa L. Salvia verticillata L. Lamiaceae. In Ethnobotany of the Mountain Regions of Far Eastern Europe; Springer: Cham, Switzerland, 2020; pp. 841–850. ISBN 978-3-030-28940-9. [Google Scholar]
- Petkov, V.H.; Ardasheva, R.G.; Prissadova, N.A.; Kristev, A.D.; Stoyanov, P.S.; Argirova, M.D. Receptor-Mediated Biological Effects of Extracts Obtained from Three Asplenium Species. Z. Naturforschung C 2021, 76, 367–373. [Google Scholar] [CrossRef]
- Vassilev, P.; Zaytseva, E.; Ardasheva, R.; Turiyski, V. Clostridium Difficile Toxins Impact on Rat Colon Smooth Muscle Reactivity. Folia Medica 2023, 65, 116–123. [Google Scholar] [CrossRef]
- Sensitizing Effect of Tacrine on M-Cholinergic Receptors in Gastric Smooth Muscle of Rats. Available online: https://archive.foliamedica.bg/en/vol-53-2011/issue-3-sep-2011/32-issues/2011-volume-53/issue-2-sep-2011/101-sensitizing-effect-of-tacrine-on-m-cholinergic-receptors-in-gastric-smooth-muscle-of-rats (accessed on 30 May 2024).
- Alizadeh, S.; Djafarian, K.; Mofidi Nejad, M.; Yekaninejad, M.S.; Javanbakht, M.H. The Effect of β-Caryophyllene on Food Addiction and Its Related Behaviors: A Randomized, Double-Blind, Placebo-Controlled Trial. Appetite 2022, 178, 106160. [Google Scholar] [CrossRef]
- Kraev, K.; Uchikov, P.; Hristov, B.; Kraeva, M.; Basheva-Kraeva, Y.; Popova-Belova, S.; Sandeva, M.; Chakarov, D.; Dragusheva, S.; Geneva-Popova, M. Coexistence of Ankylosing Spondylitis and Behçet’s Disease: Successful Treatment with Upadacitinib. Immun. Inflamm. Dis. 2024, 12, e1242. [Google Scholar] [CrossRef]
- Machado, K.d.C.; Islam, M.T.; Ali, E.S.; Rouf, R.; Uddin, S.J.; Dev, S.; Shilpi, J.A.; Shill, M.C.; Reza, H.M.; Das, A.K.; et al. A Systematic Review on the Neuroprotective Perspectives of Beta-Caryophyllene. Phytother. Res. 2018, 32, 2376–2388. [Google Scholar] [CrossRef] [PubMed]
- Mladenova, T.; Stoyanov, P.; Todorov, K.; Davcheva, D.; Kirova, G.; Deneva, T.; Gyuzeleva, D.; Mladenov, R.; Bivolarska, A. Phytochemical and Biological Traits of Endemic Betonica bulgarica (Lamiaceae). Separations 2021, 8, 11. [Google Scholar] [CrossRef]
- Gyuzeleva, D.; Benina, M.; Ivanova, V.; Vatov, E.; Alseekh, S.; Mladenova, T.; Mladenov, R.; Todorov, K.; Bivolarska, A.; Stoyanov, P. Metabolome Profiling of Marrubium peregrinum L. and Marrubium friwaldskyanum Boiss Reveals Their Potential as Sources of Plant-Based Pharmaceuticals. Int. J. Mol. Sci. 2023, 24, 17035. [Google Scholar] [CrossRef] [PubMed]
- Zgórka, G.; Adamska-Szewczyk, A.; Baj, T. Response Surface Methodology in Optimising the Extraction of Polyphenolic Antioxidants from Flower Buds of Magnolia × soulangeana Soul.-Bod. Var. ‘Lennei’ and Their Detailed Qualitative and Quantitative Profiling. Molecules 2023, 28, 6335. [Google Scholar] [CrossRef] [PubMed]
- Mukhamedsadykova, A.Z.; Kasela, M.; Kozhanova, K.K.; Sakipova, Z.B.; Kukuła-Koch, W.; Józefczyk, A.; Świątek, Ł.; Rajtar, B.; Iwan, M.; Kołodziej, P.; et al. Anthelminthic and Antimicrobial Effects of Hedge Woundwort (Stachys sylvatica L.) Growing in Southern Kazakhstan. Front. Pharmacol. 2024, 15, 1386509. [Google Scholar] [CrossRef]
- Kubik, J.; Waszak, Ł.; Adamczuk, G.; Humeniuk, E.; Iwan, M.; Adamczuk, K.; Michalczuk, M.; Korga-Plewko, A.; Józefczyk, A. Phytochemical Analysis and Anti-Cancer Properties of Extracts of Centaurea castriferrei Borbás & Waisb Genus of Centaurea L. Molecules 2022, 27, 7537. [Google Scholar] [CrossRef] [PubMed]
- Mohsenzadeh, F.; Chehregani, A.; Amiri, H. Chemical Composition, Antibacterial Activity and Cytotoxicity of Essential Oils of Tanacetum Parthenium in Different Developmental Stages. Pharm. Biol. 2011, 49, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Eminagaoglu, O.; Akpulat, H.A.; Aydin, E. Antioxidant Potentials and Rosmarinic Acid Levels of the Methanolic Extracts of Salvia verticillata (L.) subsp. Verticillata and S. verticillata (L.) subsp. Amasiaca (Freyn & Bornm.) Bornm. Food Chem. 2007, 100, 985–989. [Google Scholar] [CrossRef]
- Zengin, G.; Llorent-Martínez, E.J.; Córdova, M.L.F.; Bahadori, M.B.; Mocan, A.; Locatelli, M.; Aktumsek, A. Chemical Composition and Biological Activities of Extracts from Three Salvia Species: S. blepharochlaena, S. euphratica Var. leiocalycina, and S. verticillata subsp. Amasiaca. Ind. Crops Prod. 2018, 111, 11–21. [Google Scholar] [CrossRef]
- Coisin, M.; Necula, R.; Grigora, V.; Gille, E.; Zamfirache, M.M. Phytochemical evaluation of some salvia species from Romanian Flora. Analele Ştiinţifice ale Univ. “Al. I. Cuza” Iaşi s. II a. Biol. Veg. 2012, 58, 35–44. [Google Scholar]
- Fotovvat, M.; Radjabian, T.; Saboora, A. HPLC Fingerprint of Important Phenolic Compounds in Some Salvia L. Species from Iran. Rec. Nat. Prod. 2018, 13, 37–49. [Google Scholar] [CrossRef]
- Erbil, N.; Digrak, N. Total Phenolic and Flavonoid Contents, Antimicrobial and Antioxidant Properties of Salvia verticillata L. var amasiaca and Salvia microstegia Boiss & Bal from Turkish Flora. J. Microbiol. Antimicrob. Agents 2015, 1, 23–29. [Google Scholar]
- Petersen, M. Rosmarinic Acid: New Aspects. Phytochem. Rev. 2013, 12, 207–227. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Tian, L.-L.; Wang, X.-J.; Sun, Y.-N.; Li, C.-R.; Xing, Y.-L.; Zhao, H.-B.; Duan, M.; Zhou, Z.; Wang, S.-Q. Salvianolic Acid B, an Antioxidant from Salvia miltiorrhiza, Prevents 6-Hydroxydopamine Induced Apoptosis in SH-SY5Y Cells. Int. J. Biochem. Cell Biol. 2008, 40, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Wu, C.-H.; Luo, M.-H.; Huang, Y.-J.; Wang, C.-N.; Shiao, M.-S.; Huang, Y.-T. In Vitro Protective Effects of Salvianolic Acid B on Primary Hepatocytes and Hepatic Stellate Cells. J. Ethnopharmacol. 2006, 105, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Kostić, E.; Kitić, D.; Vujović, M.; Marković, M.; Pavlović, A.; Stojanović, G. A Chemometric Approach to the Headspace Sampled Volatiles of Selected Salvia Species from Southeastern Serbia. Bot. Serbica 2022, 46, 285–294. [Google Scholar] [CrossRef]
- Krstic, L.; Malencic, D.; Anackov, G. Structural Investigations of Trichomes and Essential Oil Composition of Salvia verticillata. Bot. Helv. 2006, 116, 159–168. [Google Scholar] [CrossRef]
- Sefidkon, F.; Khajavi, M.S. Chemical Composition of the Essential Oils of Two Salvia Species from Iran: Salvia verticillata L. and Salvia santolinifolia Boiss. Flavour Fragr. J. 1999, 14, 77–78. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Aytaç, Z.; Başer, K.H.C. The Chemical Composition of Salvia verticillata L. subsp. Verticillata from Turkey. Nat. Volatiles Essent. Oils 2017, 4, 18–28. [Google Scholar]
- Pitarokili, D.; Tzakou, O.; Loukis, A. Essential Oil Composition of Salvia verticillata, S. verbenaca, S. glutinosa and S. candidissima Growing Wild in Greece. Flavour Fragr. J. 2006, 21, 670–673. [Google Scholar] [CrossRef]
- Hayta, S.; Dogan, G.; Yuce, E.; Bagci, E. Composition of the Essential Oil of Two Salvia Taxa (Salvia sclarea and Salvia verticillata subsp. verticillata) from Turkey. Nat. Sci. Discov. 2015, 1, 62–67. [Google Scholar] [CrossRef]
- Comparison of Salvia Verticillata Essential Oil Components in Wild and Cultivated Population. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20133203062 (accessed on 2 March 2024).
- Khosravi Dehaghi, N.; Ostad, S.N.; Maafi, N.; Pedram, S.; Ajani, Y.; Hadjiakhoondi, A.; Khanavi, M. Cytotoxic Activity of the Essential Oil of Salvia verticillata L. Res. J. Pharmacogn. 2014, 1, 27–33. [Google Scholar]
- Forouzin, F.; Jamei, R.; Heidari, R. Compositional Analysis and Antioxidant Activity of Volatile Components of Two Salvia spp. Trop. J. Pharm. Res. 2015, 14, 2009. [Google Scholar] [CrossRef]
- Coisin, M.; Burzo, I.; Rosenhech, E.; Zamfirache, M. Chemical composition and antibacterial activity of essential oils of three salvia species, widespread in Eastern Romania. Analele Ştiinţifice ale Univ. „Al. I. Cuza” Iaşi s. II a. Biol. Veg. 2012, 58, 51–58. [Google Scholar]
- Kameli, M.; Hesamzadeh Hejazi, S.M.; Majd, A.; Mirza, M. Study of Chemical Composition of Different Populations of Salvia Verticillata L. in Iran. Int. J. Adv. Life Sci. 2017, 10, 299–306. [Google Scholar] [CrossRef]
- Mahdavi, M.; Jouri, M.H.; Mahzooni-Kachapi, S.; Halimi’Jelodar, S. Study of Chemical Composition and Antibacterial Effects of Essential Oils of Stachys lavandulifolia Vahl., Salvia verticillata L., and Tanacetum polycephalum Schultz-Bip. on Some Microbial Lineages. Int. J. Farming Allied Sci. 2015, 4, 197–206. [Google Scholar]
- Rajabi, Z.; Ebrahimi, M.; Farajpour, M.; Mirza, M.; Ramshini, H. Compositions and Yield Variation of Essential Oils among and within Nine Salvia Species from Various Areas of Iran. Ind. Crops Prod. 2014, 61, 233–239. [Google Scholar] [CrossRef]
- Aşkun, T.; Başer, K.H.C.; Tümen, G.; Kürkçüoğlu, M. Characterization of Essential Oils of Some Salvia Species and Their Antimycobacterial Activities. Turk. J. Biol. 2010, 34, 12. [Google Scholar] [CrossRef]
- Salehi, N. Chemical Composition of the Essential Oil from Stems Leaves and Flowers of Salvia verticillate L. J. Chem. Lett. 2021, 2, 50–55. [Google Scholar] [CrossRef]
- Koshovyi, O.; Raal, A.; Kovaleva, A.; Myha, M.; Ilina, T.; Borodina, N.; Komissarenko, A. The Phytochemical and Chemotaxonomic Study of Salvia spp. Growing in Ukraine. J. App. Biol. Biotech. 2020, 8, 29–36. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Sonboli, A.; Karimi, F.; Ebrahimi, S.N.; Asghari, B.; Zeinali, A. Antimicrobial Activity of Some Salvia Species Essential Oils from Iran. Z. Naturforschung C 2007, 62, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Yilmaz, S.V.; Özdemir, Ö.; Koca, M.; Pınar, N.M.; Demirci, B.; Yıldırım, K.; Sytar, O.; Turkez, H.; Baser, K.H.C. A Caryophyllene Oxide and Other Potential Anticholinesterase and Anticancer Agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 2020, 32, 512–525. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- European Food Safety Authority. Flavouring Group Evaluation 78 (FGE.78)—Consideration of Aliphatic and Alicyclic and Aromatic Hydrocarbons Evaluated by JECFA (63rd Meeting) Structurally Related to Aliphatic and Aromatic Hydrocarbons Evaluated by EFSA in FGE.25—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J. 2009, 7, 931. [Google Scholar] [CrossRef]
- Javed, H.; Azimullah, S.; Haque, M.E.; Ojha, S.K. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Fontes, L.B.A.; Dias, D.d.S.; Aarestrup, B.J.V.; Aarestrup, F.M.; Da Silva Filho, A.A.; Corrêa, J.O.d.A. β-Caryophyllene Ameliorates the Development of Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Biomed. Pharmacother. 2017, 91, 257–264. [Google Scholar] [CrossRef]
- Gushiken, L.F.S.; Beserra, F.P.; Hussni, M.F.; Gonzaga, M.T.; Ribeiro, V.P.; de Souza, P.F.; Campos, J.C.L.; Massaro, T.N.C.; Hussni, C.A.; Takahira, R.K.; et al. Beta-Caryophyllene as an Antioxidant, Anti-Inflammatory and Re-Epithelialization Activities in a Rat Skin Wound Excision Model. Oxidative Med. Cell. Longev. 2022, 2022, e9004014. [Google Scholar] [CrossRef]
- Jiayao, C.; Jiaoling, W.; Chengyu, H.; Guixiang, W.; Linquan, Z. Mechanisms of Weight-Loss Effect in Obese Mice by the Endogenous Cannabinoid Receptor 2 Agonist Beta-Caryophyllene. Obes. Res. Clin. Pract. 2023, 17, 499–510. [Google Scholar] [CrossRef]
- Pathak, M.P.; Patowary, P.; Goyary, D.; Das, A.; Chattopadhyay, P. β-Caryophyllene Ameliorated Obesity-Associated Airway Hyperresponsiveness through Some Non-Conventional Targets. Phytomedicine 2021, 89, 153610. [Google Scholar] [CrossRef] [PubMed]
- Mendes de Lacerda Leite, G.; de Oliveira Barbosa, M.; Pereira Lopes, M.J.; de Araújo Delmondes, G.; Bezerra, D.S.; Araújo, I.M.; Carvalho de Alencar, C.D.; Melo Coutinho, H.D.; Peixoto, L.R.; Barbosa-Filho, J.M.; et al. Pharmacological and Toxicological Activities of α-Humulene and Its Isomers: A Systematic Review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar] [CrossRef]
- Ambrož, M.; Šmatová, M.; Šadibolová, M.; Pospíšilová, E.; Hadravská, P.; Kašparová, M.; Skarková, V.H.; Králová, V.; Skálová, L. Sesquiterpenes α-Humulene and β-Caryophyllene Oxide Enhance the Efficacy of 5-Fluorouracil and Oxaliplatin in Colon Cancer Cells. Acta Pharm. 2019, 69, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ambrož, M.; Boušová, I.; Skarka, A.; Hanušová, V.; Králová, V.; Matoušková, P.; Szotáková, B.; Skálová, L. The Influence of Sesquiterpenes from Myrica Rubra on the Antiproliferative and Pro-Oxidative Effects of Doxorubicin and Its Accumulation in Cancer Cells. Molecules 2015, 20, 15343–15358. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-Y.; Seol, D.-W. The Role of Mitochondria in Apoptosis. BMB Rep. 2008, 41, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Amiel, E.; Ofir, R.; Dudai, N.; Soloway, E.; Rabinsky, T.; Rachmilevitch, S. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines. Evid.-Based Complement. Altern. Med. 2012, 2012, e872394. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, J.; Hao, J.; Wen, Y.; Lv, Y.; Chen, L.; Yang, X. α-Humulene Inhibits Hepatocellular Carcinoma Cell Proliferation and Induces Apoptosis through the Inhibition of Akt Signaling. Food Chem. Toxicol. 2019, 134, 110830. [Google Scholar] [CrossRef]
- Cullen, S.P.; Martin, S.J. Caspase Activation Pathways: Some Recent Progress. Cell Death Differ. 2009, 16, 935–938. [Google Scholar] [CrossRef]
- Fernald, K.; Kurokawa, M. Evading Apoptosis in Cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef]
- Jang, H.-I.; Rhee, K.-J.; Eom, Y.-B. Antibacterial and Antibiofilm Effects of α-Humulene against Bacteroides Fragilis. Can. J. Microbiol. 2020, 66, 389–399. [Google Scholar] [CrossRef]
- Azizan, N.; Mohd Said, S.; Zainal Abidin, Z.; Jantan, I. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon Stamineus Benth and Ficus Deltoidea Jack against Pathogenic Oral Bacteria. Molecules 2017, 22, 2135. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Yang, N.-Y.; Zhou, G.-S.; Tang, Y.-P.; Yan, H.; Guo, S.; Liu, P.; Duan, J.-A.; Song, B.-S.; He, Z.-Q. Two New α-Pinene Derivatives from Angelica Sinensis and Their Anticoagulative Activities. Fitoterapia 2011, 82, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, S.; Liu, X.; Gao, X. Synergistic Antitumor Effect of α-Pinene and β-Pinene with Paclitaxel against Non-Small-Cell Lung Carcinoma (NSCLC). Drug Res. 2015, 65, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, H.; Okada, N.; Kubohara, M.; Satou, T.; Masuo, Y.; Koike, K. Expression of BDNF and TH mRNA in the Brain Following Inhaled Administration of α-Pinene. Phytother. Res. 2015, 29, 43–47. [Google Scholar] [CrossRef]
- Felipe, C.F.B.; Albuquerque, A.M.S.; de Pontes, J.L.X.; de Melo, J.Í.V.; Rodrigues, T.C.M.L.; de Sousa, A.M.P.; Monteiro, Á.B.; Ribeiro, A.E.d.S.; Lopes, J.P.; de Menezes, I.R.A.; et al. Comparative Study of Alpha- and Beta-Pinene Effect on PTZ-Induced Convulsions in Mice. Fundam. Clin. Pharmacol. 2019, 33, 181–190. [Google Scholar] [CrossRef]
- Adio, A.M. Germacrenes A–E and Related Compounds: Thermal, Photochemical and Acid Induced Transannular Cyclizations. Tetrahedron 2009, 65, 1533–1552. [Google Scholar] [CrossRef]
- Dhyani, P.; Sati, P.; Sharma, E.; Attri, D.C.; Bahukhandi, A.; Tynybekov, B.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Suleria, H.A.R.; et al. Sesquiterpenoid Lactones as Potential Anti-Cancer Agents: An Update on Molecular Mechanisms and Recent Studies. Cancer Cell Int. 2022, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Jiang, J.; Yang, X.; Chu, H.; Jin, M.; Li, Y.; Tao, X.; Wang, S.; Huang, Y.; Shang, L.; et al. The Research of Genetic Toxicity of β-Phellandrene. Environ. Toxicol. Pharmacol. 2017, 54, 28–33. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef]
- Sampath, S.; Subramani, S.; Janardhanam, S.; Subramani, P.; Yuvaraj, A.; Chellan, R. Bioactive Compound 1,8-Cineole Selectively Induces G2/M Arrest in A431 Cells through the Upregulation of the P53 Signaling Pathway and Molecular Docking Studies. Phytomedicine 2018, 46, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, S.J.; Park, J.; Kim, Y.H.; Lee, N.H.; Kim, Y.E.; Kim, Y.; Song, K.-M.; Jung, S.K. 1,8-Cineole Prevents UVB-Induced Skin Carcinogenesis by Targeting the Aryl Hydrocarbon Receptor. Oncotarget 2017, 8, 105995–106008. [Google Scholar] [CrossRef]
- Manjima, R.B.; Ramya, S.; Kavithaa, K.; Paulpandi, M.; Saranya, T.; Harysh Winster, S.B.; Balachandar, V.; Arul, N. Spathulenol Attenuates 6-Hydroxydopamine Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Gene Rep. 2021, 25, 101396. [Google Scholar] [CrossRef]
- Martins, A.; Hajdú, Z.; Vasas, A.; Csupor-Löffler, B.; Molnár, J.; Hohmann, J. Spathulenol Inhibit the Human ABCB1 Efflux Pump. Planta Med. 2010, 76, P608. [Google Scholar] [CrossRef]
- Özkan, O.; Aydın, H.; Bağcıgİl, A.F. In vitro evaluation of antimicrobial activities of Salvia verticillata and Phlomis pungens. Kafkas Üniversitesi Vet. Fakültesi Derg. 2009, 15, 587–590. [Google Scholar] [CrossRef]
- Tekeli, Y.; Karpuz, E.; Danahaliloglu, H.; Bucak, S.; Guzel, Y.; Erdmann, H. Phenolic Composition, Antioxidant Capacity of Salvia Verticcilata and Effect on Multidrug Resistant Bacteria by Flow-Cytometry. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 147–152. [Google Scholar] [CrossRef]
- Nickavar, B.; Rezaee, J.; Nickavar, A. Effect-Directed Analysis for the Antioxidant Compound in Salvia verticillata. Iran. J. Pharm. Res. 2016, 15, 241–246. [Google Scholar] [PubMed]
- Matkowski, A.; Zielińska, S.; Oszmiański, J.; Lamer-Zarawska, E. Antioxidant Activity of Extracts from Leaves and Roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour. Technol. 2008, 99, 7892–7896. [Google Scholar] [CrossRef]
- Mihailović, V.; Srećković, N.; Nedić, Z.P.; Dimitrijević, S.; Matić, M.; Obradović, A.; Selaković, D.; Rosić, G.; Katanić Stanković, J.S. Green Synthesis of Silver Nanoparticles Using Salvia verticillata and Filipendula Ulmaria Extracts: Optimization of Synthesis, Biological Activities, and Catalytic Properties. Molecules 2023, 28, 808. [Google Scholar] [CrossRef]
- Dulger, G.; Dülger, B. Antifungal Activity of Salvia verticillata subsp. Verticillata against Fungal Pathogens. J. DU Health Sci. Inst. 2021, 11, 305–307. [Google Scholar] [CrossRef]
- Barjaktarevic, A.; Cirovic, T.; Arsenijevic, N.; Volarevic, V.; Markovic, B.S.; Mitic, V.; Jovanovi, V.S.; Cupara, S. Antioxidant, Antimicrobial and Cytotoxic Activities of Salvia verticillata L. Extracts. Indian J. Pharm. Sci. 2021, 83, 1280–1287. [Google Scholar] [CrossRef]
- Tosun, M.; Ercisli, S.; Sengul, M.; Ozer, H.; Polat, T.; Ozturk, E. Antioxidant Properties and Total Phenolic Content of Eight Salvia Species from Turkey. Biol. Res. 2009, 42, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kiliçkaya Selvi, E. Antioxidant Activity and Total Phenolic and Flavonoid Contents of Salvia verticillata L., Salvia tomentosa Mill., and Phlomis lychnitis L. J. Anatol. Environ. Anim. Sci. 2020, 5, 125–130. [Google Scholar] [CrossRef]
- Almaz, Z. Phenolic Compounds, Organic Acid Profiles and Antioxidant Potential of Salvia verticillata L. Türk Doğa Fen Derg. 2022, 11, 23–29. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Naz, Q.; Ejaz, A.; Yilmaz, G.; Kan, Y.; Konuklugil, B.; Şener, B.; Iqbal Choudhary, M. Antioxidant and Anticholinesterase Evaluation of Selected Turkish Salvia Species. Food Chem. 2007, 103, 1247–1254. [Google Scholar] [CrossRef]
- Emre, İ.; Kurşat, M.; Kirbag, S.; Sönmez, P.E.; Emre, M.Y.; Yilmaz, P.D.Ö.; Civelek, Ş. The Antioxidant and Antimicrobial Capacities of Phenolic Profiles of Some Salvia L. Seeds Grown in Turkey. Int. J. Sec. Metab. 2021, 8, 20–30. [Google Scholar] [CrossRef]
- Šulniūtė, V.; Ragažinskienė, O.; Venskutonis, P.R. Comprehensive Evaluation of Antioxidant Potential of 10 Salvia Species Using High Pressure Methods for the Isolation of Lipophilic and Hydrophilic Plant Fractions. Plant Foods Hum. Nutr. 2016, 71, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Skalicka-Woźniak, K.; Mihai, C.-T.; Gradinaru, A.C.; Mandici, A.; Ciocarlan, N.; Miron, A.; Aprotosoaie, A.C. Chemical Profile and Bioactivity Evaluation of Salvia Species from Eastern Europe. Antioxidants 2023, 12, 1514. [Google Scholar] [CrossRef]
- Nickavar, B.; Kamalinejad, M.; Izadpanah, H. In vitro free radical scavenging activity of five salvia species. Pak. J. Pharm. Sci. 2007, 20, 291–294. [Google Scholar]
- Mervić, M.; Bival Štefan, M.; Kindl, M.; Blažeković, B.; Marijan, M.; Vladimir-Knežević, S. Comparative Antioxidant, Anti-Acetylcholinesterase and Anti-α-Glucosidase Activities of Mediterranean Salvia Species. Plants 2022, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Topçu, G.; Yücer, R.; Şenol, H. Bioactive Constituents of Anatolian Salvia Species. In Salvia Biotechnology; Georgiev, V., Pavlov, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 31–132. ISBN 978-3-319-73900-7. [Google Scholar]
- Kursat, M.; Erecevit, P.; Sari, A.; Emre, I.; Kirbağ, S.; Civelek, Ş. The Antimicrobial Activities of Seed Fatty Acid Extracts from Some Salvia L. Species. Turk. J. Sci. Technol. 2012, 7, 31. Available online: https://openurl.ebsco.com/contentitem/gcd:71654650?sid=ebsco:plink:crawler&id=ebsco:gcd:71654650 (accessed on 13 January 2024).
- Bandian, L.; Moghaddam, M.; Bahraini, M. Investigate the Antimicrobial Activity and Synergistic Effects of Zataria Multiflora, Salvia Verticillata and Froriepia Subpinnata Ethanolic Extracts on Bacterial Vegetables Decay. J. Food Microbiol. 2021, 8, 45–57. [Google Scholar]
- Hosseini, A.; Zebarjadian, N.; Mehmannavaz, H.; Golriz, Y.; Rahbar, N.; Afkhami Goli, A. Protective Effects of Salvia verticillata during Serum-Glucose Deprivation in PC12 Cells. In Proceedings of the Second International Congress of Veterinary Pharmacology, Tehran, Iran, 13 December 2011. [Google Scholar]
- Pavela, R.; Neugebauerová, J. Screening of Insecticidal Activity of Some Salvia Species on Spodoptera Littoralis Boisduval Larvae. In Proceedings of the Fifth Conference on Medicinal and Aromatic Plants of Southeast European Countries, (5th CMAPSEEC), Brno, Czech Republic, 2–5 September 2008. [Google Scholar]
- Demirezer, L.Ö.; Gürbüz, P.; Uğur, E.P.K.; Bodur, M.; Özenver, N.; Uz, A.; Güvenalp, Z. Molecular Docking and Ex Vivo and in Vitro Anticholinesterase Activity Studies of Salvia sp. and Highlighted Rosmarinic Acid. Turk. J. Med. Sci. 2015, 45, 1141–1148. [Google Scholar] [CrossRef]
- Ho, J.H.-C.; Hong, C.-Y. Salvianolic Acids: Small Compounds with Multiple Mechanisms for Cardiovascular Protection. J. Biomed. Sci. 2011, 18, 30. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tang, L.; Yi, Q. Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Front. Pharmacol. 2019, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Pan, X.; Xu, X.; Cheng, C.; Huang, Y.; Li, L.; Jiang, S.; Xu, W.; Xiao, G.; Liu, S. Salvianolic Acid C Potently Inhibits SARS-CoV-2 Infection by Blocking the Formation of Six-Helix Bundle Core of Spike Protein. Sig. Transduct. Target. Ther. 2020, 5, 220. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Deng, J.-S.; Huang, W.-C.; Shieh, P.-C.; Chung, M.-I.; Huang, G.-J. Salvianolic Acid C against Acetaminophen-Induced Acute Liver Injury by Attenuating Inflammation, Oxidative Stress, and Apoptosis through Inhibition of the Keap1/Nrf2/HO-1 Signaling. Oxidative Med. Cell. Longev. 2019, 2019, e9056845. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xu, X.; Xiao, Y.; Zhang, J.; Shen, P.; Lu, X.; Fan, X. Salvianolic Acid C Attenuates Cerebral Ischemic Injury through Inhibiting Neuroinflammation via the TLR4-TREM1-NF-κB Pathway. Chin. Med. 2024, 19, 46. [Google Scholar] [CrossRef]
- Kunduhoğlu, B.; Kürkçüoğlu, M.; Duru, M.E.; Başer, K.H.C. Antimicrobial and Anticholinesterase Activities of the Essential Oils Isolated from Salvia dicroantha Stapf., Salvia verticillata L. subsp. amasiaca (Freyn and Bornm.) Bornm. and Salvia wiedemannii Boiss. J. Med. Plants Res. 2011, 5, 6484–6490. [Google Scholar] [CrossRef]
- Paknejadi, M.; Foroohi, F.; Yousefzadi, M. Antimicrobial Activities of the Essential Oils of Five Salvia Species From. Arch. Adv. Biosci. 2012, 3. [Google Scholar] [CrossRef]
- Korkotadze, T.; Berashvili, D.; Jokhadze, M.; Gokadze, S.; Mshvildadze, V. Chemical Composition and Biological Activity of Aerial Parts of Salvia verticillata L. Growing in Georgia. Georgian Sci. 2023, 5, 350–358. [Google Scholar] [CrossRef]
- Naderi, N.; Akhavan, N.; Aziz Ahari, F.; Zamani, N.; Kamalinejad, M.; Shokrzadeh, M.; Ahangar, N.; Motamedi, F. Effects of Hydroalcoholic Extract from Salvia verticillata on Pharmacological Models of Seizure, Anxiety and Depression in Mice. Iran. J. Pharm. Res. 2011, 10, 535–545. [Google Scholar] [PubMed]
- Attitalla, I.H. Salvia verticillata Effects on Diabetes and Diabetes Complications. Pak. J. Biol. Sci. 2011, 14, 1130–1131. [Google Scholar] [CrossRef] [PubMed]
- Golriz, Y.; Afkhami Goli, A.; Sadeghnia, H.R.; Kazemi Mehrjerdi, H. Salvia Verticillata Improved Cognitive Deficits in a Chronic Cerebral Hypoperfusion Rat Model. Iran. J. Vet. Sci. Technol. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- Semenchenko, O.M.; Tsurkan, A.A.; Korableva, O.A.; Burmaka, O.V. Study the Pharmacological Activity of Herbal Extracts of Some Species of the Genus Salvia L. Farmatsevtychnyi Zhurnal 2013, 6, 84–87. [Google Scholar]
- Lopresti, A.L. Salvia (Sage): A Review of Its Potential Cognitive-Enhancing and Protective Effects. Drugs R D 2017, 17, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Eidi, M.; Eidi, A.; Zamanizadeh, H. Effect of Salvia officinalis L. Leaves on Serum Glucose and Insulin in Healthy and Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2005, 100, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Salas-Oropeza, J.; Jimenez-Estrada, M.; Perez-Torres, A.; Castell-Rodriguez, A.E.; Becerril-Millan, R.; Rodriguez-Monroy, M.A.; Jarquin-Yañez, K.; Canales-Martinez, M.M. Wound Healing Activity of α-Pinene and α-Phellandrene. Molecules 2021, 26, 2488. [Google Scholar] [CrossRef] [PubMed]
- Chakarov, D.; Hadzhieva, E.; Kalchev, Y.; Hadzhiev, D. Aerobic Microbiological Spectrum and Antibiotic Resistance in Children Operated for Anorectal Abscesses. J. Clin. Med. 2024, 13, 2414. [Google Scholar] [CrossRef]
- Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.d.S.S.; Guimarães, A.G. Effects of Carvacrol, Thymol and Essential Oils Containing Such Monoterpenes on Wound Healing: A Systematic Review. J. Pharm. Pharmacol. 2019, 71, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Khalid, U.; Uchikov, P.; Hristov, B.; Kraev, K.; Koleva-Ivanova, M.; Kraeva, M.; Batashki, A.; Taneva, D.; Doykov, M.; Uchikov, A. Surgical Innovations in Tracheal Reconstruction: A Review on Synthetic Material Fabrication. Medicina 2024, 60, 40. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Plant Collecting Region | Plant Materials | Collecting Period | Compounds | References |
---|---|---|---|---|
Serbia | Aerial parts (methanol extract) | July | Rosmarinic acid, Salvianolic acid C, Rosmarinic acid hexoside, Methylrosmarinate, Salvianolic acid B, Dicaffeoylquinic acid, 5-O-Caffeoylquinic acid, Caffeic acids, Apigenin-7-O-glucosides, Apigenin, Quercetin 3-O-rutinoside, Carnosol, Carnosic acid, Quercetin 3-O-rhamnoside | [1] |
Turkey | Aerial parts (methanol extract) | August | Rosmarinic acid | [20] |
Turkey | Aerial parts (dichloromethane, methanol, aqueous extracts) | No data | Rosmarinic acid, Salvianolic acid C derivative, Apigenin-O-glucuronide, Luteolin-O-glucuronide, Salvianolic acid K, Methyl rosmarinate, Caffeoyl hexoside, Danshensu | [21] |
Romania | Aerial parts (methanol extracts) | July | Rosmarinic acid, Apigenol, Caffeic acid, Chlorogenic acid, Luteolin, p-Coumaric acid | [22] |
Iran | Leaves, roots (methanol extracts) | June–July | Rosmarinic acid, Salvianolic acid B, Salvianolic acid A, Carnosic acid, Caffeic acid | [23] |
Turkey | Root, leaf, stalk, flower (methanolic extracts) | June | Kaempferol, Catechin, Quercetin, Myricetin, Naringenin, Resveratrol, Naringin, Rutin | [24] |
Plant Collecting Region | Plant Materials | Collecting Period | Main Volatile Compounds | Other Volatile Compounds | References |
---|---|---|---|---|---|
Iran | Aerial parts | May–June | β-Caryophyllene (24.7%), γ-Muurolene (22.8%), Limonene (8.9%), α-Humulene (7.8%), Germacrene B (6.6%), β-Pinene (5.1%). | α-Gurjunene (4.9%), Sabinene (2.7%), α-Pinene (2.6%), Myrcene (1.9%), (Z)-β-Ocimene (1.4%), (E)-β-Ocimene (1.4%), β-Borbonene (0.9%), α-Phellandrene (0.8%), Alloaromadendrene (0.7%), Caryophyllene oxide (0.6%), α-Copaene (0.5%), α-Thujene (0.3%), δ-3-Carene (0.3%), α-Cubebene (0.3%), β-Cubebene (0.3%), β-Cadinene (0.3%), δ-Cadinene (0.3%), Camphene (0.2%), γ-Terpinene (0.2%). | [32] |
Turkey | Aerial parts (flowers, leaves, stems) | July | Spathulenol (31.0%), α-Pinene (8.2%). | Limonene (4.1%), Hexahydrofarnesyl acetone (3.8%), Caryophylla-2(12), 6-dien-5β-ol (=Caryophyllenol I) (2.8%), 1,8-Cineole (2.5%), Hexadecanoic acid (2.3%), Linalool (2.2%), Carvacrol (2.1%), β-Pinene (2.0%), Caryophylla-2(12),6-dien-5β-ol (=Caryophyllenol II) (2.0%), Caryophyllene oxide (1.9%), Clovenol (1.8%), Caryophylla-2(12),6(13)-dien-5β-ol (=Caryophylladienol II) (1.8%), Myrcene (1.4%), γ-Terpinene (1.1%), p-Cymene (1.0%), α-Terpineol (1.0%), Humulene epoxide-II (0.9%), Verbenone (0.8%), β-Caryophyllene (0.7%), T-Cadinol (0.7%), α-Phellandrene (0.6%), Camphor (0.6%), Terpinen-4-ol (0.6%), Citronellol (0.6%), Globulol (0.6%), Viridiflorol (0.6%), α-Cadinol (0.6%), Hexanal (0.5%), Torilenol (0.5%), Eudesma-4(15),7-dien-4β-ol (0.5%), Borneol (0.4%), Salvial-4(14)-en-1-one (0.4%), Thymol (0.4%), Bornyl acetate (0.3%), trans-Pinocarveol (0.2%), cis-Piperitol (0.2%), Carvone (0.1%). | [33] |
Greece | Aerial parts (leaves, inflorescences) | August | β-Pinene (30.7%), p-Cymene (23.0%), Isopropyl ester of lauric acid (16.8%), α-Pinene (7.6%), (E)-Nerolidol (5.2%). | 1,8-Cineole (3.9%), γ-Terpinene (1.9%), α-Copaene (1.9%), β-Bourbonene (1.7%), α-Thujene (1.3%), trans-Calamenene (1.2%), γ-Muurolene (1.1%), cis-Muurola-3,5-diene (1.0%), trans-Pinocarveol (0.8%), β-Gurjunene (0.7%), Heptadecane (0.7%). | [34] |
Serbia | Aerial parts (flowers, leaves) Comparison between 3 populations of EOs. | No data | Pop. 1: Germacrene D (48.0%), (E)-Caryophyllene (13.4%), α-Cadinol (10.4%), α-Humulene (7.2%), δ-Cadinene (6.0%), Eudesma-4(15), 7-dien-1-beta-ol (6.0%), Bicyclogermacrene (5.3%). Pop. 2: Germacrene D (24.6%), (E)-Caryophyllene (19.0%), Bicyclogermacrene (16.7%), α-Humulene (10.2%), β-Phellandrene (8.6%), (E)-β-Ocimene (7.5%), Spathulenol (7.2%), (Z)-β-Ocimene (6.0%). Pop. 3: (E)-Caryophyllene (10.2%), β-Cubebene (8.6%), Eicosane (8.5%), Spathulenol (6.5%). | Pop. 1: Spathulenol (3.5%). Pop. 3: α-Humulene (4.8%), Cyclopentane (4.5%), Naphthalene, 1, 2, 3, 4, 4a, 5, 6, 8a-octahydroxyl (4.0%), δ-Cadinene (3.7%), α-Cadinol (3.7%), Caryophyllene oxide (2.9%), 2-Pentadecanone, 6, 10, 14-trimethyl (2.5%), 1,2-benzenedicarboxylic acid (2.5%), Aromadendren epoxide (2.1%), β-Phellandrene (1.7%), γ-Cadinene (1.3%), Naphthalene, 1, 2, 3, 4, 4a, 7-hexahydroxyl (1.3%), β-Elemene (1.1%), α-Elemene (1.1%), α-Muurolene (1.0%), γ-Gurjunene (0.9%), Camphene (0.6%), Caryophyllenol-11 (0.6%), α-Pinene (0.5%), α-Cubebene (0.5%), Octacosane (0.5%), Nonahexacontanoic acid (0.5%), β-Bourbonene (0.4%). | [31] |
Turkey | Aerial parts | June | Germacrene D (13.8%), Spathulenol (10.0%). | Limonene (4.5%), 1,8-Cineole (4.0%), β-Copaene (3.8%), Bicyclogermacrene (3.3%), Naphthalane (3.1%), δ-Cadinene (2.9%), β-Pinene (2.8%), α-Pinene (2.7%), Valeranone (2.5%), Sabinen (2.1%), β-Bourbonene (2.0%), α-Cubebene (1.9%), β-Caryophyllene (1.8%), α-Copaene (1.7%), β-Cubebene (1.7%), Caryophyllene oxide (1.7%), α-Eudesmol (1.7%), Cyercene (1.7%), Salvial-4 (14)-en-1-one (1.5%), 2-Pentadecanone (1.5%), δ-3-Carene (1.3%), Methyl ısoeugenol (1.3%), γ-Cadinene (1.3%), cis-Calamenene (1.3%), (+)-Epi-bicyclosesquiphallendrene (1.2%), Eudesma-4 [15], 7-dien-1-beta-ol (1.2%), p-Cymene (1.1%), β-Myrcene (0.9%), Sabinene (0.9%), δ-Selinene (0.9%), trans-β-Farnesene (0.8%), Jasmone (0.8%), Isolongifolene (0.8%), Epi-α-Cadinol (0.7%), Cadalene (0.7%), Ethanone (0.7%), Borneol-L (0.6%), Aromadendrene (0.6%), 5,9-Undecadien (0.6%), Nerolidol (0.6%), γ-Gurjunene (0.6%), Muurola-3,5-diene (0.5%), α-Calacorene (0.5%), trans-Verbenol (0.4%), α-Terpineol (0.4%), α-Ylangene (0.4%), α-Amorphene (0.4%), β-Selinene (0.4%), α-Thujone (0.3%), Benzeneacetaldehyde (0.3%), α-Cadinene (0.3%), Vulgarol-B (0.3%), Camphene (0.2%), Mentha-1 (7), 8-diene (0.2%), Benzene, 1-methyl-2 (0.2%), γ-Terpinene (0.2%), cis-Sabinenehydrate (0.2%), Pinocarvone (0.2%), 3-Cyclohexen-1-ol (0.2%), trans-Carveol (0.2%), Propanol, 2-methyl-3-phenyl (0.2%), Bornyl acetate (0.2%), Humulene epoxide II (0.2%), α-Terpinene (0.1%), 2-methyl-1-propenyl (0.1%), Benzene, 1-methyl-4 (0.1%), Ledene (0.1%), γ-Muurolene (0.1%), Farnesyl acetone (0.1%). | [35] |
Iran | Aerial parts Comparison between 2 EOs—from wild and field conditions. | June | EOs—field conditions: (E)-Caryophyllene (17.813%), β-Phellandrene (14.236%), α-Humulene (10.162%), α-Pinene (5.735%), Germacrene D (5.179%). EOs—wild conditions: (E)-Caryophyllene (14.706%), α-Gurjunene (12.825%), Germacrene D (8.684%), α-Humulene (7.664%), β-Phellandrene (6.614%), β-Pinene (6.541%), Bicyclogermacrene (6.384%). | EOs—field conditions: β-Pinene (4.78%), Sabinene (4.538%), 1,8-Cineole (4.354%), Caryophyllene oxide (4.019%); Bicyclogermacrene (3.929%), α-Gurjunene (3.485%), Myrcene (3.025%), Spathulenol (2.844%), Linalyl acetate (1.701%), β-Bourbonene (1.562%), (E)-β-Ocimene (1.268%), α-Phellandrene (1.168%), Caryophylla-4(14),8(15)-dien- 5-β-ol (1.042%), Alloaromadendrene (0.965%), Linalool (0.95%), (Z)-β-Ocimene (0.876%), (E)-γ-Bisabolene (0.704%), α-Thujene (0.536%), δ-Elemene (0.518%), (E,E)-α-Farnesene (0.5%), 9-epi-(E)-Caryophyllene (0.406%), Camphene (0.351%), Borneol (0.351%), α-Terpineol (0.292%), γ-Terpinene (0.276%), Terpinene-4-ol (0.268%), p-Cymene (0.257%), cis-Sabinene hydrate (0.255%), β-Copaene (0.252%), β-Elemene (0.219%), Neryl acetate (0.167%), Terpinolene (0.145%), n-Nonanol (0.121%), δ-3-Carene (0.117%), α-Terpinene (0.108%). EOs—wild conditions: Eudesm-7(11)-en-4-ol (2.786%), α-Pinene (2.324%), n-Hexadecanoic acid (2.025%), Alloaromadendrene (1.708%), Caryophyllene oxide (1.557%), Myrcene (1.419%), δ-3-Carene (1.351%), Germacrene D-4-ol (1.35%), (Z)-β-Ocimene (1.3%), α-Cubebene (1.293%), δ-Cadinene (1.181%), (E)-β-Ocimene (1.033%),γ-Gurjunene (1.005%), Spathulenol (0.97%), (E)-γ-Bisabolene (0.944%), α-Cadinol (0.905%), δ-Elemene (0.878%), Viridiflorol (0.816%), α-Phellandrene (0.724%), Valeranone (0.694%), γ-Terpinene (0.681%), α-Copaene (0.621%), Sabinene (0.612%), Borneol (0.53%), Phytol (0.511%), γ-Cadinene (0.482%), β-Bourbonene (0.476%), Sclareol (0.415%), (E)-Nerolidol (0.404%), Linalyl acetate (0.383%), Camphene (0.353%), n-Pentacosane (0.334%), β-Copaene (0.324%), n-Nonanal (0.322%), α-Thujene (0.319%), β-Cubebene (0.311%), Terpinene-4-ol (0.216%), Terpinolene (0.215%), p-Cymene (0.199%), Alloocimene (0.188%), Linalool (0.183%), n-Tricosane (0.169%), α-Terpinene (0.145%), n-Decanal (0.139%), n-Nonanol (0.138%), p-Mentha-2,4(8)-diene (0.109%), cis-Thujopsene (0.1%). | [36] |
Iran | Flowering aerial parts | July | trans-Caryophyllene (24.40%), β-Phellandrene (9.08%), α-Humulene (8.61%), Bicyclogermacrene (6.32%), Spathulenol (5.89%), β-Pinene (5.00%). | α-Amorphene (4.89%), Sabinene (4.44%), Limonene (3.80%), α-Gurjunene (3.32%), α-Pinene (3.03%), Myrcene (1.92%), δ-3-Carene (1.78%), (E)-β-Ocimene (1.68%), (Z)-β-Ocimene (1.65%), trans-Prenyl limonene (1.35%), Caryophyllene oxide (0.89%), Phytol (0.84%), β-Bisabolene (0.58%), cis-Calamenene (0.53%), Valeranone (0.38%), Hexahydrofarnsylacetone (0.37%), Cedranone (0.37%), α-Thujene (0.34%), α-Phellandrene (0.32%), cis-Cadina-1,4-diene (0.33%), Juniperol (0.30%), Terpinen-4-ol (0.28%), trans-γ-Bisabolene (0.27%), ρ-mentha-1(7),8-diene (0.24%), α-Copaene (0.25%), β-Cubebene (0.23%), α-Cubebene (0.23%), Globulol (0.22%), ρ-Cymene (0.22%), γ-Terpinene (0.21%), cis-Thujopsene (0.21%), γ-Gurjunene (0.21%), Germacrene D (0.21%), β-Sesquiphellandrene (0.21%). | [37] |
Iran | Aerial parts | June | 1,8-Cineole (38.26%), Camphor (22.98%), Bicycloheptan (5.52%). | Borneol (2.29%), α-Pinene (1.77%), Cyclohexane (1.67%), Camphene (0.54%). | [38] |
Italy | Aerial parts Comparison between 3 EOs—aerial parts collected at different times. | September 2015-S1 | S1: Germacrene D (39.5%), Bicyclogermacrene (14.8%), β-Caryophyllene (11.9%), Spathulenol (6.6%), α-Humulene (5.9%). | S1: Limonene (3.9%), β-Pinene (2.7%), (E)-β-Farnesene (2.4%), β-Bourbonene (2.1%), δ-Cadinene (1.2%). | [5] |
July 2016-S2 | S2: Germacrene D (40.1%), Bicyclogermacrene (11.5%), β-Caryophyllene (7.3%). | S2: β-Phellandrene (4.9%), β-Pinene (3.7%), Spathulenol (3.1%), β-Bourbonene (3.1%), α-Humulene (2.7%); (E)-β-Ocimene (2.6%), (Z)-β-Ocimene (2.3%), (E)-β-Farnesene (1.7%), α-Pinene (1.3%), Myrcene (1.1%), Caryophyllene oxide (1.0%). | |||
September 2016-S3 | S3: Germacrene D (40.7%), Bicyclogermacrene (14.4%), β-Caryophyllene (7.3%). | S3: β-Phellandrene (4.5%), Spathulenol (4.2%), (E)-β-Ocimene (3.7%), (Z)-β-Ocimene (2.9%), α-Humulene (2.7%), β-Pinene (2.6%), β-Bourbonene (1.8%), (E)-β-Farnesene (1.5%), Myrcene (1.1%), Caryophyllene oxide (1.0%), α-Pinene (1.0%). | |||
Romania | Aerial parts | No data | β-Caryophyllene (16.03%), Caryophyllene oxide (15.24%), α-Caryophyllene (14.54%), Spathulenol (8.64%). | Terpenil acetat (3.63%), Germacrene D (2.29%), γ-Elemene (2.47%), trans β-Ocimen (1.95%), Patchoulol (1.77%), Limonene (1.75%), Isoaromadendrene oxide (1.67%), Isolongifolol (1.54%), τ-Neurolol (1.30%), Ledenoxide (0.93%), Phytol (0.79%), Hexahydroxy-farnesyl-acetone (0.72%), (Z)-β-Farnesene (0.46%), γ-Cadinene (0.36%), β-Pinene (0.33%), γ-Muurolene (0.30%), α-Pinene (0.29%), α-Bourbonene (0.20%), Sabinene (0.17%), cis β-Ocimen (0.17%), Borneol (0.17%), Borneol acetat (0.17%), Myrcene (0.16%), Ocimene (0.16%). | [39] |
Iran | Aerial parts Comparison between 3 EOs—aerial parts collected from different locations. | June | Loc. 1: (E,E-α)-Farnesene (22.7–29.1%), (E)-Caryophyllene (6.7–15.5%), Bicyclogermacrene (8.1–8.2%), Germacrene B (5.9–6.2%). | Loc. 1: α-Humulene (2.9–5.4%), Caryophyllene oxide (3.1–4.4%), 1,8-Cineole (0.5–2.8%), Germacrene D (0.4–0.5%), Spathulenol (0.5%). | [40] |
Loc. 2: (E)-Caryophyllene (26.5–38.9%), (E,E-α)-Farnesene (10.5%), α-Humulene (10.3–15.9%) Germacrene D (6.3–11.5%). | Loc. 2: Bicyclogermacrene (1.5–3.9%), Germacrene B (0.9–3.3%), 1,8-Cineole (0.6–3.3%), Spathulenol (0.6–0.9%), Caryophyllene oxide (0.4–1.3%). | ||||
Loc. 3: (E)-Caryophyllene (9.8–24.2%), Spathulenol (4.5–15.3%), α-Humulene (4.8–11.5%), Germacrene D (9.93%), Bicyclogermacrene (7.0–9.1%). | Loc. 3: (E,E-α)-Farnesene (2.5–3.9%), Caryophyllene oxide (1.9–3.4%), Germacrene B (1.3–1.4%), 1,8-Cineole (0.9–2.5%). | ||||
Iran | Aerial parts | No data | trans-Caryophyllene (18.82%), Germacrene D (9.49%), Spathulenol (7.53%), Sabinene (6.52%), Bicyclo [3.1.1] heptane, 6, 6-dime (6.0%), α-Caryophyllene (5.81%). | Bicyclogermacrene (2.66%), Aromadendrene (2.20%), δ-Cadinene (1.97%), Hexadecanoic acid (1.86%), α-Cadinol (1.78%), β-Myrcene (1.24%), Iso spathulenol (1.11%), 3-Cyclohexen-1-carboxaldehyde (0.93%), Docosane (0.84%), 1H-Benzocyclohepten-7-ol, 2, 3, 4 (0.82%), γ-Selinene (0.80%), β-Bourbonene (0.80%), Borneol (0.70%), γ-Gurjunene (0.69%), Ledol (0.67%), cis-α-Bisabolene (0.60%), 2-Pentadecanone, 6, 10, 14-trimethyl (0.57%), 1-Phellandrene (0.53%), Tau-Muurolol (0.48%), Vulgarol (0.43%), β-Elemene (0.40%), Tetradecanoic acid (0.37%), α-Copaene (0.35%), Cadina-1-4-diene (0.31%), Nonanal (0.31%), Phytol (0.29%). | [41] |
Iran | Aerial parts Comparison between 3 EOs—aerial parts collected from 3 different origins. | No data | (E)-Caryophyllene (16.99–40.98%), Spathulenol (0.00–17.54%), α-Humulene (5.42–14.35%), Bicyclogermacrene (13.36–21.07%). | δ-Cadinene (1.1–3.14%), Linalol acetate (0.5–2.23%), 1,8-Cineol (0.33–2.48%), Limonene (0.31–2.91%), Linalol (0.26–1.28%). | [42] |
Turkey | Aerial parts | August | β-Pinene (21.4%), 1,8-Cineole (16.1%), α-Copaene (5.4%), Alloaromadendrene (5.1%). | α-Gurjunene (4.6%), α-Pinene (3.3%), Hexadecanoic acid (2.7%), α-Cadinol (2.6%), Valeranone (2.5%), δ-Cadinene (2.5%), β-Caryophyllene (2.3%), β-Bourbonene (1.7%), Bicyclogermacrene (1.6%), Copaborneol (1.5%), Limonene (1.4%), Sabinene (1.2%), Myrcene (1.2%), Germacrene D (1.2%), Germacrene D-4-ol (1.2%), T-Cadinol (1.2%), γ-Muurolene (1.1%). | [43] |
Iran | Stems, leaves, flowers | July | Stems: 1,8-Cineol(35.6%), β-Pinene (6.86%), n-Decane (5.22%), β-Cubabene (5.01%). | Stems: Bicyclogermacrene (4.64%), Germacrene D (4.34%), α-Cadinol (2.776%), δ-Cadinene (2.741%), Guaiol (1.827%), β-Gurjunene (1.72%), Spathulenol (1.585%), (E)-β-Ocimene (1.388%), γ-Cadinene (1.09%). | [44] |
Leaves: 1,8-Cineole (20.14%), α-Pinene (16.3%), δ-Elemene (10.38%), β-Pinene (9.13%), β-Gurjunen (5.36%). | Leaves: Germacrene D (3.703%), Bicyclogermacrene (3.087%), Spathulenol (3.05%), Ocimeneallo (2.973%), α-Cadinol (2.404%), Mintsulfide (2.105%), n-Decane (1.606%), δ-Cadinen (1.574%). | ||||
Flowers: β-Gurjunene (14.6%), Germacrene D (9.58%), δ-Elemene (9.0%),1,8 –Cineole (7.4%), (E)-β-Ocimene (5.65%), δ-Cadinene (5.25%). | Flowers: Ocimeneallo (3.494%), Spathulenol (3.04%), Myrcene (2.884%), α-Pinene (2.305%), γ-Cadinene (2.21%), 4-Terpineol (2.11%). | ||||
Ukraine | Leaves | No data | Tritriacontane (15.6%), Nonacosane (11.5%). | γ-Sitosterol (2.9%), Docosane (2.4%), Heptacosane (2.3%), Hexahydrofarnesyl acetone (2.1%), Pentacosane (2.0%), Heneicosane (1.9%), Caryophyllene oxide (1.6%), Tetradecane (1.4%), Dotriacontane (1.1%), cis-Neophytadiene (0.9%), Dihydroactinidiolide (0.6%). | [45] |
Iran | Aerial parts | June | Germacrene D (24.8%), β-Caryophyllene (24.1%), α-Cadinene (12.5%), Spathulenol (9.1%), Limonene (7.1%), γ-Terpinene (7.0%). | Bicyclogermacrene (3.9%), n-Decane (1.7%), β-Bourbonene (1.5%), α-Gurjunene (1.4%), α-Pinene (0.7%), β-Pinene (0.5%). | [3] |
Turkey | Aerial parts | July | β-Pinene (23.0%), α-Pinene (21.6%), β-Phellandrene (13.0%), Limonene (11.0%), 1,8-Cineole (10.9%). | β-Myrcene (4.9%), trans-Caryophyllene (2.0%), α-Phellandrene (1.4%), Thujene (1.0%), p-Cymene (0.9%), 4-Terpineol (0.6%), γ-Terpinene (0.5%), Tetradecane (0.4%), Naphthalene (0.1%), Docosane (0.1%). | [2] |
Serbia | Aerial parts Comparison between 3 EOs—aerial parts collected from 3 different origins. | August | S1: β-Phellandrene (43.9%), (E)-β-Ocimene (12.2%), (Z)-β-Ocimene (10.3%), γ-Muurolene (7.9%), Myrcene (6.0%), Sabinene (5.5%). | S1: β-Pinene (3.0%), α-Phellandrene (2.8%), α-Thujene (2.5%), α-Pinene (1.9%), (E)-Caryophyllene (0.9%), δ-3-Carene (0.7%), o-Cymene (0.5%), α-Muurolene (0.3%), α-Humulene (0.2%). | [30] |
S2: β-Phellandrene (70.4%), Myrcene (6.6%), α-Pinene (5.2%). | S2: β-Pinene (3.6%), (Z)-β-Ocimene (2.6%), Sabinene (2.4%), δ-3-Carene (2.2%), α-Thujene (1.6%), α-Phellandrene (1.4%), (E)-β-Ocimene (1.4%), (E)-Caryophyllene (1.2%), o-Cymene (0.9%). | ||||
S3: β-Phellandrene (55.5%), α-Pinene (21.1%), Myrcene (6.6%). | S3: β-Pinene (3.6%), α-Phellandrene (2.0%), Sabinene (1.7%), (Z)-β-Ocimene (1.7%), α-Thujene (1.6%), (E)-β-Ocimene (1.0%), o-Cymene (0.6%), (E)-Caryophyllene (0.3%). | ||||
Iran | Aerial parts | May | β-Caryophyllene (31.5%), Germacrene D (16.2%), Limonene (15.5%), α-Pinene (10.4%), α-Humulene (9.4%). | No data | [46] |
Turkey | Aerial parts, flowers | No data | Caryophyllene oxide (21.8–25.4%), Phytol (11.4%), Caryophylla-2(12),6-dien-5β-ol (=Caryophyllenol II) (10.7–13.6%), Hexahydrofarnesyl acetone (9.7–10.0%), Spathulenol (9.0–19.7%). | β-Caryophyllene (3.3%), Caryophylla-2(12),6-dien-5α-ol (=Caryophyllenol I) (3.2–3.6%), Caryophylla-2(12),6(13)-dien-5α-ol (=Caryophylladienol II) (2.5–2.6%), Perilla alcohol (1.9–2.5%), δ-Cadinene (1.3–1.6%), α-Cadinol (1.5%), Humulene epoxide-II (1.1–1.6%), trans-α-Bergamotol (0.9%), 1-Octen-3-ol (0.7%), Muurola-4,10(14)-dien-1-ol (0.7%), Farnesyl acetone (0.6–1.1%), 8,13-Epoxy-15,16-dinorlab-12-ene (Sclareol oxide) (0.6%), Isophytol (0.4%), Caryophylla-2(12),6(13)-dien-5β-ol (=Caryophylladienol I) (0.4–1.2%), (E)-β-Ocimene (0.4%), (E)-β-Damascenone (0.4%), 2-Pentadecanone (0.4%), Dimethyl tetradecane (0.3%), α-Terpineol (0.3%), Octacosane (0.3%), T-Muurolol (0.3%), α-Calacorene (0.3–0.4%), Tricosane (0.2–0.4%), α-Humulene (0.2–0.3%), p-Cymene (0.2%), Clovenol (0.2%), Bicyclogermacrene (0.2%), Calamenene (0.2%), Aromadendrene (0.2%), Humulene epoxide-I (0.2%), 3,4-Dimethyl-5-pentylidene-2(5 H)-furanone (0.2–0.3%), (E)-Geranyl acetone (0.2–0.6%), (E)-Nerolidol (0.2–0.7%), Tetracosane (0.2–0.8%), Hexacosane (0.2–1.0%), Alloaromadendrene (0.1%), γ-Cadinene (0.1%), (Z)-β-Farnesene (0.1%), Cuparene (0.1%), 1-Dodecanol (0.1%), α-Copaene (0.1–0.5%), (E)-β-Ionone (0.1–0.7%), α-Muurolene (0.1–1.0%), Terpinen-4-ol (0.1–1.3%). | [47] |
Study Objectives | Study Design | Main Results | References |
---|---|---|---|
S. verticillata, aerial parts, methanol extracts | Study on the antimicrobial activity evaluated on 8 bacterial strains and 8 fungal strains, using Müller–Hinton Broth. Study on the antioxidant effects using green phosphate/Mo (V) complex, diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS radical cation scavenging activity, nitric oxide (NO) radical scavenging activity, a measurement of inhibitory activity toward lipid peroxidation, and a measurement of ferrous ion chelating ability. | Mild antimicrobial activity against all 8 bacterial strains (B. cereus—* MIC 1.25 mg/mL, B. mycoides—MIC 10.00 mg/mL, M. lysodeikticus—MIC 10.00 mg/mL, A. chroococcum—MIC 10.00 mg/mL, etc.) and less activity against fungi (except C. albicans—MIC 10.00 mg/mL, P. canescens—MIC 5.00 mg/mL). A significant antioxidant activity was observed (DPPH radical scavenging activity—* IC50: 33.04 ± 5.83 μg/mL; ABTS radical cation scavenging activity: IC50: 67.01 ± 13.62 μg/mL; NO radical scavenging activity—IC50: 73.12 ± 19.04 μg/mL; inhibitory activity toward lipid peroxidation—IC50: 58.07 ± 9.72 μg/mL; metal chelating activity—IC50: >4000 μg/mL). | [1] |
S. verticillata,crude extract | Study on the antioxidant activity, using DPPH radical scavenging. | It was established that the antioxidant activity of S. verticillata crude extract is based on the flavone chrysoeriol. | [81] |
S. verticillata subsp. amasiaca, essential oils and extracts | Study on the antioxidant activity, using DPPH radical scavenging; anticancer activity on cancer prostate (PC-3) and human glioblastoma U-87 MG cell lines and anticholinesterase activity, using Ellman’s colorimetric procedure. | The most significant antioxidant activity showed the S. verticillata EOs (flowers, aerial parts)—IC50: 24.52 and 18.89 µg/mL; and BuOH extracts (aerial parts)—IC50: 27.80 µg/mL. Anticholinesterase activity was also established. | [47] |
S. verticillata, S. przewalskii, S. miltiorrhiza,methanol extracts | Investigation of the antioxidant activity by the Trolox equivalent antioxidant capacity (TEAC) assay, DPPH radical scavenging activity, and phosphomolybdenum assay (P–Mo) of three Salvia species from Poland. | The S. przewalskii extract showed a more significant antioxidant effect compared to the other species. The antioxidant activity of S. verticillata root and leaf extracts, using TEAC assay, was determined as 6.07 ± 0.2 mg/g; 13.30 ± 0.4 mg/g; DPPH radical scavenging activity—* EC50: 14.52 ± 2.02 mg/g; 19.84 ± 0.64 mg/g. | [82] |
S. verticillata, Filiendula ulmaria, aqueous extracts | Study on the antimicrobial activity, using the microdilution method on 11 bacterial and 8 fungal strains; antioxidant activity, using DPPH and ABTS radical scavenging; and cytotoxic activity on normal human lung fibroblast MRC-5, human chronic myelogenous leukemia K562, human placental choriocarcinoma JEG-3, human breast cancer MDA-MB-231, and human colon cancer HCT-116 cell lines of S. verticillata, Filipendula ulmaria from Serbia. | Both plants (S. verticillata, Filiendula ulmaria) could be used for the synthesis of nanoparticles (NPs) with antibacterial activity mostly on S. aureus—MIC: 78.1 μg/mL; <39.1 µg/mL, S. enteritidis—MIC: <39.1 μg/mL; <39.1 µg/mL, B. cereus—MIC: <39.1 μg/mL; <39.1 µg/mL, B. subtilis—MIC: <39.1 μg/mL; 78.1 µg/mL, E. faecalis—MIC: <39.1 μg/mL; <39.1 µg/mL, K. pneumoniae—MIC: <39.1 μg/mL; <39.1 µg/mL, etc., and antifungal activity mostly on Penicillium moulds—MIC: < 78.1 μg/mL; 78.1 μg/mL, T. lougibrachiatum—MIC 312.5 μg/mL; <78.1 μg/mL, C. albicans—MIC 312.5 μg/mL; 312.5 μg/mL, and antioxidant activity. Cytotoxic activity was observed on HCT-116 cells after 24 h IC50: 44.62 μg/mL; 72 h IC50: 31.50 μg/mL for S. verticillata, and after 72 h IC50: 66.51 μg/mL for Filiendula ulmaria. | [83] |
S. verticillata subsp. verticillata, ethanol extracts | Investigation of antifungal activity of S. verticillata from Turkey. | Antifungal activity is observed against Cryptococcus laurentii—MIC: 1.56–6.25 mg/mL, C. neoformans—MIC: 1.56–6.25 mg/mL, and Geotrichum candidum—MIC: 1.56–6.25 mg/mL. | [84] |
S. verticillata, chloroform extracts, petroleum ether extracts | Study on S. verticillata antioxidant activity, using the DPPH test, ABTS test, Cupric Reducing Antioxidant Capacity (CUPRAC) test, Ferric Reducing Antioxidant Power (FRAP) assay, and Total Reducing Power (TRP) assay. Study on S. verticillata antimicrobial activity against 9 bacterial and 1 fungal strains; and cytotoxic activity on human breast cancer (MDA-MB-231) and human colorectal carcinoma (HCT 116) cell lines. | Antioxidant activity, antimicrobial activity of S. verticillata, chloroform and petroleum ether extracts against E. coli—MIC: 12.50/50.00 mg/mL; 6.25/25.00 mg/mL, S. enteritidis—MIC: 25.00/50.00 mg/mL; 6.25/25.00 mg/mL, E. aerogenes—MIC: 25.00/50.00 mg/mL; 6.25/25.00 mg/mL, S. aureus—MIC: 25.00/25.00 mg/mL; 6.25/25.00 mg/mL, E. faecalis—MIC: 12.50/25.00 mg/mL; 6.25/25.00 mg/mL, B. cereus—MIC: 6.25/25.00 mg/mL 25.00/25.00 mg/mL, etc., were established. Cytotoxic activity of chloroform extracts on MDA-MB-231 and HCT 116 cell lines (IC50: 77.16 μg/mL; 105.08 μg/mL) and petroleum ether extracts (IC50: 30.90 μg/mL; 44.28 μg/mL) was observed. | [85] |
S. aethiopis, S. candidissima, S. limbata, S. microstegia, S. nemorosa, S. pachystachys, S. verticillata, S. virgata, methanol extracts | Study on the antioxidant activity of 8 Salvia species from Eastern Anatolia, Turkey, using DPPH assay. | The highest antioxidant activity was shown by S. verticillata—IC50: 18.3 μg/mL. | [86] |
S. blepharochlaena, S. euphratica var. leiocalycina, S. verticillata subsp. amasica, methanol, aqueous, and dichloromethane extracts | In vitro investigation of antioxidant activity, using ABTS and DPPH methods, FRAP, CUPRAC, metal chelating, and phosphomolybdenum assays; cytotoxic activity on human breast adenocarcinoma (MCF-7) and human alveolar lung epithelial carcinoma (A549) cell lines, using MTT assay; and inhibiting enzyme activity of three Salvia species. | The aqueous extract of S. verticillata showed the highest antioxidant activity (DPPH method: 382.74 mg TE/g extract; ABTS method: 795.33 mg TE/g extract; CUPRAC: 829.08 mg TE/g extract; FRAP: 560.38 mg TE/g extract; metal chelating assay: 11.34 mg EDTAE/g extract), while the dichloromethane extract showed the highest enzyme inhibitory activity (AChE inhibition: 1.80 ± 0.11 mg GALAE/g extract; BChE inhibition: 1.75 ± 0.05 mg GALAE/g extract; amylase inhibition: 0.90 ± 0.09 mmol ACAE/g extract; glucosidase inhibition: 10.40 ± 0.26 mmol ACAE/g extract). The aqueous extract of S. verticillata showed the highest tyrosinase inhibition: 32.95 ± 2.21 mg KAE/g extract. Cytotoxic activity against MCF-7 and A549 cells was established by S. euphratica var. leiocalycina dichloromethane extract ((IC50: 44 μg/mL; 176 μg/mL). | [21] |
Salvia verticillata L., Salvia tomentosa, Phlomis lychnitis L., ethyl acetate, methanol extracts | Study on the antioxidant activity of S. verticillata and S. tomentosa from Antalya, Turkey; Phlomis lychnitis from Konya, Turkey. The DPPH assay was used. | S. verticillata methanolic extract has the highest antioxidant activity due to the highest concentration of phenols and flavonoids—* SC50: 0.010 ± 0.000 mg/mL. | [87] |
Salvia verticillata L., leaf and root, ethanol extracts | Study on the S. verticillata antioxidant activity using the FRAP and CUPRAC methods, ABTS, DPPH scavenging activity, and Fe2+ chelating activity. | Antioxidant activity of S. verticillata leaf (SvL) and root (SvR) extracts by DPPH—IC50: 40.03 ± 0.02 μg/mL; 97.94 ± 0.20 μg/mL, ABTS scavenging activity—IC50: 23.51 ± 0.01 μg/mL; 79.20 ± 0.11 μg/mL, and Fe2+ chelating activity—IC50: 139.78 ± 0.01 μg/mL; 580.04 ± 0.02 μg/mL was established. | [88] |
Salvia verticillata L. ssp. amasiaca, Salvia albimaculata Hedge and Hub, Salvia candidissima Vahl. ssp. occidentalis, Salvia aucheri Bentham var. canescens Boiss and Heldr, Salvia cryptantha Montbret and Bentham, Salvia sclarea L., Salvia ceratophylla L., Salvia syriaca L., Salvia cyanescens Boiss and Bal., Salvia multicaulis Vahl., Salvia frigida Boiss, Salvia forskahlei L., Salvia migrostegia Boiss and Bal., Salvia halophila Hedge, ethyl acetate, chloroform, methanol, and petroleum ether extracts | Study on the antioxidant activity, evaluated by Xanthine oxidase (XO) inhibition assay and DPPH scavenging assay, and anticholinesterase activity, using a modified spectrophotometric method, of 14 Salvia species. | The extracts from S. albimaculata (petroleum ether) and S. cyanescens (chloroform) showed acetylcholinesterase inhibitory activity (17.2 ± 1.11%; 41.3 ± 2.02%) at 0.2 mg/mL. The extracts from S. migrostegia (ethyl acetate), S. frigida, S. ceratophylla and S. candidissima ssp. occidentalis (chloroform), and S. cyanescens (petroleum ether) showed butylcholinesterase inhibitory activity (38.2 ± 1.78%; 67.8 ± 5.23%; 57.4 ± 2.58%; 74.8 ± 2.09%; 81.3 ± 1.83%) at 0.2 mg/mL. | [89] |
S. verticillata subsp. amasiaca (SVA), Phlomis pungens var. hirta (PPH), leaves and flowers, methanol extracts | Study on SVA and PPH antibacterial activity. | The SVA methanol extract showed inhibitory activity against E. coli, St. aureus, Ps. aeruginosa, B. subtilis, B. cereus, and Salmonella enteritidis (MIC: 50.0 mg/mL; 50.0 mg/mL; 50.0 mg/mL; 25–50.0 mg/mL; 25–50.0 mg/mL; 50.0 mg/mL). The PPH methanol extract showed inhibitory activity against B. subtilis and Ps. aeruginosa (MIC: 50.0 mg/mL; 50.0 mg/mL). | [79] |
S. verticillata L. var. verticillata, S. frigida Boiss., S. russellii Benth., S. virgata Jacq., S. candidissima subsp. candidissima Vahl., seeds | Study on the antimicrobial activity of 4 bacterial, 2 fungal, and 2 dermatophyte strains, using the disc diffusion method; antioxidant activity, using DPPH and ABTS radical scavenging activity, of 5 Salvia species from Turkey. | The seed extracts showed antimicrobial and antioxidant activity. S. verticillata showed the highest activity against S. aureus (13.33 ± 0.3 mm), B. megaterium (17.33 ± 0.3 mm), and C. albicans (16.66 ± 0.33 mm). | [90] |
Salvia species, ethanol, aqueous extracts | Study on the antioxidant activity of 10 Salvia species from Germany. The QUENCHER method was used. | The results indicate that the ethanolic extracts of S. verticillata and S. forsskaolii had antioxidant activity comparable to S. officinalis. | [91] |
S. officinalis L., S. verticillata L., S. aethiopis L., S. glutinosa L., S. austriaca Jacq., S. nemorosa L., S. pratensis L., S. nutans L., S. ringens Sibth & Sm., methanol extracts | Study on the antioxidant activity of 9 Salvia species from Romania. | S. officinalis provided the strongest antioxidant protection, followed by S. verticillata. | [22] |
S. verticillata, S. officinalis, S. tesquicola, S. sclarea, S. austriaca, S. aethiopis, S. kopetdaghensis, S. pratensis, S. nutans, S. nemorosa, ethanol extracts | Study on the antioxidant activity, using ABTS, DPPH, and FRAP assays; antimicrobial activity, against 4 bacterial (S. aureus, S. pneumoniae, E. coli, P. aeruginosa) and 1 fungal (C. albicans) strains; and cytotoxic activity on human breast carcinoma MCF-7 and MDA-MB-231 cell lines of 10 Salvia sp. from Moldova. | The results showed significant antioxidant and antimicrobial activity in Salvia species, led by S. officinalis. No cytotoxic activity was observed against breast cancer cell lines. MIC values of S. verticillata are as follows: S. aureus—1.25 mg/mL, S. pneumoniae—2.5 mg/mL, E. coli—2.5 mg/mL, P. aeruginosa—2.5 mg/mL, and C. albicans—2.5 mg/mL. | [92] |
S. verticillata L., methanol extract | In vitro examination of S. verticillata antibacterial activity and antioxidant activity, using DPPH scavenging assay. | Antioxidant activity (IC50: 0.61) and antimicrobial activity against E.coli (94.86% of dead cells) and Listeria innocua (97.77% of dead cells) of methanol extracts of S. verticillata have been proven. | [80] |
S. officinalis L., S. verticillata L., S. virgata Jacq., S. reuterana Boiss., S. hypoleuca Benth., ethanol extracts | Investigation of antioxidant activity of 5 Salvia species. The DPPH scavenging assay was used. | The results showed that these species have an antioxidant activity close to the standard S. officinalis (IC50: 23.53–125.1 μg/mL), the highest being for S. verticillata (23.53 (20.56–26.93) μg/mL). | [93] |
S. officinalis, S. verticillata, S. fruticosa, S. nemorosa, S. glutinosa, S. sclarea, S. pratensis, ethanol extracts | Study on the antioxidant activity, using DPPH, Reducing power, and lipid peroxidation inhibition assays; NO radical scavenging and iron chelating activity; hypoglycaemic and neuroprotective activity of 7 Salvia species. | The results showed that these Salvia species inhibit alpha-glucosidase and acetylcholinesterase. S. verticillata showed acetylcholinesterase inhibitory activity with IC50: 1607.87 ± 15.05 μg/mL. The ethanol extracts also possess antioxidant activity—DPPH (IC50: 2.49–7.71 μg/mL); lipid peroxidation inhibition assays (IC50: 53.18; 116.83–327.23 μg/mL); NO radical scavenging (IC50: 26.96–101.73 μg/mL); iron chelating activity (S. sclarea IC50: 163.02 μg/mL; S. officinalis, S. verticillata, S. fruticosa IC50: 1185.54–1582.53 μg/mL); and S. verticillata acetylcholinesterase inhibition—IC50: 1607.87 ± 15.05 μg/mL. | [94] |
Salvia species, extracts | Examine of antioxidant activity of 60 Salvia species from Anatolia. | All species have shown high antioxidant activity. | [95] |
S. trichoclada, S. suffruticosa, S. multicaulis, S. euphratica, S. candidissima subsp. candidissima, S. russellii, S. microstegia, S. verticillata L. subsp. verticillata, S. virgata, S. frigida, S. ceratophylla, S. aethiopis, seeds, n-hexane extracts | Investigation of antimicrobial activity of 12 Salvia species. | The results showed that the extracts have variable antibacterial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Candida glabrata, Candida albicans, Bacillus megaterium, Epidermophyton sp., and Trichophyton sp. | [96] |
S. verticillata, Zataria multiflora, Froriepia subpinnata, ethanol extracts | Study on the antimicrobial activity of S. verticillata, Zataria multiflora, Froriepia subpinnata against Pseudomonas aeruginosa, and Pectobacterium carotovorum. | The ethanolic extract of Zataria multiflora showed the highest antimicrobial activity (Zataria multiflora—MIC: 3.12–6.25 mg/mL; S. verticillata—MIC: 12.3–25 mg/mL; F. subpinnata—MIC: 12.5–25 mg/mL). Of the possible combined extracts, the most effective is the combination of Salvia verticillata and Froriepia subpinnata. | [97] |
S. verticillata, alcoholic/aqueous extract | Study of S. verticillata antioxidant and neuroprotective activity. | The aqueous extract of S. verticillata positively affected the viability of rat pheochromocytoma cell lines. | [98] |
S. officinalis, S. verticillata, S. sclarea, S. przewalski, S. ringens, S. jurisicii, S.pratensis, S. nemorosa, S. hians, S. nemorosa var. haemathodes, Salvia x superb, methanol extracts | Study on the insecticidal activity of Salvia species on Spodoptera littoralis. | The methanol extracts of S. hians and S. przewalskii showed the highest insecticidal activity on Spodoptera littoralis (total mortality 80.9%, 81.5%). | [99] |
S. verticillata, S. trichoclada, S. fruticosa | In vitro investigation of the antioxidant activity, using DPPH scavenging assay, and the inhibitory ability of S. verticillata, S. trichoclada, and S. fruticosa extracts on acetylcholinesterase, using the Ellman method. | All extracts demonstrated antioxidant activity. Salvia trichoclada (methanolic extract) showed the highest inhibitory ability on acetylcholinesterase: ±81.10% at 2 mg/mL concentration. | [100] |
Study Objectives | Study Design | Main Results | References |
---|---|---|---|
S. verticillata EO from Iran. | Study on the cytotoxic activity. | A cytotoxic activity was observed against cell lines of colon adenocarcinoma (Caco-2—IC50: 125.12 ± 27.59 μg/mL; HT-29—IC50: 90.90 ± 14.88 μg/mL) and breast ductal carcinoma (T47-D—IC50: 80.20 ± 8.91 μg/mL), with higher effect on colorectal adenocarcinoma. | [37] |
Salvia dicroantha, S. verticillata subsp. amasiaca and Salvia wiedemannii from Turkey. | Study on the antimicrobial, antifungal, and anticholinesterase activity. | Antimicrobial activity against Gram-negative and Gram-positive microorganisms has been established, and antifungal activity against Candida glabrata, Candida albicans, and Saccharomyces Cerevisiae (MICs: 12.5–50.0 µL/mL). Only S. wiedemannii essential oil demonstrated inhibitory activity against butylcholinesterase (50.97 ± 3.12%) and acetylcholinesterase (55.95 ± 2.01%). | [106] |
S. verticillata, EO from Georgia. | In vitro study on the antioxidant activity, using the Oxygen Radical Absorbance Capacity (ORAC) assay, and anti-inflammatory activity, tested on produced NO by mouse macrophage cells (RAW264.7). | Anti-inflammatory activity (inhibition of NO production by RAW264.7 for methanol fraction: 100%; chloroform fraction-83%) and antioxidant activity (ORAC assay for aqueous fraction: 6.7 ± 0.3 μmol/TE/mg) were established. | [108] |
Salvia aramiensis, Salvia aucheri subsp. aucheri, Salvia fruticosa, Salvia tomentosa and S. verticillata L. subsp. amasiaca EOs from Turkey. | Study on the activity against Mycobacterium tuberculosis, using the MGIT fluorometric manual method. | EOs of S. aucheri subsp. aucheri (196.0 μg/mL), S. tomentosa (196.0 μg/mL), and S. verticillata subsp. amasiaca (196.0 μg/mL) showed antimycobacterial activity. | [43] |
S. verticillata L., Stachys lavandulifolia Vahl., Tanacetum polycephalum Schultz-Bip. EOs from Iran. | Study on the antibacterial activity. | S. verticillata (MIC: 1.23 mg/mL) and Stachys lavandulifolia (MIC: 2.15 mg/mL) EOs showed greater effectiveness against Escherichia coli, while Tanacetum polycephalum (MIC: 1.00 mg/mL) EO showed it against Staphylococcus aureus. | [41] |
S. verticillata, S. sclarea, S. limbata, S. multicaulis, S. choloroleuca EOs from Iran. | In vitro investigation of the antibacterial activity, using the disc diffusion method (DDM) and the minimum inhibitory concentration (MIC) method. | EOs from Salvia species showed greater efficacy against Gram-positive bacteria than Gram-negative bacteria and no activity against K. pneumoniae. S. verticillata showed activity against S. aureus (MIC: 15) and E. coli (MIC: 15). | [107] |
S. verticillata L., S. nemorosa L., S. aethiopis L. EOs from Romania. | Study on the antibacterial activity, using Muller–Hinton agar (MHA) and microplates methods. | The results showed activity against Staphylococcus aureus (5–20% EO concentration) compared to Escherichia coli. The microplates method showed that S. verticillata EO MIC was rated at 0.5%. | [39] |
S. verticillata, S. multicaulis, and S. sclarea aerial parts EOs from Iran. | Study on the antibacterial activity, using the DDM and 11 bacterial strains. | S. verticillata, S. multicaulis, and S. sclarea EOs showed antibacterial activity against S. aureus, S. epidermidis, B. pumulis, B. subtilis (MIC: 3.75–7.5 mg/mL), E. coli, K. pneumoniae, (MIC: 15.0 mg/mL; >15 mg/mL), etc., and no activity against Ps. aeruginosa. | [46] |
S. verticillata ssp. amasiaca, S. macroclamys, S. virgata, S. firigida, S. multicaulis, S. kronenburgii, S. microstegia EOs from Turkey. | Study on the antibacterial and antifungal activity, using the agar diffusion test. | Low antibacterial activity against some bacteria and fungi (S. aureus—8 mm, E. coli—8 mm, K. pneumonia—6 mm, C. albicans—10 mm), and no activity against Pseudomonas aeruginosa. | [2] |
Study Objectives | Study Design | Main Results | References |
---|---|---|---|
S. verticillata, hydro-alcoholic extract | Study of S. verticillata antioxidant activity in mice. | An improvement is observed in the states of depression and seizures. | [109] |
S. verticillata, ethanol extracts | Study of S. verticillata hypoglycaemic activity on rats for 14 days. | S. verticillata ethanol extracts increased the levels of insulin and decreased the levels of glucose, having also renal protective and hepatoprotective effects in a concentration-dependent manner. | [110] |
S. fruticosa, S. verticillata, and S. trichoclada, methanol, aqueous, chloroform, acetone, and n-butanol extracts | Investigation of the anti-inflammatory activity on rats of S. fruticosa, S. verticillata, and S. trichoclada from Turkey. | A positive effect on inflammation was observed from all three species of Salvia due to the phenolic acids, flavonoids, and terpenoids in the composition. S. fruticosa extract (n-butanol) has a significantly greater anti-inflammatory effect. S. verticillata extracts at concentrations of 50–100 mg/kg showed anti-inflammatory activity 1.4–5.6% (1 h), 3.8–12.00% (2 h), 1.78–26.79% (3 h), 2.7–18.3% (4 h). | [4] |
S. verticillata, alcoholic extract | Study of the antioxidant activity of S. verticillata on 24 rats with cerebral hypoperfusion for 14 days. | A reduction in oxidative stress-related damage was observed. | [111] |
S. verticillata L., S. patens L., aqueous/alcoholic extracts | Examination of the anti-inflammatory activity and acute toxicity of S. verticillata and S. patens in rats for 14 days. | The extracts showed a moderate anti-inflammatory effect and no toxicity. | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, S.; Dzhakova, Z.; Staynova, R.; Ivanov, K. Salvia verticillata (L.)—Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals 2024, 17, 859. https://doi.org/10.3390/ph17070859
Ivanova S, Dzhakova Z, Staynova R, Ivanov K. Salvia verticillata (L.)—Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals. 2024; 17(7):859. https://doi.org/10.3390/ph17070859
Chicago/Turabian StyleIvanova, Stanislava, Zoya Dzhakova, Radiana Staynova, and Kalin Ivanov. 2024. "Salvia verticillata (L.)—Biological Activity, Chemical Profile, and Future Perspectives" Pharmaceuticals 17, no. 7: 859. https://doi.org/10.3390/ph17070859
APA StyleIvanova, S., Dzhakova, Z., Staynova, R., & Ivanov, K. (2024). Salvia verticillata (L.)—Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals, 17(7), 859. https://doi.org/10.3390/ph17070859